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ON MULTIPLICATIVE PROPERTIES OF FAMILIES OF 
COMPLEXES OF CERTAIN LOOPS 

M E I R S T E I N B E R G E R 

1. Introduction. It is well-known that if &~ is a quotient group of a group G, 
then ( i )^~ is a partition of G, and (ii) the usual complex product (in the usual 
sense of multiplication of complexes) of every pair of members of ^F is a 
member of J^~. There arises the question whether, conversely, (i) and (ii), 
perhaps in a weaker form, suffice for & to be a quotient group of G. Actually, 
the answer is affirmative (see [8, p. 30, Exercise 10], also Corollary 6.1 in this 
paper) if, instead of (i) and (ii): 

(I) #~ is a family of complexes of G such that every element of G belongs 
to a member of i^~, and every member of J ^ is not a proper subset of another 
member of J^~; 

(II) the usual complex product of every pair of members of ̂  is contained 
in a third member of J^~. 

The object of this paper is analysis of conditions (I) and (II) with reference 
to two quite wide classes of loops: those with the right inverse property and 
those with the weak inverse property (see [6]). For clarity, results for each type 
are derived separately, in spite of a certain similarity between them. It should 
be noted that there is a duality between the loops with the right inverse 
property and the loops with the left inverse property, leading to analogous 
results. 

§ 2 deals with preliminary considerations for the subsequent sections. 
In § 3, G is a loop with the right inverse property. It is shown essentially 

that (I) and (II) combined form a sufficient condition for ^ to have the 
following properties: it is a right coset expansion of G modulo a subloop E of G; 
it is a left division system by the usual multiplication of complexes with E as 
identity element and with two-sided inverses; it satisfies the right inverse 
property. If, in the particular case, the members of&~ are finite complexes, one 
deduces that £ is a normal subloop andJ^~ a quotient loop of G modulo E. 

In § 4, G is a weak inverse property loop. In this case the main result states 
that (I) and (II) combined suffice for&~ to be a quotient loop. 

In § 5 a necessary and sufficient condition is discussed, slightly different from 
the above and leading to the same results as in §§ 3,4. 
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In § 6 some of the above results are applied to certain special loops, and 
conclusions are drawn concerning simple loops and homomorphic mappings in 
the cases of weak inverse property or finite right inverse property loops. 
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Ginzburg for his helpful criticism of the manuscript. The author is also very 
grateful to the referee for his numerous suggestions. 

2. Preliminaries. Let G be a groupoid with a (two-sided) identity element 
denoted throughout this paper by 1. 

A left or X-sided (right or p-sided) inverse ax (ap) of a Ç G is an element in G 
such that axa = 1 (aap = 1). Denote: 

â = {a \a a — 1}, aP = \a\aa = 1 } , X1 = U xl (i = X, p). 
xZXCG 

If each a £ G has a unique ax and a unique ap, then clearly (ax)p = (ap)x = a 
and therefore (Ax)p = (Ap)x = A for all A C.G. 

Throughout this paper, ^ denotes a family of non-empty sets. If ^ is a 
family of subsets of a set 5, then it is a covering of 5, or equivalently, 5* is said 
to be covered byJ^~ if and only if 5 = U A ^ ^ . ^~ is a partition of 5 if and only if 
it is a covering of 5 and every pair of its members are mutually disjoint. 

The usual product AB of complexes (non-empty subsets) A and B of a 
groupoid, defined by AB = {ab\a £ -4, b Ç ^ } , is in the following sometimes 
denoted also by A - B. For a set {a} consisting of a single element a of G we 
usually denote {a)B = aB or B{a] = Ba. 

Definition 2.1. If in a family Ĵ ~ of complexes of a groupoid G to each pair 
A, B G ^~ there corresponds a unique C G ^ " such that AB C C, one gets a 
groupoid (J^ , o), denoting A o B = C. This single-valued binary operation 
"o" is called the general (single-valued) multiplication of complexes. 

