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The Ground State Problem for a Quantum
Hamiltonian Model Describing Friction

Laurent Bruneau

Abstract. In this paper, we consider the quantum version of a Hamiltonian model describing friction.

This model consists of a particle which interacts with a bosonic reservoir representing a homogeneous

medium through which the particle moves. We show that if the particle is confined, then the Hamilto-

nian admits a ground state if and only if a suitable infrared condition is satisfied. The latter is violated

in the case of linear friction, but satisfied when the friction force is proportional to a higher power of

the particle speed.

1 Introduction

Together with S. De Bièvre, we introduced a classical Hamiltonian model of a particle
moving through a homogeneous dissipative medium at zero temperature in such

a way that the particle experiences an effective linear friction force proportional to
its velocity [BDB]. At each point in the space, the medium consists of a vibration
field with which the particle exchanges energy and momentum. More precisely. the
Hamiltonian is given by

(1.1) H(q, p, φ, π) =
p2

2
+ V (q) +

1

2

∫

Rd

dx

∫

Rn

dy c2|∇yφ(x, y)|2 + |π(x, y)|2

+

∫

Rd

dx

∫

Rn

dy ρ1(x − q)ρ2(y)φ(x, y),

where V is an external potential, c represents the speed of the wave propagation in the

“membranes”, and the functions ρ1 and ρ2 are smooth radial functions with compact
support that determine the coupling between the particle and the field.

We studied the asymptotic behaviour of the particle motion for two categories of
potentials: linear ones (which means constant external force) and confining ones. We

proved that under suitable assumptions (on the initial conditions), for c sufficiently
large and, most importantly, n = 3, the particle behaves asymptotically as if its mo-
tion was governed by the effective equation q̈(t) + γq̇(t) = −∇V (q(t)), where the
friction coefficient γ is nonnegative and is explicit in terms of the parameters of the

model:

(1.2) γ :=
π

c3
|ρ̂2(0)|2

∫

Rn

d ξ

∫

Rd−1

d η|ρ̂1(|ξ|, η)|2.
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If V = −F · q, which means that we apply a constant external force F to the parti-
cle, then this particle reaches exponentially fast (with rate γ) an asymptotic velocity

v(F) =
F
γ which is proportional to the applied force (for small forces). This is, in

particular, at the origin of Ohm’s law. On the other hand, if V is confining, the parti-
cle stops at one of the critical points of the potential, the convergence rate being still
exponential (but with rate γ/2, as expected from the effective equation).

In [BDB] we mostly concentrated on linear friction. This is why the n = 3 as-
sumption was required. However, for other values of n (> 3), our model still de-

scribes friction. Indeed, the reaction force of the environment on a particle moving
with velocity v takes the form −γ|v|n−3v (for small v and where γ is defined in (1.2)).
So one can see that we have linear friction when n = 3, and otherwise a friction force
which is proportional to some other power of the particle velocity.

Such models, where a small system interacts with a large environment, are called
open systems. The reason for studying those models is usually to have a Hamiltonian

description of dissipative phenomena. There exist several mechanisms leading to dis-
sipation. Among them, two important, and very different, mechanisms are radiation
damping and friction (which can be linear or not). As far as radiation damping is
concerned, there exist many models which are more or less related to electromag-

netism. One example is the “classical Nelson model”,

Hnels =
p2

2
+ V (q) +

1

2

∫

Rd

dx
(

|∇φ(x)|2 + |π(x)|2
)

+

∫

Rd

ρ(x − q)φ(x) dx,

which has been studied in [KKS] (except for the kinetic energy of the particle which

was
√

p2 + 1 instead of p2

2
). This model describes a particle interacting with a scalar

radiation field, and exhibits radiation damping. Concerning friction, although there
exist various Hamiltonian models in the literature, ours is the only one we are aware

of that describes the friction produced by the motion of the particle through a homo-
geneous medium. Despite the formal similarity between our model and the classical
Nelson model, we want to stress once again that they describe physically totally dif-
ferent phenomena. This is reflected in mathematical differences that will become

apparent below.
Our goal in this paper is to begin the study of the quantum version of the model

(1.1). Since the speed of the wave propagation will not play any role in our paper, we
take it equal to 1. The quantum Hamiltonian then is written as follows:

H = (−∆ + V ) ⊗ 1 + 1 ⊗
∫

dxdkω(x, k)a∗(x, k)a(x, k)

+

∫

dxdk
ρ1(x − Q)ρ̂2(k)√

2ω(x, k)
⊗ a∗(x, k) + h.c.,

where a and a∗ are the usual annihilation and creation operators on the bosonic Fock
space F(L2(R

d+n, dxdk)), and ω(x, k) = |k| is the bosons dispersion relation. In this
paper, we start with the study of confining potentials which are less difficult. More
precisely, we deal with the question of existence of a ground state. If a Hamiltonian
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is bounded from below, we say that it admits a ground state if the infimum of its
spectrum is an eigenvalue. We call this infimum the ground state energy if it exists,

and call any corresponding eigenvector a ground state. We will prove that such a
ground state exists provided the following infrared condition is satisfied (Theorem
3.4):

∫

Rn

dk
|ρ̂2(k)|2
|k|3 < +∞.

Let us suppose that ρ̂2(0) 6= 0. Indeed, this is the only interesting case since the
friction coefficient γ vanishes together with ρ̂2(0) (see (1.2)). One can see that the

infrared condition is fulfilled when the friction is non-linear (n ≥ 4). On the other
hand, for linear friction, there is generically no ground state (Proposition 3.5). Thus,
we have a class of models, depending on a parameter n, describing friction phenom-
ena, linear or proportional to a power of the velocity of the particle, for which we are

able to say whether or not they admit a ground state.

We will describe precisely the quantum version of the model in Section 2, and we
state our main results in Section 3.

To prove the existence of a ground state, we follow the standard strategy: we first
prove the result for coupling to a massive field and then we let the mass tend to zero.

