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Abstract

A dual Markov branching process (DMBP) is by definition a Siegmund’s predual of some
Markov branching process (MBP). Such a process does exist and is uniquely determined
by the so-called dual-branching property. Its q-matrix Q is derived and proved to
be regular and monotone. Several equivalent definitions for a DMBP are given. The
criteria for transience, positive recurrence, strong ergodicity, and the Feller property are
established. The invariant distributions are given by a clear formulation with a geometric
limit law.
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1. Introduction

A (one-dimensional) Markov branching process (MBP) Yt is a continuous-time Markov
chain (CTMC) on the state space Z+ = {0, 1, 2, . . . } whose stochastic evolution is governed
by the branching property. It was proved in [5] that an MBP is equivalent to the minimal
Q̃-process, where Q̃ = (q̃ij ) is the branching q-matrix given by

q̃ij =
{

ibj−i+1 if j ≥ i − 1,

0 otherwise,
(1.1)

where bk ≥ 0, k �= 1, and
∑

k≥0 bk ≤ 0, and Q̃ is not assumed to be conservative. For the
theory of MBPs, we refer the reader to [2] and [3] while, for the general theory of CTMCs, we
refer the reader to [1].

Our aim in this paper is to discuss Siegmund’s predual of an MBP which is defined formally
as follows.

Received 20 October 2006; revision received 2 January 2008.
∗ Postal address: School of Mathematics and Statistics, Southwest China University, Chongqing, 400715, People’s
Republic of China.
∗∗ Email address: liyr@swu.edu.cn
∗∗∗ Postal address: School of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway,
Crawley, WA 6009, Australia. Email address: pakes@maths.uwa.edu.au

176

https://doi.org/10.1239/jap/1208358960 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1208358960


The limit behavior of dual Markov branching processes 177

Definition 1.1. A process Xt with state space Z+ is called a dual Markov branching process
(DMBP) if there exists an MBP Yt such that

Pi (Xt ≥ j) = Pj (Yt ≤ i), i, j ∈ Z+, t ≥ 0, (1.2)

where Pi (·) = P(· | X0 = i).

Such a DMBP Xt always exists provided that an MBP Yt is given. Indeed, it is well known
that the MBP Yt always has the Feller property (see [5], [10], [13], and [14]), i.e.

Pi (Yt = j) → 0 as i → ∞ for every j ∈ Z+, t ≥ 0, (1.3)

and that Yt is always stochastically decreasing (see [11], [12], and [18]), i.e.

Pi (Yt ≤ j) decreases as i → ∞ for any j ∈ Z+, t ≥ 0.

Thus, the existence of the DMBP follows from the dual form of Siegmund’s theorem; see [16]
and [18].

We also point out that the DMBP Xt is in fact Siegmund’s dual itself if the MBP Yt is honest.
This is the reason why we call Xt a dual. Indeed, the honesty assumption of Yt guarantees that
Yt is stochastically monotone (or increasing), i.e.

Pi (Yt ≥ j) increases as i → ∞ for any j ∈ Z+, t ≥ 0. (1.4)

Then there exists a Siegmund-dual process Zt such that Pi (Zt ≤ j) = Pj (Yt ≥ i). But,
limj→∞ Pj (Yt ≥ i) = 1 for any honest MBP Yt . Then Zt is honest. It follows that Pi (Zt ≥
j + 1) = Pj (Yt ≤ i − 1), which implies (1.2) by letting Xt = Zt − 1.

We will prove that a DMBP is honest even if the corresponding MBP is not honest. By
using this honesty, in Section 2 we derive the q-matrix (or transition rates) Q of a DMBP. We
also derive the so-called dual-branching property and show that the DMBP is just the unique
Q-function that is uniquely determined by the dual-branching property (see Theorem 2.1,
below). This presents several equivalent definitions of the DMBP.

In Section 3 we establish the criteria of positive recurrence, null recurrence, and transience
for a DMBP. The invariant distributions (or invariant measures) are given by a clear formulation.
We will see that the DMBP has a geometric limit law.