Let G be a groupoid and & a partition of G and a groupoid by " o " or "•". 
It is readily seen that the mapping a —» a0 = ^4, where a Ç i G ^~, is a 
homomorphism of G onto ( Ĵ ~, o) or onto ( Ĵ ~, •)• Therefore we can state: 

LEMMA 2.1. Le/ G be a groupoid with an identity element and with unique 
ax, ap for all a £ G. If a partition^ of G is a groupoid by " o " or "•", //^e^ //ze 
mapping a—>ad = A,a£A£ J^ , is a homomorphism of G onto ( Ĵ ~, o) or 
0?zto ( Ĵ ~, •) such that &~ has in both cases an identity element which is the kernel of 
the homomorphism; furthermore, ald is an i-sided inverse in Ĵ ~ of ad £ &~ for all 
a G G(i = X, p). 

If Ai 6 & for A G &~ (i = X, p), then Al is an i-sided inverse of A in (3f, o) 
or in (&~, •)• 

If G satisfies any identical relation, then (&~, o) or (^, •) also satisfies the 
relation. 

Definition 2.2. A member A of a family Ĵ ~ of (non-empty) sets is called a 
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minimal set olJ' if and only if B G J , B C A imply B = A. If the members 
of J ^ are subsets of a set 5 and each 4̂ G J ^ is a minimal set of ^ (i.e., no 
member of Ĵ ~ contains any other member of J^~), thenJ^~ is called a, family of 
minimal subsets of S. 

We shall frequently use the following condition concerning a family Ĵ ~ of 
complexes of a groupoid G: 

(a) AyB G F=Ï G C £^~)(AB C C). 

We shall sometimes make use of a special case of (a) : Let E be a fixed member 
of #~, then 

(a*) 4 G^~=> (3 B, C G J r ) ( ^ E C £ and EA C C). 

LEMMA 2.2. (i) Le/ G be a groupoid with an identity element 1, and^ a family 
of minimal complexes of G with 1 G E G J r . J /^~ satisfies (a*) with this E, then 

(1) 4 E = EA = A for all A G J T 

(ii) / / , in addition to ( i ) ,^~ is a covering of G, then 

(2) £ * C £ (i = X,p). 

Proof. In case (i), assuming 4̂ G ^~, a G i , we have a = a\ G ^4E, there­
fore A C ^4£. By (a*), i E C ^ Ç / , i.e., i C i £ C 5 , hence, by the 
minimal property, A = AE. In an analogous way we obtain A = EA. 

In case (ii) we have: a G £ , a" G G =» (3 4̂ G ^ " )(ap G A) =» 1 = 
aa» £ EA = A (by (1)) = 4 l É i ^ £ = £ l C £ i = i ^ £ = i (by the 
minimal property), hence ap £ E and therefore Ep (Z E. Ex d E holds ana­
logously. 

In the following, let r be a correspondence (i.e., a many-valued function) of 
a set 5 onto itself. We denote by ar the image of a G 5 under r, and by r_ 1 the 
inverse correspondence of r, i.e., a G br~l <=> & G ar. Let 

X0 = U x0, d = ror r - 1 . 

If ^ is a family of subsets of 5, and if 0 = r or r"1, l e t ^ 0 = \A6\A G ^~ }. 
We shall further denote the following property by 

( J^ T): 4 e^"=> (3 5 G ^ K ^ r CS). 

LEMMA 2.3. 1/^"" is a family of minimal subsets of a set S and if properties 
( J ^ T) and ( J ^ r-1) both hold, then^ r = ^ r~l =#~. 

Proof. Let X C S. Clearly X C Xrr~\ X C X i - V . Therefore, if A G ~̂~, 
we have 4̂ C ^ r r " 1 C Br~l (for some 5 G ^~ ) C C G ^" , whence, by the 
minimal property, A = C, and this implies 

(3) i4 = Br"1. 
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From (3) we get AT = BT~1T D B. On the other hand AT C_ B, therefore 
AT = B and hence # " r C ^ - (3) signifies # ~ C ^ T _ 1 . Thus , because of the 
dual i ty between r and r_ 1 , we get J ^ r - 1 C ^ and ^ C ^ " T . Hence J^~ T = 

3. F a m i l i e s of c o m p l e x e s of r igh t inverse property loops as r i g h t 
cose t e x p a n s i o n s . We recall t ha t a loop G has the right inverse property (R . I .P . 
for short) or the left inverse property (L.I .P. for short) if and only if (ab)bp = 
a or dK(ab) = b for all a,b G G respectively. The conjunction of both properties 
is called the inverse property. I t is well-known tha t if G is an R . I .P . or L . I .P . 
loop then ax = ap for all a G G. Therefore a - 1 is defined by a~l = ax = ap and is 
called the inverse of a. Consequently, for X C G, we have Xx = Xp and denote 
it by X~\ 

L E M M A 3.1. If an R.I.P. loop Gis covered by a family # ~ of minimal complexes 
such that 1 G E G &~ and^ satisfies (a*) with this E, then E is a subloop of G 
and is disjoint from each other member of £F. 