We study the massive case in Section 4, along the lines of [BFS1, BFS2, GJ], and the
“zero mass” limit in Section 5, adapting the proof of [G] to our model. In the two
parts of the proof, the main mathematical difference (and difficulty) with the models
for radiation damping comes from the fact that the dispersion relation ω does not

depend on x. Hence we have no a priori control on the momentum of the bosons
in the “x-direction”. A second difficulty which arises comes from the fact that in the
interaction term the norm of ρ1(x − Q) as an operator on L2(R

d) does not depend
on x. In order to control this problem, we will need to use the exponential decay of

the spectral projectors in the Q variable. The proof of Proposition 3.5 is also given in
Section 5. Some of the proofs are omitted or only briefly sketched; see [B1, B2] for
more details.

2 Description of the Model

In this section, we introduce the quantum version of the model introduced in Sec-
tion 1. The dynamics of the particle is given by the Schrödinger operator Hp =

−∆ + V on L2(R
d). Throughout this paper, we will only consider confining poten-

tials, so that Hp has a compact resolvent and purely discrete spectrum.

The Hilbert space for the environment will be the bosonic Fock space over
L2(R

d+n, dxdk). In what follows, we will just write F := F(L2(R
d+n, dxdk)). The

Hamiltonian of the field is given by H f := dΓ(ω), where ω is the multiplication op-

erator on L2(R
d+n, dxdk) by the function ω(x, k) = |k|. The function ω depends only

on k, so we will write ω(k) for ω(x, k). It is well known that one can rewrite H f using
the creation and annihilation operators as follows:

(2.1) H f =

∫

Rd+n

dxdkω(k)a∗(x, k)a(x, k).
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We can now describe the full system. The Hilbert space is the tensor product of
the particle space and of the environment one, namely H := L2(R

d) ⊗ F, and the

free Hamiltonian, i.e., without interaction, is given by H0 := Hp ⊗ 1 + 1 ⊗ H f . The
interaction term is given by

(2.2) HI :=

∫

dxdk ρ1(x − Q)
( ρ̂2(k)√

2ω(k)
⊗ a∗(x, k) +

¯̂ρ2(k)√
2ω(k)

⊗ a(x, k)
)

,

where ρ1 and ρ2 are two smooth functions with compact support and spherical

symmetry, and ρ1(x − Q) is the multiplication operator on L2(R
d) by the function

ρ1(x − ·). Finally, the full Hamiltonian of the interacting system is therefore

(2.3) H := H0 + HI .

3 Main Results

3.1 Selfadjointness

From now on, we will suppose that n ≥ 3. We first give the precise condition we
impose on the potential V :

(C) V ∈ L2
loc(R

d), lim
|q|→∞

V (q) = +∞.

This hypothesis ensures that Hp is well defined and is selfadjoint on D(Hp) =

{ψ ∈ L2(R
d)|Hpψ ∈ L2(R

d)} [RS2, Theorem X.28]. We also know that H f is self-
adjoint on its domain D(H f ) [RS1, Ch. VIII.10]. One then easily proves that H0

is essentially selfadjoint on D(Hp) ⊗ D(H f ) [RS1, Ch. VIII.10]. We now have the
following result.

Proposition 3.1 Suppose that n ≥ 3, and V satisfies condition (C). Then H is selfad-

joint on D(H) = D(H0). Moreover, H is essentially selfadjoint on any core for H0, and

it is bounded from below.

This is in the standard way a consequence of the Kato–Rellich theorem [RS2, The-
orem X.12]. The only ingredient needed is that HI is infinitesimally H0-bounded,

which follows from the following lemma.

Lemma 3.2 Under the hypothesis of Proposition 3.1, for all Ψ ∈ D(H0),

∥

∥

∥

∫

dxdk
ρ̂2(k)√
ω(k)

ρ1(x − Q) ⊗ a(x, k)Ψ
∥

∥

∥

2

H

≤
[

∫

dxdk |ρ1(x)|2 |ρ̂2(k)|2
ω(k)2

]

‖(1 ⊗ H
1
2

f )Ψ‖2
H
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and

∥

∥

∥

∫

dxdk
ρ̂2(k)√
ω(k)

ρ1(x − Q) ⊗ a∗(x, k)Ψ
∥

∥

∥

2

H

≤
[

∫

dxdk |ρ1(x)|2 |ρ̂2(k)|2
ω(k)2

]

‖(1 ⊗ H
1
2

f )Ψ‖2
H

+
[

∫

dxdk |ρ1(x)|2 |ρ̂2(k)|2
ω(k)

]

‖Ψ‖2
H.

Remark 3.3 Such kind of estimates are well known [A1, BFS1, DJ] and are some-
times called Nτ -estimates. The n ≥ 3 hypothesis ensures that the integrals on the
right-hand side of both inequalities converge.

Proof of Lemma 3.2 We use the fact that H is isomorphic to L2(R
d, dq,F). We then

have

(3.1)
∥

∥

∥

∫

dxdk
ρ̂2(k)√
ω(k)

ρ1(x − Q) ⊗ a(x, k)Ψ
∥

∥

∥

2

H

=

∫

Rd

dq ‖a(gq)Ψ(q)‖2
F,

where gq is the function gq(x, k) =
ρ̂2(k)√
ω(k)

ρ1(x − q). By a standard computation, one

has (see [BFS1, Lemma I.6])

‖a(gq)Ψ(q)‖2
F ≤

[

∫

dxdk |ρ1(x)|2 |ρ̂2(k)|2
ω(k)2

]

‖H
1/2
f Ψ(q)‖2

F,

which, together with (3.1), prove the first inequality. One proves the second one in a

similar way.

3.2 Existence of a Ground State

Let E0 denote the ground state energy of H. It is well known that one of the main
obstacles to the existence of a ground state, in those models where a particle interacts

with a field, comes from the so-called infrared catastrophe, which is due to the be-
haviour of ω(k) for small k and in particular to the fact that ω(0) = 0. We will then
need the following “infrared condition” on the coupling:

(IR)

∫

Rn

dk
|ρ̂2(k)|2
ω(k)3

< +∞.

