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Abstract

Let <£ denote the Banach space (under the sup norm) of quasi-continuous functions on the unit
interval [0, 1]. Let J! denote the closed convex cone comprised of monotone nondecreasing
functions on [0 ,1 ] . For / and g in & and 1 < p < oo, let hp denote the best Lp-
simultaneous approximant of / and g by elements of Jf . It is shown that hp converges
uniformly as p —> oo to a best Lx -simultaneous approximant of / and g by elements of J! .
However, this convergence is not true in general for any pair of bounded Lebesgue measurable
functions. If / and g are continuous, then each hp is continuous; so is limp_00 hp = hx .

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 41 A 28;
secondary 41 A 30, 41 A 65.

0. Introduction

Let £1 be the real unit interval [0, 1]. Let ft be the Lebesgue measure
on Q and let sf be the collection of all measurable subsets of Q. Let
Lp(Q, $f , fi), 1 < p < oo, be the well known L Banach spaces and let
& C Lp{Cl, sf, n) be the Banach space (under the sup norm) comprised
of all quasi-continuous functions denned on Q, that is, functions having at
most discontinuities of the first kind only. Let ^ c @ be the subspace of
continuous functions on il, and let ^f be the closed convex cone in $
consisting of all monotone nondecreasing functions on i i . Let / and g be
two bounded Lebesgue measurable functions on Q,. It was shown in [3] that

© 1991 Australian Mathematical Society 0263-6115/91 $A2.00 + 0.00

391

https://doi.org/10.1017/S1446788700032997 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032997


392 Salem M. A. Sahab [2]

if / £ Jf or g £ J[, then there exists a unique hp G Jt, p e (1 , oo),
such that

(0.1) [||/ - hp\\
p

p + II? ~ hX]i/P = ^nf [||/ - hfp + \\g - tiff.hp\\p + II? hX] ^nf [||/ hfp + \\g tif

We call hp the best Lp-simultaneous approximant of / and g by elements
of J[. Unless indicated otherwise hp will be referred to as the b.s.a. of /
and g. In general we say that / and g have the simultaneous Polya prop-
erty if hx = lim oo hp is well defined as a bounded Lebesgue measurable
function on Q.

When / = g in (0.1), we have the usual Lp-approximation of a sin-
gle function / by elements of J[. If f is its best L -approximant, then
l i m ^ ^ fp = foo exists provided / is quasi-continuous, that is, / has the
Polya property in this case (see [2]). In this paper, we try primarily to gener-
alize the results discussed in [2]. As for now, there has been no similar work
concerning the convergence of hp as p —> oo.

We devote the next section to studying the case when both / and g are
real-valued functions defined on a finite point set X. We state formulas for
computing hp and h^ in this case, and we establish the basic convergence
results needed later.

In Section 2, we utilize the results of Section 1 to establish convergence
results in the space of step functions defined on Q.

The fact that the step functions are dense in the space of quasi-continuous
functions together with the results of Section 2, enable us to obtain the si-
multaneous Polya property. This is done in Section 3 where we establish as
well the continuity of hp , p > 1, whenever / ang g are continuous.

In Section 4, we show by an example that the simultaneous Polya prop-
erty does not hold in general for any pair of bounded Lebesgue measurable
functions. In particular, we consider the case when / is approximately con-
tinuous on Q .

Throughout this report we may assume (unless otherwise indicated) that
either / and/or g does not belong to J!.

1. Best L -simultaneous approximation on a finite set

Let X = {x{, x2, ... , xn} be a finite subset of 31 with xx < x2 <
••• < xn. Let B = B(X) be the linear space of real functions on X and
J[ = Jf(X) the closed convex cone of monotone nondecreasing functions
in B, that is, functions h satisfying h{x) < h{y) whenever x , y € X and
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[3] Quasi-continuous functions 393

x <y. For each p e [1 , oo), define a weighted Lp-norm J | . | | p by

L/=1

r n

[

where / = {^}"=1 = {/(x,.)}"=1 6 5 , and w = {to,.}"., > 0 is a weight
function satisfying 2"=1w, = 1 •

Let / = {fj}"=l and g = {g,}"=1 in 5 be fixed. For each p e [1, oo),
a function Ap = {Ap ,}" = 1 € ̂ f is called a best weighted Lp-simultaneous
approximant of / and g if

(12) (Jf-hX + Jg-hXf
= inf{(J|/-h\fp + Jg-hfp)

lfp: h
or,

(1.2')

for all h = {ht: i=l,... ,n}eJf.
It was shown in [3] that h is unique (up to equivalence) when p e

( l ,oo) .
To this end we shall discuss briefly the computation of the values of hp

explicitly, we start with the following definitions.