A DMBP does not necessarily have the Feller property. In Section 4 we will establish a
criterion for a DMBP to be a Feller process. Aided by the Feller criterion, we establish a strong
ergodicity criterion for a DMBP. In Section 5 we present some applications and examples.

It is worth pointing out that the DMBP possesses some better properties than the MBP itself
(for example, honesty). Further properties are expected to be studied, and it is also possible to
develop the duality theory of the generalized Markov branching processes (see [6], [7], and [9]).

2. The transition rate and the dual-branching property

In this section we first derive the q-matrix (or transition rate) Q = P ′(0) componentwise,
where P(t) is the transition function of a DMBP.

Proposition 2.1. A DMBP is always honest. Its q-matrix Q = (qij ) takes the following form:

qij =
{

(j + 1)ai−j − jai−j+1 if i ≥ j − 1,

0 otherwise,
(2.1)
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where ak = − ∑k
j=0 bj for k ≥ 0 and {bj } is the sequence for the branching q-matrix Q̃

defined by (1.1). We have

a0 ≤ 0, a1 ≥ a2 ≥ · · · ≥ ak ≥ · · · ≥ 0, a−1 = 0, (2.2)

and a∞ := limk→∞ ak = 0 if and only if Q̃ is conservative. Furthermore, Q is regular and
monotone.

Proof. Let P(t) and P̃ (t) be the transition functions of the DMBP Xt and the MBP Yt ,
respectively. Then (1.2) can be rewritten as

∞∑
k=j

Pik(t) =
i∑

k=0

P̃jk(t), i, j ∈ Z+. (2.3)

Since 0 is an absorbing state for Yt , it follows that P̃0j (t) = δ0j for all j ≥ 0 and t ≥ 0, which
together with (2.3) implies that P(t) is honest. Using this honesty and differentiating (2.3) at
t = 0+, we obtain

−
j−1∑
k=0

qik =
i∑

k=0

q̃jk, i ≥ 0, j ≥ 1, (2.4)

which implies that

qij =
i∑

k=0

(q̃jk − q̃j+1,k), i ≥ 0, j ≥ 0, (2.5)

where Q̃ = (q̃ij ) is just the branching q-matrix given by (1.1). Now let

ak = −
k∑

j=0

bj , k ∈ Z+.

Then it is easy to show, from (2.5) and (1.1), that Q has the form (2.1) and, thus, (2.2) holds
true. Furthermore, it is easy to verify that Q satisfies∑

k≥j

qik ≤
∑
k≥j

qi+1,k for all j �= i + 1, (2.6)

i.e. Q is monotone. Since Q is obviously a conservative, upwardly skip-free q-matrix and

∞∑
i=1

1

qi,i+1
= 1

|a0|
∞∑
i=1

1

i
= ∞,

the regularity follows from [8, Corollary 2].

Recall that an MBP is controlled uniquely by the branching property

Fi(s, t) = (F1(s, t))
i for all |s| ≤ 1, t ≥ 0, i ∈ Z+, (2.7)

where the generating function

Fi(s, t) :=
∑
j≥0

P̃ij (t)s
j for all |s| ≤ 1, t ≥ 0, i ∈ Z+.
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The branching property (2.7) is also equivalent to

P̃ij (t) =
∑

j1+j2+···+ji=j

P̃1j1(t)P̃1j2(t) · · · P̃1ji
(t) for all i, j ∈ Z+, t ≥ 0. (2.8)

We expect that a DMBP is determined uniquely by a similar property: the so-called dual-
branching property, which can be derived as follows.

Theorem 2.1. Let P(t) be a transition function on Z+. Then the following statements are
equivalent.

(i) P(t) is the transition probability of a DMBP, i.e. P(t) satisfies (1.2) or, equivalently,
(2.3).

(ii) P(t) is the unique and honest Q-function, where the q-matrix Q takes the form (2.1)
and (2.2).

(iii) P(t) possesses the dual-branching property

Pij (t) =
i∑

r=0

Pi−r,j−1(t)(Pr−1,0(t) − Pr,0(t)), i ≥ 0, j ≥ 1, (2.9)

where P−1,0(t) ≡ 1.