The main result of our paper is the following.

Theorem 3.4 Suppose n ≥ 3, V satisfies hypothesis (C), and ρ̂2 satisfies (IR). Then

H has a ground state.
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As we said in the introduction, this condition (IR) is satisfied when the friction
is non-linear but not if it is linear. On the other hand, in the case of the Nelson

model, the same kind of condition is necessary and sufficient to have a ground state
[G, LMS]. It is then reasonable to think this is also true for our model. Indeed, we
will prove that if the infrared condition is violated, then there is no ground state but
provided the additional condition ρ̂1(0) 6= 0 is satisfied, which means that the total

charge of the particle does not vanish.

Proposition 3.5 Suppose n ≥ 3, V satisfies hypothesis (C), ρ̂2 does not satisfy (IR)
and ρ̂1(0) 6= 0; then H has no ground state.

To prove Theorem 3.4, we will need to study some “intermediate” models, and
in particular to consider massive bosons and to “discretize” space. The term massive

means that, instead of ω(k), we will consider a function ωm(k) satisfying

(Hω) ∇ωm ∈ L∞(R
n), lim

|k|→∞
ωm(k) = +∞, infωm(k) = m > 0.

Our proof will use different methods developed in the literature [BFS1, BFS2, DG1,

G, GJ]. For more detailed proofs, we also refer the reader to [B1].

Finally, we would like to emphasize that all the Hamiltonians we will deal with
have the same structure as (2.3) and so, a result similar to the one of Proposition 3.1
is available for each of them.

4 Ground State for Massive Bosons

Our goal in this section is to prove a first result similar to Theorem 3.4 but in the
case of massive bosons (Theorem 4.7, §4.2). The idea is first to consider a finite box
(|x| < L) and then to control the remainder as L goes to infinity. We will see in

Section 4.2 that the “cutoff” model so obtained can be written in the form (4.1). We
therefore first study models of this latter type (Theorem 4.1).

4.1 Discrete Models

4.1.1 Description

We consider Hamiltonians of the form

Hd := Hp ⊗ 1 + 1 ⊗
∑

l∈Zd

∫

Rn

dkωm(k)a∗l (k)al(k)

+
∑

l∈Zd

∫

Rn

dk (βl(k) ⊗ a∗l (k) + β̄l(k) ⊗ al(k))

= Hd
0 + W d,

(4.1)

https://doi.org/10.4153/CJM-2007-038-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-038-3


The Ground State Problem for a Quantum Hamiltonian Model Describing Friction 903

on the space Hd := L2(R
d) ⊗ F

(

l2(Z
d) ⊗ L2(R

n)
)

, and where the βl(k) satisfy

βl(k) = ζl
ρ̂2(k)√
2ωm(k)

where ζl is a multiplication operator on

L2(R
d) such that supl ‖|l|sζl‖ < +∞ for all s > 0,

(Cβ)

al(k) and a∗l (k) are the annihilation and creation operators on the space F(l2(Z
d) ⊗

L2(R
n)), and for l = (l1, . . . , ld) ∈ Z

d, |l| := supi |li|.
Let Ed

0 denote the ground state energy of Hd. We will prove the following.

Theorem 4.1 σess(Hd) ⊂ [Ed
0 + m,+∞[. In particular, Hd has a ground state.

4.1.2 Cutoff Models

In the following, M will be a non negative number. On Hd, we define

Hd(M) := Hd
0 +

∑

|l|≤M

∫

Rn

dk (βl(k) ⊗ a∗l (k) + β̄l(k) ⊗ al(k)) = Hd
0 + W d(M).

We also define

(4.2) H̃d(M) := Hp ⊗ 1 + 1 ⊗
∑

|l|≤M

∫

Rn

dkωm(k)a∗l (k)al(k) + W d(M)

as an operator on the space Hd
M := L2(R

d) ⊗ F(l2(ΛM) ⊗ L2(R
n)), where ΛM =

{l ∈ Z
d, |l| ≤ M}. Let Ed

0(M) (resp., Ẽd
0(M)) be the ground state energy for Hd(M)

(resp., H̃d(M)). Our goal is to get information on Hd from information Hd(M) (as
M → +∞). Thus, we first prove a result similar to Theorem 4.1, but for Hd(M).

Proposition 4.2 σess(Hd(M)) ⊂ [Ed
0 (M) + m,+∞[. In particular, Hd(M) has a

ground state φd
0(M). Moreover, Ed

0(M) = Ẽd
0(M).

Lemma 4.3 σess(H̃d(M)) ⊂ [Ẽd
0 (M) + m,+∞[. In particular, H̃d(M) has a ground

state φ̃d
0(M).

Proof of Lemma 4.3 The set ΛM is finite. If its cardinal were one, we would have

exactly the model studied in [DG1], and the lemma would correspond to their The-
orem 4.1. The same proof works in the general case.

Proof of Proposition 4.2 The proposition follows from the lemma using an identi-

fication between Hd
M and some subspace of Hd [GJ]. Indeed, one can write l2(Z

d) ≃
l2(ΛM) ⊕ l2(Λc

M), where Λ
c
M = Z

d\ΛM , so one has

F
(

l2(Z
d) ⊗ L2(R

n)
)

≃ F
(

l2(ΛM) ⊗ L2(R
n)

)

⊗ F
(

l2(Λc
M) ⊗ L2(R

n)
)

,
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and finally, Hd ≃ Hd
M ⊗ F(l2(Λc

M) ⊗ L2(R
n)).

One can then identify Hd
M with Hd

M ⊗ Ω
c
M , where Ω

c
M is the vacuum of

F
(

l2(Λc
M) ⊗ L2(R

n)
)

. We can rewrite Hd as

H
d

=

+∞
⊕

j=0

(

H
d
M ⊗ j

s

(

l2(Λc
L) ⊗ L2(R

n)
))

=

+∞
⊕

j=0

H
( j).