DEFINITION. A subset L C X is said to be a lower set if xi e L and
Xj e X, Xj < xt, imply that Xj e L. Similarly, U c X is an upper set if
x, € U and Xj e X, Xj > xt, imply that Xj £ X. For simplicity we will
write i £Y CX instead of xt& Y.

Fix p e (1, oo). If Lf] U is nonempty, define fip(Lr\U) to be the unique
real number minimizing

£ W j [ \ f j - u\p + \gj - uf]: jeLnul.

Let hp = {h (: / = 1, 2 , . . . , n) be the function defined on X by

h • = m a x m i n u(L n U ) ,
( 1 3 )

 P ' ' {t/:<e£/}{L:/€i}^V "

= min max u(LnU).
{L:ieL}{U:i€U}py
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394 Salem M. A. Sahab [4]

It is shown in [8, pages 21-38], that h is the unique solution satisfying
(1.2). Before we proceed we remind the reader of the sup norm defined by

DEFINITION. Let a = min{-\\f\\oo,-\\g\\oo} and *=max{||/ | |0O, \\g\U.
For fixed / = {/J}"=1 and g = {£,}"=i, we define functions xp : [a, b]n -> £%
and Kp : [a, b] -> M for 1 < p < oo by

(1.4) xp(u) =
1=1

(1.5) xoo(u)=m^(\fi-ui\,\gi-ui\),

(1.6) Kp(u) = i2wp,M - u\"

(1-7) K^iu) --

where u = (ulf... ,un)e[a, b]n and u e [a, b).

LEMMA 1. Suppose wp = {wP)i}"=l > 0 with J2"=i w
pj

= ^ • and
(1.8) liminfwn , > 0.

Then

and

(1.10) lim(ic(«))1/p = «„(«),

a«rf fAe convergence is uniform on the compact sets [a, b]" and [a, b] re-
spectively.

PROOF. From (1.8) we conclude that there exist real numbers Sx, S2 e
(0,1] and p0 > 1 such that wp t e [Sl, S2] for all : and all p > p 0 . Hence

1=1

1=1
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[5] Quasi-continuous functions 395

for all p > p0. In other words,

(1.11) (r(u))l/P - -U") f

Since X is finite, we may assume without loss of generality the existence of
an integer k, 1 < k < n , such that

Hence,

which implies that

(1.12) {S\lP - 1)^(5) < (rp(u)fP ~ rju).

Combining (1.11) and (1.12) it follows that

KWi/P - TooWl < max{|(2«<52)
1/p - 1|, \d\'p - Xftx^u).

N o w Too(") ^s continuous in u, so it is bounded on the compact domain
[a,b]n. Hence the uniform convergence of (rp(u))^p to ^ ( M ) follows.
This establishes (1.9). To obtain (1.10) take u = (u,... , u)T

REMARK. In the above lemma, we may waive the requirement that

if we require instead that

0 < liminfiiL , < limsupiu- , < oo.
P-.OO P'1 p-Kx, P'1

The proof is essentially the same. See [7, Theorem 1] for a similar argument.

LEMMA 2. For 1 <p <<x>, Kp(u) has a unique minimizer up . Moreover,

and « „ is the minimizer of K (U) .

PROOF. The proof of [7, Lemma 2] can be modified to obtain the desired
result.
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396 Salem M. A. Sahab [6]

THEOREM 3. Assume that a>p = {cop (.}"=1 > 0 satisfies (1.8) and

, = 1 forallp, I <p <oo.