(iv) P(t) possesses the dual-branching property in terms of the generating functions

Gj(s, t) = G0(s, t)(1 − (1 − s)G0(s, t))
j for all |s| < 1, t ≥ 0, i ∈ Z+, (2.10)

where the generating function

Gj(s, t) :=
∑
i≥0

siPij (t) for all |s| < 1, t ≥ 0, i ∈ Z+.

Proof. Statement (ii) implies statement (i). Since the q-matrix Q, defined by (2.1) and (2.2),
is monotone and regular as proved by Proposition 2.1, it follows from [18, Theorem 3.1] that the
unique Q-function is stochastically monotone. By Siegmund’s theorem, there exists another
transition function P̃ (t) satisfying (1.2) or, equivalently, (2.3). We need to prove that P̃ (t) is
an MBP. Indeed, (2.3) itself implies that P̃ (t) has the Feller property. Thus, by [15], P̃ (t) is the
minimal Q̃-function with a stable q-matrix Q̃. By the same method as given in Proposition 2.1
we can prove that (2.4) is true. Thus, by letting bk = ak−1 − ak for k ≥ 0, we see, from (2.1)
and (2.4), that Q̃ takes the form (1.1) and, thus, P̃ (t) is an MBP as desired.

Statement (i) implies statement (iii). Noting that the branching property (2.8) is equivalent
to (see [1])

P̃ij (t) =
j∑

r=0

P̃1,j−r (t)P̃i−1,r (t), i ≥ 1, j ≥ 0, t ≥ 0,
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which, together with (2.3), implies that, for i ≥ 0 and j ≥ 1,

Pij (t) =
i∑

k=0

(P̃jk(t) − P̃j+1,k(t))

=
i∑

k=0

k∑
r=0

P̃1r (t)(P̃j−1,k−r (t) − P̃j,k−r (t))

=
i∑

r=0

P̃1r (t)

i∑
k=r

(P̃j−1,k−r (t) − P̃j,k−r (t))

=
i∑

r=0

P̃1r (t)

i−r∑
τ=0

(P̃j−1,τ (t) − P̃j,τ (t))

=
i∑

r=0

P̃1r (t)Pi−r,j−1(t).

But, since P(t) is honest, it follows from (2.3) again that

P̃1r (t) = Pr−1,0(t) − Pr,0(t), r ≥ 1, P̃10(t) = 1 − P00(t).

Thus, (2.9) holds true, as desired.
Statement (iii) implies statement (ii). Differentiating (2.8) with respect to t > 0, we obtain,

for i ≥ 1 and j ≥ 1,

P ′
ij (t) =

i∑
r=0

(P ′
i−r,j−1(t)(Pr−1,0(t) − Pr0(t)) + Pi−r,j−1(t)(P

′
r−1,0(t) − P ′

r0(t))). (2.11)

Let Q = (qij ) with qij = P ′
ij (0). It follows from (2.11) that, for i = 0 and j = 1,

q0 := −q00 = − lim
t→0

P ′
00(t) = lim

t→0

P ′
01(t)

2P00(t) − 1
= q01 < ∞,

which means that 0 is a stable state. Then all the ak := qk0, k ≥ 0, are finite and satisfy (2.2).
Letting t tend to 0 on both sides of (2.11), we obtain, for i ≥ 1,

qij =
{

qi−1,j−1 + ai−j − ai−j+1 if i ≥ j − 1,

qi−1,j−1 if i < j − 1.