Actually, we have Hd
M = H(0) and (Hd

M)⊥ =
⊕+∞

j=1 H( j). One sees that the H( j) are

invariants for Hd(M). But, on H( j), one has

Hd(M) = H̃d(M) ⊗ 1 + 1 ⊗
∑

|l|>L

∫

Rn

dkωm(k)a∗l (k)al(k) ≥ H̃d(M) ⊗ 1 + m j,

and on H(0), Hd(M) = H̃d(M) ⊗ 1. Hence, we have

σ(Hd(M)|
Hd

M
) = σ(H̃d(M)) and σess(Hd(M)|

Hd
M

) = σess(H̃d(M)),

and also

σess(Hd(M)|(Hd
M )⊥) ⊂ σ(Hd(M)|(Hd

M )⊥) ⊂ [Ẽd
0 (M) + m,+∞[,

which ends the proof. Moreover, one can remark that φd
0(M) = φ̃d

0(M) ⊗ Ω
c
M .

4.1.3 Removing the Cutoff

We first prove some convergence results as M goes to infinity.

Proposition 4.4 Hd(M) converges to Hd in the strong resolvent sense.

Proof We have

Hd − Hd(M) = W d −W d(M) =

∑

|l|>M

∫

Rn

dkβl(k) ⊗ a∗l (k) + β̄l(k) ⊗ al(k).

Let ψ ∈ D(Hd
0 ). Using condition (Cβ), one proves in the same way as Lemma 3.2,

‖Hdψ − Hd(M)ψ‖ ≤ 2C(s)

1 + Ms
‖(Hd

0 )
1
2ψ‖ +

(

∑

|l|>M

∫

Rn

dk |βl(k)|2
)

1
2 ‖ψ‖.

Using condition (Cβ) once more, one shows that the right-hand side tends to zero as
M goes to infinity. So Hd(M) converges strongly to Hd and hence also in the strong
resolvent sense [RS1, Theorem VIII.25].

Proposition 4.5 Ed
0(M) is a decreasing function of M which tends to Ed

0 .
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Proof We know that if φd
0(M) is a ground state for Hd(M), then φd

0(M) = φ̃d
0(M)⊗

Ω
c
M , and so ∀l ∈ Λ

c
M , ∀k ∈ R

n, al(k)φd
0(M) = 0.

As a consequence, it is easy to see that the function Ed
0(M) decreases with M and

satisfies Ed
0(M) ≥ Ed

0 . Thus Ed
0(M) converges to some E∞ ≥ Ed

0 . But Ed
0 ∈ σ(Hd) and

Hd(M) converges to Hd in the strong resolvent sense, so [RS1, Theorem VIII.2],

∀M > 0, ∃E(M) ∈ σ(Hd(M))/E(M) → Ed
0 .

Since Ed
0(M) is the ground state energy of Hd(M), we finally get E∞ = Ed

0 .

Proposition 4.6 Let ∆ be an interval bounded from above. For all s > 0, there exists

K(s,∆) > 0 such that

‖χ∆(Hd)(W d −W d(M))χ∆(Hd)‖ ≤ K(s,∆)

1 + Ms
.

Proof Let φ, ψ ∈ Hd. Using condition (Cβ), we get

∣

∣〈φ;χ∆(Hd)(W d −W d(M))χ∆(Hd)ψ〉
∣

∣

≤ C(s)

1 + Ms

(

‖φ‖ × ‖(1 ⊗ Nd)
1
2χ∆(Hd)ψ‖ + ‖ψ‖ × ‖(1 ⊗ Nd)

1
2χ∆(Hd)φ‖

)

.

But ∆ is bounded from above, 1 ⊗ Nd ≤ 1
m

Hd
0 and W d is relatively Hd

0 bounded, so

(1 ⊗ Nd)
1
2χ∆(Hd) is a bounded operator. Finally, one has

∣

∣〈φ ; χ∆(Hd)(W d −W d(M))χ∆(Hd)ψ〉
∣

∣ ≤ 2C(s)‖(Nd)
1
2χ∆(Hd)‖

1 + Ms
‖φ‖ × ‖ψ‖,

which ends the proof.

Proof of Theorem 4.1 The proof goes in the same way as the one of [BFS2, The-
orem II.2], i.e., using the results of Propositions 4.2, 4.5 and 4.6, we prove that

Tr{[Hd − Ed
0 − m + ǫ]−} > −∞ for all ǫ > 0 and where [A]− denotes the neg-

ative part of an operator A.

4.2 Continuous Models

In this section, we are interested in the model introduced in Section 2, but for massive

bosons. We thus consider on H the same Hamiltonian as in Section 2, but with ω(k)
replaced by ωm(k) satisfying (Hω). We denote it Hm = H0

m + Wm where H0
m denotes

the free part and Wm the interaction. Let Em denote the ground state energy of Hm.
The main result of this section is the following.

Theorem 4.7 σess(Hm) ⊂ [Em + m,+∞[. In particular, Hm has a ground state.
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The strategy of the proof is very similar to the one of the previous section. How-
ever, one has to be more careful with the estimates when removing the cutoff, because

the norm of ρ1(x−Q) as an operator on L2(R
d) does not decrease with x. Even worse,

it does not depend on it. To control this problem, we will use the exponential decay of
the spectral projectors in the Q variable, which are obtained via the Agmon method
(see §4.2.2).