Then the solution h = {h t: i = I, ... , n} given by (1.3) and satisfy-
ing (1.2) converges as p —> oo to a solution h^ = {h^ ,: i = 1, . . . , n}

m a x ( | | / -
; inf{

or,

Aforeover

A , = lim A , = max min u (Ln U)

= m i n m a x /i(LC\U),
{L : i€L}{U : i€U] °°

for every i, where L and U are lower and upper sets respectively and
H^iL n U) is the unique real number minimizing

( 1 / , l , I * , | ) ,

for all real u.

PROOF. Putting LnU instead of X in Lemma 2 above we conclude that

exists and / ^ ( L n U) is the minimizer of max{|/^ - u \ , \gj — u\: j € LnU} .
Since X is finite, the number of lower and upper sets is finite, so (1.3)
implies that the limit of h , exists as p —> oo for all i, and therefore
(1.14) holds and it has a real value, say h^ , , /' = 1, . . . , n .

It remains to show that (1.13) holds, that is, h^ is indeed a best L^-
simultaneous approximant of / and g. Since (hp ( } " = 1 e J( for every
P<°°> {*oo,,-}?=i€.#. Clearly

inC/;. ,gt)<hpi< max(y;., #,.),

for all /> and / . By definition of {hp t}"=1, we have (rp(hp))
1/p < {Tp(u))l/p
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for all i i e / . Now, let p -> oo to conclude from (1.9) that T ^ A ^ ) <
Too(") f o r a11 " G ^ " - Hence A^ satisfies (1.13). This completes the
proof.

2. B.s.a. to step functions

DEFINITION. Let n be a finite partition Q with points {ff.: / = 0, 1, . . . ,
n} such that 0 = t0 < tl < • • • < tn = 1. Let IE denote the indicator
function of a subset E of ft. Let Sn be the linear space comprised of all
step functions of the form

1=1

where ft&^ for every i, and for i = 1, we include the point t0 = 0 .

LEMMA 4. Let f and g be in Sn and let hp, 1 < p < oo, be the b.s.a. of
f and g by elements of J[. Then hp e Sn.

PROOF. Suppose hp is not constant on some sub-interval (tj, — 1, tj]. Let

I = essinf{hp{t):tj_x<t<tj},

and

Clearly I <u. Choose f e [I, u] such that

j ~ Q + \ g , - C r = m f { l / y - »• + \gj - r f : r e [ l , u ] } ,

j J j J

where / and g are respectively the values of / and g on (tj_l, tj]. Now,
let h* be the element of J! defined by

A.(0, otherwise.
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Then h* is a better b.s.a. of / and g since

(\fi-hp(t)f + \gi-hp(t)f)dt

<

Hi

+

or,

a contradiction. Therefore h must be constant on (f. - 1, / ] , or h e Sn.

LEMMA 5. Let p e ( 1 , oo) be fixed. Let fx, f2, gx and g2 be elements
of Sn. Let hx and h2 be the b.s.a. of fx, g, and f2, g2 respectively. If
/ , < f2 and gi<g2, then hx<h2.

PROOF. It was shown in [5, Lemma 2] that for 1 < p < oo and for all real
numbers a, b, c, d with a>c,

(2.2) \a - b\" + \c- df >\a- max(fc, d)\" + \c - min(b, d)f.

Define functions T, and T2 by Tx(x) = min(hx(x), h2(x)) and T2(x) =
max(hx(x), h2(x)). Applying (2.2) at every x € [0, 1] with a = f2(x),
b = h2(x), c = fx(x) and d = hx(x), we obtain

\J2{x) - n2{x)\ + \Ji(x) - nx{x)\ > \J2(x) - I2{x)\ + |/j(x) - ^

and hence by integrating over [0, 1] we get

(2.3) n/2 - hx+n/i - M I ; > n/2 - ^11;+11/1 - riiij-
Similarly, we obtain

(2.4) u2 - hx+lift - M I ; > lift - r2u;+iig, - Txfp.
Adding (2.3) to (2.4), we conclude that either

(2.5) n/2 - M I ; + lift - M I ; > 11/2 - ^11; + lift - 3̂ 11; >
or
(2.6) ||/, - hx||' + \\gx - hx\\

p
p > ||/, - r, 11; +11; + ii*, - r, 11;,
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or both of them. If (2.5) holds, then by definition of h2 we must have

h2 = T2 = max(hl, h2) > hv

If (2.6) holds, then we end up with h{ = Tx<h2. This completes the proof.