Thus, by an induction argument we see that the q-matrix Q has the form (2.1).
Statement (iii) is equivalent to statement (iv). If (iii) holds then (2.9) implies that

1 = P−1,0(t) ≥ · · · ≥ Pr−1,0(t) ≥ Pr0(t) ≥ · · · ,

and, hence,
P̃1r (t) := Pr−1,0(t) − Pr,0(t) for r = 0, 1, 2, . . .

defines a possibly defective discrete law. Let

F1(s, t) =
∑
r≥0

P̃1r (t)s
r .
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Then the generating function of this identification is

F1(s, t) = 1 − (1 − s)G0(s, t). (2.12)

The generating function form of (2.9) is Gj(s, t) = Gj−1(s, t)F1(s, t) for j ≥ 1. Iterating it
gives

Gj(s, t) = G0(s, t)(F1(s, t))
j , (2.13)

which, together with (2.12), implies that (2.10) holds true. Conversely, assume that (iv) holds.
It is easy to show that

H(s, t) := 1 − (1 − s)G0(s, t) =
∞∑

r=0

sr (Pr−1,0(t) − Pr,0(t)). (2.14)

Then (2.10) can be rewritten as

Gj(s, t) = G0(s, t)(H(s, t))j .

Therefore, Gj(s, t) = Gj−1(s, t)H(s, t), which, together with (2.14), proves (2.9) and, thus,
(iii) holds true.

3. Recurrence and invariant distributions for a DMBP

From now on, Q always denotes the q-matrix of a DMBP defined by (2.1) and (2.2). We
also assume that

a0 �= 0 and a1 �= 0 (3.1)

(i.e. Q is irreducible), to avoid trivial cases. We will use the following generating functions:

A(s) =
∑
j≥0

aj s
j , B(s) =

∑
j≥0

bj s
j , C(s) =

∑
n≥1

cns
n, 0 ≤ s ≤ 1,

where bj = aj−1 − aj for j ≥ 0 is just the sequence in the branching q-matrix Q̃, and

cn := an

|a0| for n ≥ 1 and, thus, 0 ≤ cn ↓, c1 �= 0. (3.2)

Then C(s) is a nonnegative increasing function and has radius of convergence r ≥ 1. Although
B(s) plays an important role in studying the theory of MBPs, we prefer to use C(s) instead of
B(s), which has some advantages as we will see. Their relationship is

B(s) = b0(1 − s)(1 − C(s)) or, equivalently, C(s) = 1 − B(s)

b0(1 − s)
. (3.3)

Thus, in the case in which a∞ = 0 or, equivalently, the case in which Q̃ is conservative, the
key conditions B ′(1) < 0, B ′(1) = 0, B ′(1) > 0, and B ′(1) = ∞ are equivalent to C(1) < 1,
C(1) = 1, C(1) > 1, and C(1) = ∞, respectively (we see that the derivative disappears). Here
we remark that if a∞ �= 0 then the above equivalence may not be true; we can give an example
such that C(1) = ∞ but B ′(1) < 0.

We now start to give the positive recurrence criterion for the DMBP. Let P(t) be the unique
and honest Q-function. By [1, Theorem 5.1.6], the limits

πj := lim
t→∞ Pij (t), i, j ∈ Z+,
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exist and are independent of i for all j ∈ Z+, and are either all 0 or all strictly positive. Recall
that P(t) is positive recurrent (or ergodic) if and only if

∑
j πj = 1, which is equivalent to

π0 > 0 since, by assumption (3.1), P(t) is irreducible. In this case π = (πj ) is the unique
invariant distribution, which means that

πP (t) = π for all t ≥ 0. (3.4)

Theorem 3.1. The DMBP is positive recurrent if and only if 1 < C(1) ≤ ∞ or, equivalently,
if |a0| <

∑
n≥1 an ≤ ∞. In this case the invariant distributions are given by

πj = (1 − ξ)ξj , j ∈ Z+, (3.5)

where ξ is the unique root of the equation C(s) = 1, s ∈ [0, 1].
Proof. Let π̃ij = P̃ij (∞) for i, j ≥ 0, where P̃ (t) is the corresponding MBP. Then letting

t tend to ∞ in (2.3) yields

1 −
j−1∑
k=0

πk =
i∑

k=0

π̃jk, i ≥ 0, j ≥ 1. (3.6)

Since the left-hand side is independent of i, (3.6) implies that π̃jk = 0 for j ≥ 1 and k ≥ 1
and, thus,

π0 = 1 − π̃1,0 and
j∑

k=0

πk = 1 − π̃j+1,0. (3.7)

Therefore, the DMBP is positive recurrent (i.e. π0 > 0) if and only if the extinction probability
(for the MBP) π̃1,0 < 1. But, a well-known result in the theory of MBPs shows that the
extinction probability π̃1,0 = ξ , where ξ is the minimal root of the equation B(s) = 0,
0 ≤ s ≤ 1. (Although this result seems to be well known in the conservative case only, the
proof in the nonconservative case is similar to the proof in the conservative case.)

