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The connectivity of total graphs

Mehdi Behzad

We associate with a graph (finite, undirected, without loops and

multiple lines) a graph T(G) , called the total graph of G .

This new graph has the property that a one-to-one correspondence

can be established between its points and the elements (points

and lines) of G such that two points of T(G) are adjacent if

and only if the corresponding elements of G are adjacent or

incident. The object of this article is to prove the following

theorem: If K(GI) = n , n >_ 1 , and \(G2) = m , m > 1 ,

then K(T(GX)) >n + 2 + [ (n - 2)/3] , \(T(GX)) > 2n ,

K(T(G2)) > m + 1 , and \(T(G2)) > 2m , where K(G) and \(G)

denote the connectivity and line-connectivity of the graph G .

1. Introduction

The (point) connectivity K(G) of a graph (finite, undirected, with

no loops and multiple lines) G is the least number of points whose removal

disconnects G or reduces it to K\ . The line-connectivity \(G) of a

nontrivial graph G is the minimum number of lines whose removal results

in a disconnected graph. (For completeness, ^(K\) is defined to be zero.)

We associate with a graph G another graph T(G) > called the total

graph of G . This new graph has the property that a one-to-one

correspondence can be established between its points and the elements (the

set of points and lines) of G such that two points of T(G) are adjacent

if and only if the corresponding elements of G are adjacent (if both

elements are points or both are lines) or they are indicent (if one element

Received 21 March 1969. Received by J. Austral. Math. Soc. 22 March
1968. Revised 7 October 1968. Communciated by G.B. Preston. The author is
grateful to the referee for some improvements in this exposition. Research
supported in part by a grant from the Office of Naval Research.

175

https://doi.org/10.1017/S0004972700041423 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041423


176 Mehdi Behzad

is a point and the other a line).

In this note we investigate the connectivity relationships between a

graph and its total graph. In particular, we show that if

K(G) = n , n > 1 , and \(G) = m , then \(T(G)) > 2m , and

<(T(G)) > n + 2 + [(n - 2)/Z] , where [x] is the greatest integer less

than or equal to x .

2. Preliminaries

In this section we review some useful terminologies and results

dealing with the problem.

The point set of a graph G will be denoted by V(G) and its line

set by X(G) . The degree, deg., a , of a point a of G is the number

of lines incident with a . If deg_ a = d is constant on V(G) , then

G is called regutar of degree d . A regular graph of order (the number

of elements of V(G)) p and degree p - 1 is denoted by K . A

connected regular graph of degree 2 is called a eyele.

The line-graph, L(G) , of G is that graph whose point set is X(G) ,

and in which two points are adjacent if and only if they are adjacent in

G .

Following these definitions we observe that both G and L(G) are

(disjoint) subgraphs of T(G) . (See [I], [2].) Moreover, for a point a

of T(G) belonging to V(G) we have ie&T(Q\ a = 2 deg a , and for

a point b of T(G) belonging to KG) = V(L(G)) we have

deg_,̂ -,. b = deg^ u + deg^ V , where u and v are the points of G

incident with b . (For an illustration, a graph G is given in Fig. 1

together with T(G) . In T(G) the "dark" points correspond to the points

of G while the "light" points correspond to the lines of G ; L(G)

consists of the "light" points and the lines of T(G) joining two such

points. These lines are drawn in Fig. 1 with dashed lines.)
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A graph G is said to be n-oonneoted if <(G) > n and

m-line connected if \(G) > m . Characterizations of w-connected graphs

and m-line connected graphs presented next are due to Whitney [4], [5].

THEOREM A A graph G is n-conneoted (m-line connected) if and only

if between every pair of distinct points there exist at least n disjoint

(m line-disjoint) paths.

The next theorem is due to Chartrand and Stewart [3].

THEOREM B If K(GX) = n and \(G2) = m , then K(L(GI)) > n and

X(L(G1)) > 2n - 2 while <(L(GZ)) > m and \(L(G2)) > 2m - 2 .

In conclusion of this section we state an observation due to Whitney

[6]. We write min deg G to denote the smallest degree among the points

in G .

THEOREM C For any graph G 3

K(G) < \(G) < min deg G .

3. Main results

Before we prove our first theorem we observe that G is connected if

and only if T(G) is connected; and that in T(G) a point of G is

adjacent to at least min deg G points of L(G) .

THEOREM 1 If G ia m-line connected, then T(G) is 2m-line
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connected.

Proof If m = 0 , then the theorem is clearly true. So assume

m > 1 . First we show between each pair u and V of distinct points of

T(G) belonging to L(G) there exist at least 2m line-disjoint paths.

By Theorem B, there exist at least 2m - 2 line-disjoint paths in L(G) .

Let u and v correspond to the lines x = ab and y = cd , respectively.

If x and y have a point in common, that is, if for example d = b ,

then the paths (u , b , v) and (u 3 a , b , c 3 v) are two

line-disjoint u - V paths, and no line of these paths belongs to L(G) .

In case x and y have no points in common, m > 1 implies that there

exists at least one b - d path, say (b = b }bi,b2, — >bn = d) in G ,

where n is a positive integer. The u - V paths (uib1bi1b23 • • • ibn_^d,v)

and (Ujdsbjbi,...,bnic>v) are line-disjoint. Again no line of these paths

is in L(G) . Hence the assertion follows.