Proof. By (1) of Lemma 2.2, EE = E, i.e., E is a subgroupoid. I t remains 
to prove t ha t given a, b G E, then the equations xa = b and ay = b have 
solutions for x and y in E. For the first equation we obtain, with the aid of 
R . I .P . and (2) t ha t 

a, b £ E => Q x £ G)(xa = b) => x = (xa)a~l = ba~l G EE~l C EE = 

E=^x G E. 
I t also follows t h a t 

(4) E C Ea. 

T h e disjointness of E results from (4), (1) and the minimal proper ty as follows: 

(5) AeJr,a£Ar\E=ïECEaCEA=A^>E=A. 

Now assume ay = b with ayb G E. Let y G F G ^~ , hence b = ay £ EY C} E, 
i.e., E F H £ 5* 0. On the other hand, by (1), EY = F, therefore YC\ E ^ 0, 
whence, by the disjointness of E , F = E , and so y G E . 

We recall t ha t a groupoid H is a Ze/J (right) division system (see [3, p . 91]), 
if to each pair of elements a, b G H there corresponds a unique x G i ? such 
t h a t xa = b {ax = b). 

Let G be a loop and £ a subloop of G. Recall t ha t the f a m i l y ^ of the r ight 
cosets with respect to E, i . e . , ^ = {Ex\x G G}, is a right coset expansion of G 
modulo E, if J^~ is a part i t ion of G (see [3. p. 92]). 

T H E O R E M 3.1. If an R.I.P. loop G is covered by a family ^ of complexes, then 
the two assumptions: 

(1) the members of ^ are minimal sets, 
( 2 ) ^ ~ satisfies (a), 
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combined, form a necessary and sufficient condition for !F to have the following 
properties: it is a right coset expansion of G modulo a subloop E of G; it is a left 
division system by the usual multiplication of complexes with E as identity element 
and with two-sided unique inverses; it satisfies the R.I.P. 

Proof. Necessity: The members of ^ are mutually disjoint and therefore 
are minimal sets. Clearly (a) holds, even in the sense of " =" instead of " C " . 

Sufficiency: Let E be that member of ̂ ~ such that 1 £ E. S i n c e ^ satisfies 
(a)j then clearly (a*) holds with this E. Hence, by Lemma 3.1, E is a subloop 
of G and is disjoint from the other members of J r . The remainder of the proof 
is now effected in four steps. 

(i) A e^=>A-1 e J T 

Proof. Let a G A £#~. Then a~l G B G ^ . Therefore a~lA C BA C.C Ç #~ 
(by (a)) and a~lA C\ E ^ 0 (because a~la = 1 G E). From this we get 
C C\E ?± 0, hence, by Lemma 3.1, C = E. That is, a'1 A C E for all a£A. 
Consequently, 

U A~la = A'1 A = U aTxA C £ , 

and hence A~la C E. Therefore, by the R.I.P. and Lemma 2.2 

(6) A-1 = (A-^a-1 C Ea~l C EB = B {a~l G B G & ), 

hence ^4 -1 C -B. Now, since "X" and "p" can be interpreted as mutually-inverse 
mappings of G onto itself, we can use Lemma 2.3 substituting ar = a~l = ar~l 

for all a G G. Consequently, A~l G ^~. (6) implies also by the minimal property 
that 

(7) a e A e^^A-1 = Ea~\ 

(ii) The members of Ĵ ~ are right cosets with respect to E; they are disjoint, 
and have the same order. Ĵ ~ is a groupoid by the generalized multiplication 
of complexes. 

Proof. Let A G ^~, fl M . According to (i) we have a - 1 G A-1 G ^~, hence 
by (7), A = G4-1)-1 = ^ ( a - 1 ) - 1 = Ea; that is, a £ A £ ^ => A = Ea. This 
means that each member of ^ is a right coset with respect to E. Furthermore, 

(8) A,B £^,A r\B 9*0=* Q c £ G)(c £ A r\B)=>A = Ec = B, 

i.e., the members of ̂  are mutually disjoint. Thus we have also proved that 
the complex C in (a) is here determined uniquely by A and B. In other words, 
by virtue of Definition 2.1, the generalized multiplication of complexes holds 
in J^", i.e., we can write (a) here as A o B = Cor, equivalently, AB d A o B 
for all 4 , S €#~. 