It is easy to show that the above root ξ is less than 1 if and only if 1 < C(1) ≤ ∞ (rather than
B ′(1) > 0). This has proved the first assertion of Theorem 3.1. Now assume that C(1) > 1.
Then, by (3.3), the above root ξ is just the unique root of C(s) = 1, 0 ≤ s ≤ 1, with 0 < ξ < 1,
and (3.7) implies that π0 = 1 − ξ . But, letting t tend to ∞ in the dual-branching property
(2.8), we obtain πj = πj−1(1 − π0) = πj−1ξ, j ≥ 1. Iterating it gives (3.5) and completes
the proof.

Remark 3.1. We also present an alternative proof of Theorem 3.1 by solving the following
equation:

πQ = 0, π = (πj ) ∈ l+1 , (3.8)

where l+1 is the set of the summable sequences whose components are nonnegative. Equa-
tion (3.8) can be read as

π0a0 + π1a1 + π2a2 + · · · = 0,

−nπn−1a0 +
∞∑

k=n

πk((n + 1)ak−n − nak−n+1) = 0, n ≥ 1.
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Summing the preceding n equations, we obtain the new equations

π0 = c1π1 + c2π2 + · · · ,

πn = c1πn+1 + c2πn+2 + · · · , n ≥ 1,
(3.9)

with π = (πj ) ∈ l+1 , where cn = an/|a0| is just the sequence given in (3.2). Equations (3.9)
cannot be solved recursively; we must solve (3.9) by an alternative method

If C(1) ≤ 1 then we claim that (3.9) has only the trivial solution. Indeed, summing all
equations in (3.9), we find that

∞∑
n=0

πn = c1

∞∑
n=1

πn + c2

∞∑
n=2

πn + · · · ,

which implies that

M :=
∞∑

n=0

πn ≤
( ∞∑

j=1

cj

)
M − c1π0 = C(1)M − c1π0.

Thus, since 0 < C(1) ≤ 1 and c1 > 0, it follows that M = 0 and, thus, all πn = 0.
If C(1) > 1 then there exists a unique root ξ with 0 < ξ < 1 of the equation C(s) = 1,

0 ≤ s ≤ 1. It is easy to verify that πn := ξn, n = 0, 1, 2, . . . , is a solution of (3.9) and,
hence, its normalization πn = (1 − ξ)ξn is also a solution of (3.8), which is just the invariant
distribution and proves (3.5).

We now establish a transience criterion for the DMBP. Recall that an irreducible process is
transient if ∫ ∞

0
Pii(s) ds < ∞

and recurrent if ∫ ∞

0
Pii(s) ds = ∞

for some (and, thus, for all) i ∈ Z+. The process is null recurrent if it is recurrent and
πj =: Pij (∞) = 0. By Theorem 3.1, the transience for a DMBP may occur only in the case in
which C(1) ≤ 1.

Theorem 3.2. The DMBP is transient if and only if

R :=
∞∑

n=0

Rn

n + 1
< ∞, (3.10)

where Rn is defined recursively by R0 = 1 and Rn = ∑n−1
r=0 cn−rRr , n ≥ 1, or, equivalently,

if and only if the integral

I :=
∫ 1

0

ds

1 − C(s)
< ∞, (3.11)

provided that C(1) ≤ 1.
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Proof. By a general transience criterion in [1, Theorem 5.3.4], the DMBP is transient if and
only if the equations

∞∑
j=0

qij xj = 0, i �= 0, (3.12)

have a nonconstant bounded solution x = (xj , j ∈ Z+). By the form (2.1) of Q, (3.12) can be
read as

2a0(x1 − x2) = −a1(x0 − x1),

(n + 1)a0(xn − xn+1) = −an(x0 − x1) − · · · − na1(xn−1 − xn), n ≥ 2.