4.2.1 Cutoff Models

Let j be a smooth function with compact support on R
d such that 0 ≤ j(x) ≤ 1,

j(x) = 1 for |x| ≤ 1/2, and j(x) = 0 for |x| ≥ 3/4. For all L > 0, we define

jL(x) = j( x
L

). We then define

Hm(L) := H0
m +

∫

Rd

dx

∫

Rn

dk ρ1(x − Q) jL(x)
ρ̂2(k)√
2ωm(k)

⊗ a∗(x, k)

+ ρ1(x − Q) jL(x)
¯̂ρ2(k)√
2ωm(k)

⊗ a(x, k)

= H0
m + Wm(L)

(4.3)

on H. Using the definition of jL, one can replace
∫

Rd dx by
∫

[−L,L]d dx in Wm(L).
Finally, we define

(4.4) H̃m(L) := Hp ⊗ 1 + 1 ⊗
∫

[−L,L]d

dx

∫

Rn

dkωm(k)a∗(x, k)a(x, k) + Wm(L),

as an operator on L2(R
d)⊗F(L2([−L, L]d)⊗L2(R

n)). We denote by Em(L) and Ẽm(L)

the ground state energies of Hm(L) and H̃m(L), respectively.
We have “cut” the Hamiltonian Hm in the x variable. We are now in a finite volume

box. If we consider the variable p conjugate to x, this is equivalent to “discretizing”
the problem. One has to note that here p ∈ Z

d. If

a∗p(k) =
1

(2L)
d
2

∫

[−L,L]d

dx ei pxa∗(x, k), ap(k) =
1

(2L)
d
2

∫

[−L,L]d

dx e−i pxa(x, k),

βp =
1

(2L)
d
2

∫

[−L,L]d

dx ρ1(x − Q) jL(x),

denote the Fourier coefficients of a∗(x, k), a(x, k) and ρ1(x − Q) jL(x), respectively,

the Hamiltonian can now be written as follows:

H̃m(L) = Hp ⊗ 1 + 1 ⊗
∑

p∈Zd

∫

Rn

dkωm(k)a∗p(k)ap(k)

+
∑

p∈Zd

∫

Rn

dk (βp
ρ̂2(k)√
2ωm(k)

⊗ a∗p(k) + β̄p

¯̂ρ2(k)√
2ωm(k)

⊗ ap(k)),

which has the form (4.1). If the βp satisfy (Cβ), we will then have the following.
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Proposition 4.8 σess(H̃m(L)) ⊂ [Ẽm(L) + m,+∞[ for L > 0.

Finally, a splitting of L2(R
d) into L2([−L, L]d) ⊕ L2(R

d\[−L, L]d) together with
the argument of the previous section will lead to the following.

Proposition 4.9 σess(Hm(L)) ⊂ [Em(L)+m,+∞[. In particular, Hm(L) has a ground

state φm(L).

So it remains to check that the βp satisfy the condition (Cβ). The function jL is

zero for |x| > L and ρ1 has compact support (in a ball of radius R1), so

∀|q| > L + R1, ∀x ∈ R
d, ρ1(x − q) jL(x) = 0.

Then for all p in Z
d, βp is a multiplication operator by a compactly supported func-

tion. Moreover, the function ρ1(x − q) jL(x) is C∞, so its Fourier coefficients decay
faster than any power of p. Those two facts ensure that supp supq

∣

∣βp(q)|p|n
∣

∣ <
Cn(L) < +∞ and so condition (Cβ) is satisfied. To prove Theorem 4.7, it remains to
control the limit L → +∞.

4.2.2 Exponential Bounds

Proposition 4.10 Let ∆ be an interval bounded from above. For any α > 0, there

exists M(α,∆) > 0 such that for all L and m,

(i) ‖(eα|Q| ⊗ 1)χ∆(Hm(L))‖ ≤ M(α,∆).

(ii) ‖(eα|Q| ⊗ 1)χ∆(Hm)‖ ≤ M(α,∆).

(iii) ‖(eα|Q| ⊗ 1)χ∆(H)‖ ≤ M(α,∆).

The proof is exactly the same as [BFS1, Theorem II.1]. The only difference is
that σess(Hp) = ∅, which makes things easier. In particular, one does not need any
condition on α or on the supremum of the interval ∆.

For any R > 0, we now define

(4.5) N(|x| > R) :=

∫

|x|>R

dx

∫

Rn

dk a∗(x, k)a(x, k),

which is the number of bosons outside the ball centered at the origin and of radius R

(in the x variable). We will prove that the number of these “far away” bosons decays
exponentially fast with R. More precisely, we have the following.

Proposition 4.11 For any α > 0, there exists C(α) > 0 such that for all L,

(4.6) 〈φm(L) ; 1 ⊗ N(|x| > R)φm(L)〉 ≤ C(α)e−αR.

The idea is to adapt the proof of [BFS1]. What is new in our model is that we need
an explicit control on the number of “far away” bosons in the x direction, even for
massive bosons. For that purpose, we use the following lemma which comes from
the well-known pullthrough formula (see [G]).
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Lemma 4.12 ‖1 ⊗ a(x, k)φm(L)‖ ≤ 1
ωm(k)

‖ρ1(x − Q) jL(x) ρ̂2(k)√
2ωm(k)

⊗ 1φm(L)‖.

Proof of Proposition 4.11 Let α > 0. Using Lemma 4.12, we have

〈φm(L) ; 1 ⊗ N(|x| > R)φm(L)〉

≤
∫

|x|>R

dx

∫

Rn

dk
|ρ̂2(k)|2
2ω3

m(k)
‖ρ1(x − Q) jL(x)e−α|Q|‖2

B(L2) × ‖eα|Q| ⊗ 1φm(L)‖2.

The function ρ̂2 is a Schwartz function and ωm is bounded from below by m > 0,
so the integral with respect to the k variable converges. Recall that the function ρ1

has compact support in the ball of radius R1, so for any given x ∈ R
d, we have

‖ρ1(x − Q)e−α|Q|‖B(L2) ≤ ‖ρ1‖∞eαR1 e−α|x|. Thus

∫

|x|>R

dx ‖ρ1(x − Q)e−α|Q|‖2
B(L2) ≤ ‖ρ1‖2

∞e2αR1

∫

|x|>R

dx e−2α|x| ≤ K(α)e−αR,

and hence, 〈φm(L) ; 1 ⊗ N(|x| > R)φm(L)〉 ≤ K ′(α)e−αR‖eα|Q| ⊗ 1φm(L)‖2.

Now for any L, we have Em(L) ≤ E0
p where E0

p is the ground state energy of Hp.