It is readily seen that there exists a one-to-one correspondence between any 
two cosets Ea and Eb by ua <^> ub (u G E). Consequently, the right cosets are 
of the same order. 
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(iii) {F, o) is a left division system with the R . I .P . and has E as ident i ty 
element and A~l as unique inverse of A for any A Ç F. 

Proof. F is a part i t ion of G and satisfies (i), i.e., A~l Ç ̂  for all i f ^ . 
Therefore, using Lemma 2.1 with X = p = — 1 , we obtain t ha t (J^~, o) has E 
as identi ty element and A~l as two-sided inverse of A for any yl G F. Fur ther ­
more, by the same Lemma, since G satisfies the R. I .P . , ( F , o) satisfies it too, 
i.e., (AoB)oB~l = Aîora\\A,B G F. Consequently (see [3, p . I l l ] ) , ( # " , o) 
is a left division system. Hence A~l is a unique left inverse of any A £ F, 
and since A~1 is a two-sided inverse, it is also a unique right inverse, 
(iv) T h e generalized multiplication of complexes in (F, o) is identical with 
the usual multiplication of complexes: A o B = AB for all A, B £ F~. 

Proof. Let 

(9) AoB = C, 

or, equivalently, AB C C. Suppose AB £ C; then there exists c ^ C - AB. 
We now have tha t 

K ^ ^ ( 3 û / U ' ^ ) ( c = a'&) =^A,Br\C^Q\^A,oBr\C^Q=^ 
A'B CA'oB}A'oB = C=^Af = A 

(by (9) and (iii)). Therefore a' £ A and hence c = a'b £ ^4^ , in contradict ion 
to the supposition. 

Remark 3.1. A loop satisfying the identi ty 

(10) [(xy)z]y = x[(yz)y] 

for all x, y, z of the loop is called a Bol loop (see [7]) ; we shall call (10) the Bol 
identity. A Bol loop, as is known, has the R . I .P . (see [7, Theorem 2.1]). This 
yields a corollary to Theorem 3.1 with G denoting a Bol loop. In this case, by 
Lemma 2.1, (J^~, •) also satisfies the Bol identi ty. 

T H E O R E M 3.2. / / an R.I.P. loop G is covered by a family F of complexes, where 
1 £ E G F with E finite, then the two assumptions: 

(1) the members of F are minimal sets, 
(2) F satisfies (a), 

combined, form a necessary and sufficient condition for F to be an R.I.P. quotient 
loop of G modulo a normal subloop E of G. 

Proof. Necessity: This follows in the same manner as for Theorem 3.1. 
Sufficiency: By Theorem 3.1, F is a r ight coset expansion of G modulo a 

subloop E and is an R . I .P . groupoid by the "-"-multiplication with ident i ty 
element E. According to Lemma 2.1 a homomorphism of G onto (<^~, •) exists 
such t h a t E is the kernel of the homomorphism. Since E is finite, F is a loop 
(see [2, Theorem 4]), whence E is a normal subloop of G (see [3, p . 60]). So F 
is a quot ient loop of G with respect to E. 
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In view of Remark 3.1, we obtain 

COROLLARY 3.1. If a Bol loop G is covered by a family & of complexes, where 
1 G E G Ĵ ~ with E finitej then the two assumptions: 

(1) the members of^~ are minimal sets, 
(2) #~ satisfies (a), 

combined, form a necessary and sufficient condition for^ to be a Bol quotient loop. 

4. Families of complexes of weak inverse property loops as quotient 
loops. 

Definition 4.1 (see [6]). Let G be a groupoid with an identity element 1. 
G satisfies the weak inverse property (W.I.P. for short), if and only if (ab)c = 1 
implies a(bc) = 1 (a, b, c G G). 

LEMMA 4.1 (see also [6, § 1] and [5, Theorem 1.1.]). If G is a groupoid with 
an identity element 1 and with unique ax, ap for all a G G, then the following 
properties are equivalent: 

(a) The W.I.P. 
(b) b(ab)p = ap for all a, b G G. 
(c) (ab)^a = bx for all a, b G G. 
(d) a (be) = 1 implies (ab)c = 1 (a, b, c G G). 