Letting yn := (n + 1)(xn − xn+1) and using (3.2), we obtain

y1 = c1y0,

yn = cny0 + cn−1y1 + · · · + c1yn−1, n ≥ 2.

By an induction argument we see that yn = Rny0, n ≥ 0. Also, noting that

x0 − xn+1 =
n∑

k=0

yk

k + 1
,

we see that (3.4) has a nonconstant bounded solution if and only if

∑
n

|yn|
n + 1

< ∞ ⇐⇒ R :=
∑
n

Rn

n + 1
< ∞,

which proves the first assertion of the theorem.
Now assume that C(1) ≤ 1, and let

R(s) :=
∑
n

Rns
n.

Then it is easy to show that R(s) = 1 + C(s)R(s) and, thus, R(s) = 1/(1 − C(s)). Since

T (s) :=
∫ s

0
R(τ) dτ =

∞∑
n=0

Rn

n + 1
sn+1, 0 ≤ s < 1,

it follows that

R = T (1−) =
∫ 1

0
R(s) ds =

∫ 1

0

ds

1 − C(s)
,

which shows that (3.11) is equivalent to (3.10). This completes the proof.

As a consequence, we have the following easy-to-check conditions.

Corollary 3.1. Let Q be the dual-branching q-matrix defined by (2.1), (2.2), and (3.1).

(i) If C(1) > 1 then the DMBP is positive recurrent.

(ii) If C(1) < 1 then the DMBP is transient.

(iii) If C(1) = 1 and C′(1) < ∞ (here C′(1) = ∑
n≥1 ncn) then the DMBP is null recurrent.
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(iv) If C(1) = 1 and C′(1) = ∞ then the DMBP is null recurrent or transient according to
whether R = I = ∞ or R = I < ∞, respectively.

Note that, by Corollary 3.1, for the case in which C(1) = 1 and C′(1) = ∞, the result is not
so clear as for cases (i)–(iii). Indeed, examples will be given in Section 5 (see Examples 5.2
and 5.3, below) to show that, for this case, both transience and null recurrence may occur.

4. Strong ergodicity and the Feller property

In this section we are concerned with how fast the DMBP Pij (t) convergences to the ergodic
limit πj . Recall that P(t) is strongly ergodic if

sup
i

∑
j

|Pij (t) − πj | → 0 as t → ∞.

For the details, we refer the reader to [1]. Aided by the Feller properties, we can establish the
strong ergodicity criterion for the DMBP as follows.

Theorem 4.1. Let Q be the dual-branching q-matrix defined by (2.1), (2.2), and (3.1).

(i) If a∞ := limk→∞ ak �= 0 then the DMBP is strongly ergodic.

(ii) If a∞ = 0 then the DMBP is strongly ergodic if and only if C(1) = ∞ and there exists
some ε with ξ < ε < 1 such that the integral

I (ε) :=
∫ 1

ε

1

(C(s) − 1)(1 − s)
ds < ∞,

where ξ is the unique root of C(s) = 1, 0 ≤ s ≤ 1.

To give a proof of Theorem 4.1, we need to establish a criterion for the DMBP to be a Feller
process, where the Feller property is defined by (1.3) and investigated in [5], [10], [12], and
[18]. It is worth pointing out that the Feller property itself is also a limit behavior. In fact, it
describes the asymptotic behavior at the remote state (i.e. as i tends to ∞).

Lemma 4.1. Assume that a∞ = 0. Then the following statements are equivalent to each
other.

(a) The DMBP Xt is a Feller process.

(b) The corresponding MBP Yt is honest.

(c) Either C(1) < ∞ or C(1) = ∞ and I (ε) = ∞ for some (and, thus, for all) ε with
ξ < ε < 1, where ξ and I (ε) are as given in Theorem 4.1.