Indeed, if ψ0
p is the ground state of Hp, we have

Em(L) ≤ 〈ψ0
p ⊗ Ω ; Hm(L)ψ0

p ⊗ Ω〉 = E0
p.

Finally, take ∆ = ]−∞, E0
p]. Then one has φm(L) = χ∆(Hm(L))φm(L), and hence

‖eα|Q| ⊗ 1φm(L)‖2 ≤ ‖eα|Q| ⊗ 1χ∆(Hm(L))‖2‖φm(L)‖ ≤ M(α,∆)2,

which ends the proof.

We finally give an estimate similar to the one of Proposition 4.6.

Proposition 4.13 Let ∆ and α be as in Proposition 4.10. Then there exists K(α,∆)

such that ‖χ∆(Hm)(Wm −Wm(L))χ∆(Hm)‖ ≤ K(α,∆)e−αL.

Proof The proof goes in the same way as that for Proposition 4.6. As we already
mentioned, the main difference comes from the fact that ‖ρ1(x − Q)‖B(L2) does not

decay with x. This difficulty is overcome using Proposition 4.10 and writing

|〈φ ; χ∆(Hm)(Wm −Wm(L))χ∆(Hm)ψ〉|

= |〈(e2α|Q| ⊗ 1)χ∆(Hm)φ; (e−2α|Q| ⊗ 1)(Wm −Wm(L))χ∆(Hm)ψ〉|.
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4.2.3 Removing the Cutoff

Proposition 4.14 Hm(L) converges to Hm in the strong resolvent sense.

Proof The proof is similar to that of Proposition 4.4.

Proposition 4.15 Em(L) converges to Em as L goes to infinity.

Proof Remember that φm(L) is a ground state of Hm(L). We have

Em ≤ 〈φm(L) ; Hmφm(L)〉 ≤ Em(L) + 〈φm(L) ; (Wm −Wm(L))φm(L)〉

≤ Em(L) + 2Re
(

〈eα|Q| ⊗ 1φm(L) ;

∫

|x|> L
2

dx

∫

Rn

dk e−α|Q|ρ1(x − Q)

× (1 − jL(x))
ρ̂2(k)√
2ωm(k)

⊗ a(x, k)φm(L)〉
)

.

Then the same computation as in Proposition 4.4 leads to

Em ≤ Em(L) + K(α)e−
αL
2

〈

φm(L) ; 1 ⊗ N
(

|x| > L

2

)

φm(L)
〉

≤ Em(L) + C(α)e−αL.

Hence, the function Em(L) is bounded from below (and from above by E0
p), so there

exists a sequence Ln and E∞ such that limn→+∞ Em(Ln) = E∞. For the same reason

as in the proof of Proposition 4.5, we have Em = E∞.
The function Em(L) is then bounded with only one accumulating point Em, which

proves that the function converges to it.

Proof of Theorem 4.7 The proof is identical to that for Theorem 4.1.

5 Proof of the Main Results

The goal of this section is to prove the results of Section 3. We start with Theorem
3.4. We adapt the method of [G]. We will insist on the differences with this paper.
The idea is to approach H (in a way which has to be made precise) with Hamiltonians

for which we know they have a ground state and then to obtain the same result for
H. More precisely, we will use the following lemma.

Lemma 5.1 ([AH, Lemma 4.9]) Let H,Hn(n ∈ N) be selfadjoint operators on a

Hilbert space H. We suppose that

(i) For all n ∈ N,Hn has a ground state ψn with ground state energy En,

(ii) Hn tends to H in the strong resolvent sense,

(iii) limn→+∞ En = E,

(iv) w-limn→+∞ ψn = ψ 6= 0.

Then ψ is a ground state of H with ground state energy E.
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5.1 Infrared Cutoff

We denote by χσ≤ω(k) the characteristic function of the set {k ∈ R
n | σ ≤ ω(k)}. For

any σ > 0, we then define

Hσ := H0 +

∫

Rd

dx

∫

Rn

dk ρ1(x − Q)
ρ̂2(k)√
2ω(k)

χσ≤ω(k)(k) ⊗ a∗(x, k)

+ ρ1(x − Q)
¯̂ρ2(k)√
2ω(k)

χσ≤ω(k)(k) ⊗ a(x, k)

= H0 + HI,σ,

(5.1)

where H0 is the free Hamiltonian defined in Section 2. We want to use Lemma 5.1
with H and Hσn , where σn is some sequence going to zero.

We consider a function ω̃σ(k) satisfying

∇ω̃σ ∈ L∞(R
n), ω̃σ(k) = ω(k) if ω(k) ≥ σ, inf ω̃σ(k) ≥ σ

2
> 0,

and we define

(5.2) H̃σ
= Hp ⊗ 1 + 1 ⊗ dΓ(ω̃σ) + HI,σ.

Then we have the following result.

Proposition 5.2 For any σ > 0, Hσ has a ground state ψσ . We denote by Eσ its

ground state energy.

To prove this result we use the following lemma.

Lemma 5.3 ([G, Lemma 3.2]) Hσ has a ground state if and only if H̃σ has one.

Proof of Proposition 5.2 According to the previous lemma, it suffices to show that
H̃σ has a ground state. But H̃σ is a Hamiltonian of the form studied in Section 4.2,
so according to Theorem 4.7, it has a ground state.

Proposition 5.4 Hσ tends to H in the norm resolvent sense.

Proof We use [G, Lemma A.2] which says that it suffices to show that Qσ converges
to Q in the topology of D(Q), where Qσ and Q are the quadratic forms associated to

Hσ and H. But, with a similar computation to the one of Lemma 3.2, one has

|Q(u, v) − Qσ(u, v)| ≤
(

∫

Rd

dx

∫

ω(k)≤σ
dk
ρ1(x − q)2|ρ̂2(k)|2

2ω2(k)

)
1
2

× (Q(u, u)‖v‖ + Q(v, v)‖u‖).
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Corollary 5.5 limσ→0 Eσ = E0.