Proof. (1) (a) implies (b) and (c) exactly in the same way as for (1) and (3) 
in [6, § 1]. 

(2) (b) implies (c): (b) yields (a) because (ab)c = 1 => c = (ab)p => be = 
b(ab)p = ap (by (b)) => a (be) = aap = 1. This, by (1), yields (c). 

(3) (c) implies (d): a (be) = 1 =» a = (bc)x => ab = (bc)^b = cx (by (c)) =» 
(ab)c = cxc = 1. 

(4) (d) implies (a): (d) yields (c), since for arbitrary a, b G G there exists 
c (z G such that c(a&) = 1; therefore c = (ab)x and (ca)& = 1, hence ca = bx, 
and therefore (ab)^a = ca = &\ (c) implies (b) by (d) in a similar way as (b) 
implies (c) by (a) (see (2)). Now, as we have shown in (2), (b) implies (a). 

LEMMA 4.2. A groupoid G with an identity element and with unique ax, ap for 
alla G G is a loop, if G satisfies any of the properties (a)- (d). 

Proof. Assume that G satisfies (b). Arbitrary elements a, c of G determine 
uniquely the element b = (cxa)p; hence, by (b), ab = a(cKa)p = (cx)p = c. 
That is, for given a, c G G there exists b = (c^a)9 G G such that ab = c. 
Conversely, this equation can only be satisfied by this b, because ay = c 
implies cx = (ay)7", and by Lemma 4.1, G satisfies (c), therefore cxa = (ay)^a = 
3>x, whence y = (y*)p = (cxa)p. It is shown analogously that for given b, c G G 
there exists a unique a G G such that ab = c. This proves that G is a loop. 
Since, by Lemma 4.1, any one of the properties (a), (c), (d) implies (b), the 
proof is complete. 

LEMMA 4.3. If a W.I.P. loop G is covered by a family S^ of minimal complexes 
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such that 1 G E G ^ and^ satisfies (a*) with this E, then E is a subloop of G 
and E is disjoint from each other member of ^ . 

Proof. (1) of Lemma 2.2 implies EE = E, hence £ is a subgroupoid. If a is 
in E, then by (2) of Lemma 2.2, the (unique) inverses ax, ap are also in E. 
Clearly E has the W.I.P. and is consequently a loop by Lemma 4.2. The dis-
jointness of E follows from the fact that it is a subloop (i.e., (4) holds for 
a G E), as well as from (1) and from the minimal property—exactly in the same 
way as in (5). 

THEOREM 4.1. If a W.I.P. loop is covered by a family Ĵ ~ of complexes, then the 
two assumptions: 

(1) the members of ̂  are minimal sets, 
(2) <#" satisfies (a), 

combined, form a necessary and sufficient condition for Ĵ ~ to be a W.I.P. quotient 
loop of G modulo a normal subloop E of G, or in short, Ĵ ~ = G/E. 

Proof. Necessity: This follows as in Theorem 3.1. 
Sufficiency: By Lemma 4.3, the member E of Ĵ ~ with 1 G E is a subloop of G 

and is disjoint from every other member of Ĵ ~. 

(i) A eJ^^A* G^~ (i = X,P). 

Proof. Beginning as for (i) in Theorem 3.1, we obtain by (a) and by Lemma 
4.3: 

(Aa> CABCCe^ 
a e A Ç J ^ a ' 6 B G ^ ^ M a n d => C = E, 

[AaP H E 9* 0 
hence 

(11) Aa»CE. 

Using (b) which, by Lemma 4.1, holds in G, we obtain with the aid of (11) and 
Lemma 2.2. that 

(12) A" = ap{Aa<>y C aŒ? C aŒ C BE = B. 

Analogously, we show that (] D G ^ )(^4X C D). We now use Lemma 2.3, 
substituting ar = ax and ar~l = ap for all a G G. Therefore Al G ^ {i = X, p). 
From (12) it also follows, in view of the minimal property, that 

(13) a£Ae3r=ïAf>= aŒ. 

Analogously, we obtain 

(14) û U ^ - > i À = Ea\ 

(ii) The members of #~ are mutually disjoint and are two-sided cosets modulo 
E, i.e., 

(15) aE = A = Ea for all A G ^ and all a G A. 