Proof. Statement (a) is equivalent to statement (b). By [11, Lemma 4.4], a stochastically
monotone process has the Feller property if and only if its Siegmund dual (or dualizee in the
sense of [5]) is also stochastically monotone. Thus, the dual MBP Xt has the Feller property if
and only if the corresponding MBP Yt is stochastically monotone. But, by the assumption that
a∞ = 0, the branching q-matrix Q̃ is conservative and, thus, Q̃ is monotone, i.e. Q̃ satisfies
(2.6). (In fact, it is easy to verify that the branching q-matrix Q̃ is monotone if and only if Q̃

is conservative.) Since the MBP Yt must be the minimal Q̃-function and Q̃ is monotone, it
follows from [18, Theorem 3.1] that Yt is stochastically monotone if and only if Q̃ is regular,
which means that Yt is honest.
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Statement (b) is equivalent to statement (c). By the standard regularity criterion for a
conservative MBP (see [1], [2], and [3]), the MBP Yt is honest if and only if either B ′(1) < ∞
or B ′(1) = ∞ and ∫ 1

ε

1

B(s)
ds = −∞

for some ε with ξ < ε < 1, where ξ is the minimal root of B(s) = 0, 0 ≤ s ≤ 1. By (3.3) and
the assumption that a∞ = 0, this is also equivalent to either C(1) < ∞ or C(1) = ∞ and

I (ε) =
∫ 1

ε

ds

(1 − s)(C(s) − 1)
= ∞

for some ε with ξ < ε < 1, where ξ is the unique root of C(s) = 1, 0 ≤ s ≤ 1. Obviously,
ξ < 1 since C(1) = ∞.

Proof of Theorem 4.1. (i) Assume that a∞ �= 0. By [1, Theorem 5.2.3] we know that the
DMBP Xt is strongly ergodic if and only if the system∑

j �=0

qij xj ≤ −1, i �= 0, (4.1)

has a bounded nonnegative solution x = (xi). Take

x =
(

0,
1

a∞
,

1

a∞
, . . . ,

1

a∞
, . . .

)

,

where ‘
’ denotes the transpose, then it is easy to verify that, for i ≥ 1,

∑
j �=0

qij xj =
i+1∑
j=1

((j + 1)ai−j − jai−j+1)
1

a∞
= − ai

a∞
≤ −1,

which means that x is indeed a bounded solution of (4.1) and, thus, the DMBP is strongly
ergodic.

(ii) Now assume that a∞ = 0. If the DMBP Xt is strongly ergodic then, by [18, Theorem 2.1],
Xt is not a Feller process. Thus, applying Lemma 4.1 we must have C(1) = ∞ and I (ε) < ∞.
Conversely, if C(1) = ∞ and I (ε) < ∞ then, by Lemma 4.1 again, the DMBP is not a Feller
process. Since C(1) = ∞ > 1, it follows from Theorem 3.1 that Xt is ergodic (i.e. positive
recurrent). The DMBP Xt is also stochastically monotone. Thus, the strong ergodicity of Xt

follows from [18, Theorem 2.2]. (This theorem proved that a monotone and ergodic process is
strongly ergodic if and only if it is not a Feller process.)

Corollary 4.1. If a∞ �= 0 or C(1) = ∞ and I (ε) = ∞, then the DMBP is exponentially
ergodic.

Remark 4.1. As a consequence of Theorem 4.1, we know that if a∞ �= 0 then the DMBP is not
a Feller process in view of [17, Theorem 2.1]. On the other hand, we have I (ε) < ∞ if a∞ �= 0.
Therefore, Lemma 4.1 is always true no matter whether a∞ = 0 or a∞ �= 0, and it gives a Feller
criterion for the DMBP in the general case. As an aside, we also find that a nonconservative
branching q-matrix is not zero-exit. We also remark here that a nonconservative MBP is not
honest with the extinction probability P̃1,0(∞) < 1 even though B ′(1) ≤ 0. But, it is true
that P̃1,0(∞) < 1 if and only if C(1) > 1 no matter whether in the conservative case or in the
nonconservative case. This is an advantage of using the generating function C(s) instead of
B(s).
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Remark 4.2. Together with all the information provided in this paper, a clear picture for the
DMBP may be given as follows: a DMBP is