Remark 5.6 As in the massive case, one has Eσ ≤ E0
p for all σ > 0.

Using Propositions 5.2 and 5.4 together with Corollary 5.5, one can see that the
operators Hσ and H satisfy assumptions (i)–(iii) of Lemma 5.1. So it remains to
check condition (iv), and Theorem 3.4 will be proven.

5.2 Uniform Estimates

Lemma 5.7 There exists C1 > 0 such that for all σ > 0, 〈ψσ ; H0ψσ〉 ≤ C1.

This inequality comes from the fact that HI,σ is relatively H0 bounded with in-
finitesimal bound, uniformly with respect to σ > 0. We will also need an estimate

on the number of soft bosons, an estimate which uses the infrared condition (IR).

Lemma 5.8 There exists C2 > 0 such that for all σ > 0, 〈ψσ ; 1 ⊗ Nψσ〉 ≤ C2.

Proof As in Lemma 4.12, one can show that

(5.3) ‖1 ⊗ a(x, k)ψσ‖ ≤ 1

ω(k)
‖ρ1(x − Q)

ρ̂2(k)√
2ωm(k)

χω(k)≥σ(k) ⊗ 1ψσ‖.

Thus,

〈ψσ ; 1 ⊗ Nψσ〉 =

∫

Rd

dx

∫

Rn

dk ‖1 ⊗ a(x, k)ψσ‖2
H

≤
∫

Rd

dq

∫

Rd

dx

∫

ω(k)≥σ
dk

|ρ̂2(k)|2
2ω3(k)

|ρ1(x − q)|2‖ψσ(q)‖2
F

≤ ‖ρ1‖2
2

(

∫

Rn

dk
|ρ̂2(k)|2
2ω3(k)

)

∫

Rd

dq ‖ψσ(q)‖2
F ≤ C2.

We have obtained a control on the total number of bosons. However, we will also

need some control (uniform with respect to σ) on the number of “far away bosons”,
that is, on the following quantities: 〈ψσ ; N(|x| > R)ψσ〉, 〈ψσ ; N(|y| > S)ψσ〉 and
〈ψσ ; N(|p| > P)ψσ〉, where N(|x| > R) was defined in (4.5), and

N(|y| > S) =

∫

Rd

dx

∫

|y|>S

dy ã∗(x, y)ã(x, y),

N(|p| > P) =

∫

|p|>P

dp

∫

Rn

dk â∗(p, k)â(p, k).

The operators ã and ã∗ come from a and a∗ via a partial Fourier transform in the k

variable, and the operators â and â∗ via a partial Fourier transform in the x variable.
We then prove a result similar to Proposition 4.11.
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Lemma 5.9 For any α > 0, there exists C(α) > 0 such that

〈ψσ ; 1 ⊗ N(|x| > R)ψσ〉 ≤ C(α)e−αR.

The proof of this lemma is exactly the same as that of Proposition 4.11. This
lemma gives us a control on the number of “far away” bosons in the x direction.

Similarly one can control the number of bosons whose momentum in the x direction
is large.

Lemma 5.10 For any s > 0, there exists C(s) > 0 such that

〈ψσ ; 1 ⊗ N(|p| > P)ψσ〉 ≤
C(s)

1 + Ps
.

Finally, noting that dΓ(1 − FS(y)) ≤ N(|y| > S
2
), we use the following result to

control N(|y| > S).

Lemma 5.11 Let F ∈ C∞
0 (R

n) such that 0 ≤ F(y) ≤ 1, F(y) = 1 for |y| ≤ 1/2, and

F(y) = 0 for |y| ≥ 1. Let FS(y) = F(
|y|
S

). Then

lim
σ→0,S→+∞

〈ψσ ; dΓ(1 − FS(y))ψσ〉 = 0.

Proof There is a similar result in [G, Lemma 4.5], and essentially we follow its proof.

The main difference is that the norm of ρ1(x −Q) as an operator on L2(R
d) does not

depend on x and is therefore not square integrable with respect to this variable. As
in Section 4.2.2, to control this problem, we will use the exponential decay of the
spectral projectors in the Q variable (Proposition 4.10). First, one easily sees that

(5.4) dΓ(1 − FS(y)) =

∫

dxdk a∗(x, k)
(

1 − F
( |Dk|

S

))

a(x, k).

Then one can prove [G, Proposition 4.4] that

lim
σ→0

a(x, k)ψσ − (E0 − H − ω(k))−1 ρ1(x − Q)ρ̂2(k)√
2ω(k)

ψσ = 0

in L2(R
d+n, dxdk; H). Using this together with (5.4), we then have

〈ψσ ; dΓ(1 − FS(y))ψσ〉

≤ ‖(E0 − H − ω(k))−1 ρ1(x − Q)ρ̂2(k)√
2ω(k)

ψσ‖L2(Rd+n ;H)

× ‖
(

1 − F
( |Dk|

S

))

(E0 − H − ω(k))−1 ρ1(x − Q)ρ̂2(k)√
2ω(k)

ψσ‖L2(Rd+n ;H) + o(σ0)

≤ ‖(E0 − H − ω(k))−1 ρ1(x − Q)e−α|Q|ρ̂2(k)√
2ω(k)

‖L2(Rd+n ;B(H)) × ‖eα|Q|ψσ‖H

× ‖
(

1 − F
( |Dk|

S

))

(E0 − H − ω(k))−1 ρ1(x − Q)e−α|Q|ρ̂2(k)√
2ω(k)

‖L2(Rd+n ;B(H))

× ‖eα|Q|ψσ‖H + o(σ0).
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We check that

(E0 − H − ω(k))−1 ρ1(x − Q)e−α|Q|ρ̂2(k)√
2ω(k)

belongs to L2(R
d+n ; B(H)), using the fact that ‖(E0 − H − ω(k))−1‖ ≤ ω(k)−1 and

condition (IR). Thus

lim
S→+∞

‖(1 − F(
|Dk|

S
))(E0 − H − ω(k))−1 ρ1(x − Q)e−α|Q|ρ̂2(k)√

2ω(k)
‖L2(Rd+n ;B(H)) = 0.