&~ is a groupoid by the generalized multiplication of complexes, i.e., ̂  = ( J r , o). 
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Proof. For i) î = X, p; i ^ Î we get according to (i), (13) and (14); 

(E(a»)x = Ea 
a£ A ^F^a1 e A1 ^F'=> A = (A*)* = < => a £ = 4 = £a . 

((ax)p£ = a £ 

Disjointness of the members of Ĵ ~ is derived from (15) as in (8), therefore the 
condition (a) defines here the groupoid F = (F, o). 

(iii) (F, o) is a W.I.P. loop. 

Proof. By (ii),F is a partition of G, and by (i), A1 £ <#" (i = X, p). Hence, 
in view of Lemma 2.1, £ is the identity element of (F, o), A l is an i-sided 
inverse of A for each A £ ^" , and (b), (c) hold in (F, o) because by Lemma 
4.1, they hold in G. Now we can verify that Al is a unique i-sided inverse of A. 
Indeed, if A o 5 = E and C o A = E, then by (b) and (c) we have 
A> = Bo (A oBY = BoE'zmdA* = (C o A)x o C = £ x o C. Since (i), (2) 
and the minimal property imply Ex = E = Ep, we get Ax = E o C = C and 
Ap = B oE = B. Finally, Lemmas 4.1 and 4.2 yield that (F, o) is a W.I.P. 
loop. 

(iv) ( ^ , o) = ( j r .). 

Proof. This follows as for (iv) in Theorem 3.1. 

(v) £ is a normal subloop of G. 

Proof. By Lemma 2.1, (F, •) is a homomorphic image of G with E as kernel 
of the homomorphism. E, therefore, is a normal subloop of G, i.e., F = G/£ . 

Remark 4.1. If, in Theorem 4.1, the assumption that F is a covering is 
replaced by another, namely that F is a family of complexes of G where 
Vi d V (V = KJAZ& = A; i = X, p), with the remaining assumptions valid, 
then we have, by (a), 1 G V and VV C V. Hence, F is a subgroupoid with 
an identity element, with unique i-sided inverses, and satisfying (a). Conse­
quently, by Lemma 4.2, V is a W.I.P. (sub) loop. In other words, F is a 
covering of the W.I.P. loop V. Now application of Theorem 4.1 to V instead 
of G y i e l d s ^ = V/E. 

5. The property (P). We shall use in the following a property somewhat 
different from (a). 

Definition 5.1. Let F be a family of complexes of a groupoid G, and let 
A, B £ F. The ordered pair (A, B) is said to have the property (P), if and 
only if the following condition, denoted by (A, B)P holds: 

If a member C of F exists such that AB C\ C 7^0, then AB C C. F is said 
to have the property (P), if and only if (A, B)P holds for a\\A,B £ ̂ ~. 

LEMMA 5.1. Let F be a family of complexes of a groupoid. If for A, B £ J^" 
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there exist Ai, A2, Bu B2 ^ ^ such that A = AXA2, B = BXB2 and {Ax, A2)P, 
(Bi, B2)P hold, then A and B are either disjoint or identical. 

(A1A2r\B 9* 0^AiA2 CB =*A C B) 
Proof. AC\B 9*0=* I \=^A=B. 

{B1B2 r\ A 9*0=* BXB2 C A=^B CA) 

LEMMA 5.2. Let G be a groupoid with an identity element 1 and Ĵ ~ a family of 
complexes of G with U £ f , F . / / i É F satisfies (A, E)P ((£, A)P), then 

(16) AE = A {EA = A). 

If At Ç ^ (i = 1, 2) satisfy (Ait E)P ((£, At)P), then Ax and A2 are either 
disjoint or identical. 

Proof. For a £ A £ &~ we have a = al Ç AE, whence A C AE, i.e., 
AEC\A 9*0; therefore, by (A, E)P, AE C A. Hence AE = A. Similarly 
EA = A if (E, A)P holds. The second statement is obtained by Lemma 5.1 
and (16), according to which At = A{E (At = EAt)(i = 1, 2). 

Using this Lemma, we can replace in Lemmas 3.1, 4.3 the assumption 

(17) The members of ̂  are minimal complexes 

and the condition (a*), by the assumptions 

(18) (A, E)P and (E, A)P for all A G &. 