Next suppose a set S , |s| < 2m - 1 , of lines disconnects T(G) .

Remove S and denote the resulting graph by H . In E all points of

L(G) must be in one of its components, say H\ . Let #2 b e another

component of H . All points of #2 a r e points of G , moreover, the

number of points of #2 is at least 2 . This contradicts the inequality

\s\ < 2m - 1 , since in T(G) there are at least 2 min deg G lines

joining points of ffj to points of H2 , and by Theorem C

2m < 2 min deg G .

COROLLARY 1.1 If G is m-connected, then T(G). la 2m-line

connected.

Proof K(G) < X(G) implies that G is m-line connected.

The equalities K(Km+J) = ^(Km+1) = m and min deg T(Km+1) = 2m

show that the results of Theorem 1 and Corollary 1.1 are the best.

THEOREM 2 If G is m-line connected, m > 1 3 then TCG) is

(m + 1)-connected.

Proof Suppose a set S consisting of s points of T(G) , s < m

disconnects T(G) . Let S = Sx U S2 , where Sx is the set of all

elements of 5 which are points of L(G) , and S2 = S - S± . If
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|Si| < m , then the removal of S from L(G) results in a connected graph.

This and the fact that a point of G in T(G) is adjacent to at least m

points of L(G) give rise to a contradiction. So \S\\ = m and IS2I = 0 .

But then every point of L(G) being adjacent to two points of G in T(G)

gives rise to a contradiction again. This completes the proof of the theorem.

The result of Theorem 2 is best possible, too. Identify two copies of

K _ at one point v and denote the resulting graph by G . The point v

is a cut-point of G and \(G) = m . The subgraph L(G) of T(G) has

point connectivity m . The m points which disconnect L(G) together with

the point v , disconnect T(G) . Hence K(T(G)) = m + 1 . The graph G

in Fig. 1 illustrates this for m = 2 .

Next, we note that a point of L(G) in T(G) is adjacent with at

least 2 Cmin deg G - 1) other points of L(G) .

THEOREM 3 If G is m-aonneoted, m > 1 , then T(G) is

(m + 2 + [(m - 2)/3])-aonneoted.

Proof Since S is w-line connected, T(G) is (m + 1^-connected.

Hence for m = 1 , the theorem is true. So assume m > 2 . Suppose there

exists a set 5 having s = m + 1 + [(m - 2)/3] or less points of T(G)

whose removal from T(G) results in a disconnected graph H . Suppose

Si C S consists of those points of S belonging to L(G) and

02 ~ & ~ S\ • • '

If I Si! S'l" - 1 , then the removal of Sx from L(G) results in a

connected graph. This together with the fact that in T(G) each point of

G is adjacent to m points of L(G) contradicts the fact that H is a

disconnected graph. Thus l^i| > m > 2 . From this we conclude that

(1) |S2| = |S| - |Si| < s - m = I + [Cm - 2)/3] <m - 1 .

Since H is disconnected, |Ŝ 21 i 2 . Hence:

(2) 2 < \S2\ < m - 1 .

Therefore, the removal of S2 from G results in a connected graph.

Now remove S from T(G) and denote the connected subgraph containing

all remaining points of G (and possibly some points of L(G)) by Hl and

let #2 denote the rest of the resulting graph H . The graph #2 contains

at least one point, say u • The first inequality in (2) implies that
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(3) \SX\ <m - 1 + [(m - 2)/3] .

From (3) and the note preceding Theorem 3 we get:

(It) 2m-2-m + l-[(m- 2)/3] > 1 .

Hence u is adjacent to another point v of L(G) in H2 • The points u

and v correspond to two adjacent lines in G . These two lines are

incident with 3 points in G which must belong to Sz . Hence:

(5) \SX\ < 8 - 3 = m - 2 + [Cm - 2)/3] .

Again, from (5) and the note preceding the theorem, we obtain:

(6) 2m-2-m+2-[(m- 2)/3] > 2 .

Therefore, besides u , the point u is adjacent to another point W of

L(G) in H2 . The points u , V , and w correspond to three lines

U , V j and W , respectively, of G . Since the line U is adjacent to

both V and W , one of the graphs in Fig. 2 must be a subgraph of G .

W

W V

U

W

Figure 2

In each case there are at least 3m - 6 lines in G , different from

U j V , and W , which are adjacent to U , V , or (/ . Hence, in addition

to u , v , and w , there are at least 3m - 6 points in L(G) which are

adjacent to the points u , V , or W . Therefore, we have:

(7) 3m - 6 - (8 - 3) = 2m - 4 - [(m - 2)/3] >m - 2 .

Now (7) implies that at least m - 2 points of L(G) are left which are

adjacent to u , u , or w in H2 • These points correspond to m - 2 lines
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of G adjacent to U , V , or W . These m - 2 lines together with the

lines U , V , and W are adjacent with at least [(m - 2)/Z] points of

G which must belong to S 2 . Hence the set S contains at least

m + 3 + [(m - 2)/3] points. Since this number is greater than s , the

theorem must hold.

Now we summarize our main results in the following

THEOREM 4 If K(GX) = n , n > 1 , and \(G2) = m , m > 1 3 then

K(T(GX)) >n + 2+ [(n - 2)/3] ,

\(T(GX)) > 2n ,

<(T(G2)) >m + l ,

and

\(T(G2)) > 2m .
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