Moreover ‖eα|Q|ψσ‖H is uniformly bounded (with respect to σ), which can be
proved as for ‖eα|Q|ψm(L)‖H (see Section 4.2), and the result follows.

5.3 Proof of Theorem 3.4

We have seen that the only thing we had to check was condition (iv) of Lemma 5.1.
The unit ball of H is weakly compact, so there exists a sequence σn → 0 and ψ ∈ H

such that ψσn
converges weakly to ψ. It then suffices to prove that ψ 6= 0. The idea is

to find a compact operator K such that for n large enough one has an estimate such
that

(5.5) ‖Kψσn
‖ ≥ δ > 0.

This will ensure that ψ is non-zero. Indeed, K is compact, so Kψσn
tends strongly to

Kψ. If ψ were zero, then ‖Kψσn
‖ would go to zero, which contradicts (5.5).

Let us then take F ∈ C∞
0 (R

n) and G ∈ C∞
0 (R

d) satisfying the conditions of
Lemma 5.11. Remembering that p is the variable conjugate to x, i.e., p = −i∇x

on L2(R
d+n, dxdk), one has the following inequalities:

(1 − Γ(FS(y)))2 ≤ (1 − Γ(FS(y))) ≤ dΓ(1 − FS(y)),(5.6)

(1 − Γ(GR(x)))2 ≤ N
(

|x| > R

2

)

, (1 − Γ(GP(p)))2 ≤ N
(

|p| > P

2

)

.(5.7)

Finally, let χ(s ≤ s0) be a function with support in {|s| ≤ s0} and equal to 1 in
{|s| ≤ s0

2
}. For any non negative θ, P,R and S, we define

(5.8) K(θ, P,R, S) := χ(N ≤ θ)χ(H0 ≤ θ)Γ(FS(y))Γ(GR(x))Γ(GP(p)).

The assumptions on F,G, χ and ω ensure that K(θ, P,R, S) is compact for any θ, P,R
and S.

Using Lemmas 5.7 and 5.8, there exists θ0 > 0 such that, for all n, one has

(5.9) ‖(1 − χ(N ≤ θ))ψσn
‖ ≤ 1

10
, ‖(1 − χ(H0 ≤ θ))ψσn

‖ ≤ 1

10
.

Likewise using Lemmas 5.9 and 5.10 together with (5.7), there exist R0, P0 > 0 such
that for all n one has

(5.10) ‖(1 − Γ(GR(x)))ψσn
‖ ≤ 1

10
, ‖(1 − Γ(GP(p)))ψσn

‖ ≤ 1

10
.
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Finally, using Lemma 5.11 and (5.6), there exist S0 > 0 and n0 such that, for all
n ≥ n0, one has

(5.11) ‖(1 − Γ(FS(y)))ψσn
‖ ≤ 1

10
.

Then for any n ≥ n0, using the last three estimates, we have

‖ψσn
‖ ≤ 1

2
+ ‖K(θ0, P0,R0, S0)ψσn

‖.

But ‖ψσn
‖ = 1 for all n, thus ‖K(θ0, P0,R0, S0)ψσn

‖ ≥ 1
2

for any n ≥ n0, which is an
estimate of the form (5.5).

5.4 Proof of Proposition 3.5

The idea of the proof is adapted from [DG2]. Once again, one of the main tools is
the pullthrough formula, which comes from the commutator between H and anni-

hilation operators

(5.12) [H, 1 ⊗ a(x, k)] = −ω(k)1 ⊗ a(x, k) − ρ1(x − Q)
ρ̂2(k)√
2ω(k)

⊗ 1.

In order to get our result, we will need to use this formula taking into account all
membranes together, which, on a formal level, means that we will integrate the previ-
ous formula over the “x-space”. It is therefore more convenient to look at the Hamil-

tonian not in the (x, k) variables but in the (p, k) variables, where p is the variable
conjugate to x via Fourier transform, and then consider the value p = 0. In such
variables, the pullthrough formula just becomes

(5.13) [H, 1 ⊗ â(p, k)] = −ω(k)1 ⊗ â(p, k) − ρ̂1(p)e−i pQ ρ̂2(k)√
2ω(k)

⊗ 1.

Now suppose that Ψ ∈ H satisfies HΨ = E0Ψ, where E0 is the ground state energy

of H. We will show that Ψ = 0. We apply equation (5.13) to such a vector. One then
gets the following equality

1 ⊗ â(p, k) Ψ = −(H + ω(k) − E0)−1
( ρ̂1(p)e−i pQρ̂2(k)√

2ω(k)
⊗ 1

)

Ψ.

We denote with an exponent (m) the component of a vector in the m-particle sector.
We have for any m,

(1 ⊗ â(p, k)Ψ)(m)(p1, k1, . . . , pm, km) =
√

m + 1Ψ
(m+1)(p, k, p1, k1, . . . , pm, km),

and the right-hand side is square integrable with respect to all its arguments, because

Ψ ∈ H. Therefore, for all m,

Φ
(m)(p, k) :=

(

−(H + ω(k) − E0)−1 ρ̂1(p)e−i pQρ̂2(k)√
2ω(k)

⊗ 1 Ψ
) (m)
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is square integrable with respect to (p, k). On the other hand, it is a continuous
function on R

d × (R
n − {0}). Then for any p0 ∈ R

d,Φ(m)(p0, k) is a well-defined

function of k and it is square integrable. As we have said previously, we consider the
value p0 = 0. But

Φ
(m)(0, k) =

ρ̂1(0)ρ̂2(k)√
2ω(k)3/2

Ψ
(m),

which is not square integrable if the infrared condition is violated, unless

ρ̂1(0)Ψ(m)
= 0.

By assumption, ρ̂1(0) 6= 0, so Ψ
(m)

= 0 for all m which means that Ψ = 0.
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