Indeed, by Lemma 5.2, (18) implies (16) and the disjointness of the members 
of ^', therefore (17) and (a*) certainly hold. 

LEMMA 5.3. Let&~ be a family of complexes of a groupoid G. 
(i) If ^ is a covering of G and has the property (P), then^ satisfies (a). 

(ii) 7/ the members of ̂  are mutually disjoint and satisfy (a), then^~ has the 
property (P). 

Proof. Let A, B £ &~\ then clearly AB 9* 0. In case (i) there exists C G ^ " 
such that AB C\ C 9* 0, and this, by {A, B)P, yields AB C C. 

Incase (ii), assuming AB C\ D 9* 0 {D £ ^ ~ ) , we have by {a), ABC C £#"', 
consequently C C\D 9* 0, whence, by the disjointness, C = D, i.e., AB C D-

The last two Lemmas imply that in Theorems 3.1, 3.2, 4.1 and in Corollary 
3.1 the assumptions "the members of Ĵ ~ are minimal sets" and (a) may be 
replaced by the assumption: JF~ satisfies (P). For instance, from Theorems 3.2, 
4.1 we obtain 

THEOREM 5.1. Let G be a loop which is covered by a family Ĵ ~ of complexes and 
letl G E G ^~. If G satisfies the R.I.P. and E is finite, or if G satisfies the W.I.P., 
then property (P) of ^ is a necessary and sufficient condition for ^ to be a 
quotient loop with the R.I.P. or W.I.P. respectively. 
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6. Some further results. As is known, W.I.P. loops include inverse 
property loops and crossed-inverse loops (see [1]), and inverse property loops 
include Moufang loops and quasi-associative loops (see [4]). We can, therefore, 
suppose in Theorems 4.1, 5.1 the particular case of the loop G satisfying any of 
the following: the inverse property, the crossed-inverse property, the Moufang 
identity, or the quasi-associative property. According to Lemma 2.1, (J^~, •) 
also has the first three properties respectively. It is readily seen that if G is 
quasi-associative, (J^~, •) is also quasi-associative. If G is a group, then clearly 
£ is a normal subgroup. We thus obtain 

COROLLARY 6.1. Let Ĵ ~ be a covering of a loop G satisfying any of the following 
properties: the inverse property, the crossed-inverse property, the Moufang identity, 
the quasi-associative property, or the associative property. If 

(i) the members of ̂  are minimal sets and satisfy (a), or 
(ii) ^ satisfies (P), 

then there exists a normal subloop (subgroup in case of a group G) E of G such that 
jF" = G/E and has the same property as G. 

Definition 6.1. A family Ĵ ~ of subsets of a set S is called a proper family, 
if and only if Ĵ ~ has at least one member which is neither 5 nor a one-element 
subset of 5. 

COROLLARY 6.2. Let G be a simple loop satisfying W.I.P. or R.I.P. Then there 
cannot exist a covering of G by a proper family^ of complexes—finite complexes in 
the case of R.I.P.—such that in each case 

(i) the members of &~ are minimal sets satisfying (a), or 
(ii) ^ satisfies (P). 

Proof. Negating the assertion in each case, we have in &~ at least one member 
A such that 

(19) A ^ G and A ^ {g\ for any g Ç G, 

and Theorems 4.1, 3.2 hold in case (i) or Theorem 5.1 holds in case (ii), i.e., 
in both cases Ĵ ~ = G/E where £ is a normal subloop of G. Consequently 
A = aE (a £ A), hence by (19) £ ^ {1} and £ ^ G. Thus G is not simple, 
and this is a contradiction. 

COROLLARY 6.3. Let a groupoid H be a homomorphic image of a loop G satis­
fying any one of the following conditions: 

(i) W.I.P., 
(ii) R.I.P. and being finite, 

(iii) the Bol identity and being finite. Then H is a loop satisfying the cor­
responding condition. 

Proof. If 0 is a homomorphism of G onto H, then, according to a known 
homomorphism theorem, H is isomorphic with the family Ĵ ~ = {x6~l\x Ç H) 
which is a partition of G and a groupoid by the '^"-multiplication. This yields, 
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using Theorem 4.1 in case (i) or Theorem 3.2 in case (ii) or Corollary 3.1 in 
case (iii), that (J^~, o) is a loop which satisfies the same condition as G does. 
Therefore, by the isomorphism, H is also a loop satisfying the same condition 
as G. 
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