(i) honest, regular, and stochastically monotone always (even though the corresponding
MBP is not);

(ii) transient if and only if either C(1) < 1 or C(1) = 1, C′(1) = ∞, and R < ∞;

(iii) null recurrent if and only if either C(1) = 1 and C′(1) < ∞ or C(1) = 1, C′(1) = ∞,
and R = ∞;

(iv) ergodic (or positive recurrent) if and only if 1 < C(1) ≤ ∞;

(v) strongly ergodic if and only if C(1) = ∞ and I (ε) < ∞;

(vi) a Feller process if and only if either C(1) < ∞ or C(1) = ∞ and I (ε) = ∞.

5. Examples and applications

Note that the dual-branching q-matrix Q defined by (2.1) and (2.2) has the upwardly skip-
free structure. If we consider some special cases of DMBPs then we can obtain some birth–death
processes with catastrophes, which have been investigated in [4].

Example 5.1. (Uniform catastrophes.) Let Q = (qij ) be a dual-branching q-matrix satisfying
(2.1) and (2.2). If we take ai ≡ d > 0 for i ≥ 1 and a0 = −λ < 0 then the q-matrix Q can be
read as

qij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d if i ≥ j + 1,

(j + 1)λ − jd if i = j,

−jλ if i = j − 1,

0 if i < j − 1.

(5.1)

The above q-matrix is just the uniform catastrophes q-matrix introduced in [4] (or see
[1, p. 302]). Using our conclusions on the DMBP, we have the following result.

Proposition 5.1. Suppose that the q-matrix Q is defined by (5.1). Then

(i) Q is regular and, thus, the minimal Q-process is the unique Q-process;

(ii) the unique Q-process is strongly ergodic;

(iii) the unique Q-process is not Feller;

(iv) the invariant distribution π = (πj ) is given by

πj = λdj

(λ + d)j+1 , j ∈ Z+. (5.2)

Proof. The proof of part (i) follows from Proposition 2.1. Since limn→∞ an = d > 0, the
strong ergodicity follows from Theorem 4.1. The proof of part (iii) follows from Remark 4.2.
We need only prove (5.2). Note that the generating function

C(s) =
∞∑

n=1

λ

d
sn = λs

d(1 − s)
.
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Solving the equation C(s) = 1, 0 < s < 1, we obtain the unique root

ξ = d

λ + d
,

which, together with (3.5), implies that (5.2) holds true.

To close the paper, we give two examples to illustrate that both transience and null recurrence
can occur in the case in which C(1) = 1 with C′(1) = ∞.

Example 5.2. We take the dual-branching q-matrix Q with

a0 = −1, an = cn = (−1)n+1

n! α(α − 1) · · · (α − n + 1), n ≥ 1,

where the constant α ∈ (0, 1). Then {an} satisfies (2.2) and 0 < cn ↓ 0. The generating
function is given by

C(s) = 1 − (1 − s)α.

It is easy to verify that C(1) = 1 and C′(1) = ∞. But, the integral in (3.11) is

I =
∫ 1

0

ds

1 − C(s)
=

∫ 1

0
(1 − s)−α ds < ∞.

Thus, by Theorem 3.2, the DMBP is transient.

Example 5.3. We now take

a0 = −1, an = cn = 1

n(n + 1)
, n ≥ 1.

Then {an} satisfies (2.2). It is easy to verify that C(1) = 1 and C′(1) = ∞. We also have

1 − C(s) = 1 −
∞∑

n=1

1

n
sn +

∞∑
n=1

1

n + 1
sn = (s − 1) log(1 − s)

s
, 0 < s < 1.

Thus, the integrals

I =
∫ 1

0

ds

1 − C(s)
≥ 1

2

∫ 1

1/2

ds

(s − 1) log(1 − s)
= −1

2

∫ 1/2

0

ds

s log s
= ∞.

By Corollary 3.1, the DMBP is null recurrent.
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