LEMMA 6. Let f and g be elements of Sn, and let hp be their b.s.a. Then
hp + c is the b.s.a. of f + c and g + c where c € 31.

PROOF. This is clear, since h+c eJ? for all c.

REMARK. The last two lemmas are true in general for all bounded Lebesgue
measurable functions on [0,1]. The proofs are essentially the same.

THEOREM 7. Let f and g be elements of Sn given by

(2-7) / =
1=1

and

For every p, 1 < p < oo, let cop = {to ,}"_ , be defined by cop ( = ti — tt_{

for all i, and let hp = {hp ( } " = 1 be given by (1.3). Then, the b.s.a. of f and
g is given by

<2-9> *; = , ,
1=1

PROOF. By Lemma 4, we know that h* € Sn . Let X = {xx, ... , xn} ,
where xt = (f • + t^^/2, i = I, ... , n. Consider {ft: i= \,... , n} and
{gt:i=l, ... , n} as two finite real valued functions defined on X and let
{h( : i = \,... , n} , h( < hj for all / < j , be a monotone nondecreasing
function on X. Then by substituting the values of cop t in equation (1.2')
we obtain

.1=1

.1=1
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or,

E / d//-V/ + i
Li=i Jti-\

< E / (i//-*,
which implies that

for any monotone nondecreasing function h = X)"=1 htl,t t, belonging to
Sn.

REMARK. Using Theorem 7, we are able to compute A , p e (1 , oo),
when / and g are in Sn by applying (1.3). To compute h^ , we may use
(1.14) and the following theorem.

THEOREM 8. Let f, g and h* be as given above. Then h* converges as
p —» oo to the monotone nondecreasing function h*^ e Sn given by

where hx ., = lim^^^ hp t is given by (1.14). Furthermore, h*^ is a best
^^-simultaneous approximant of f and g by elements of JH.

PROOF. Let X and cop be as denned above. Then Theorem 3 implies the
first part of the theorem. It also implies that h*^ is a best L^-simultaneous
approximant of / and g by monontone nondecreasing functions in Sn .

Let h be any monotone nondecreasing function on [0,1]. We show that
there is a monotone nondecreasing function h* 6 SK such that

Indeed, for i = 1,2,... , n , let

h* = (l/2)[essup(A(x)) + essinf(A(x))] , tt_x <x< tt.

Then clearly

\ft - A; | < essup \f. - h(x)\, tt_x <x<tt,

and

|^. - A*| < essup |^. - h(x)\, /,_! < x < t,,
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for all / . Hence,

max(|./j -h*\, \gt - h*\) < max(essup \ft - h(x)\, essup \gt - h(x)\)

for all / . Now define h* e Sn by

1=1

Then surely we conclude from the last inequality that

This completes the proof.
REMARK. We have seen that for / , g e Sn, we also have hp, h^ e Sn .

Let us define 5 to be the collection of all Sn, that is,

S = < [JSn : n is any finite partition of [0, 1] >.
I n )

If / and g are elements of a particular Sn , then we use the notation fn, gn.
Let hnp denote the best Lp -simultaneous approximant of fK and gn and
let hn oo = lim x hn denote the limit of hn as p increases to infinity.

3. B.s.a. of quasi-continuous and continuous functions

DEFINITION. A function / : [0, 1] —> 31 is said to be quasi-continuous if
it has at most discontinuities of the first kind only. Let & be the Banach
space (sup norm) consisting of all quasi-continuous functions on il.

Let S* denote the space of all elements of $ such that /(0) = / (0 + )
and f{x) = f{x~), 0 < x < 1. Then there is a linear isometry between S*
and S, so that we may work with elements of S* only. For simplicity we
denote S* by S. Hence S as defined in Section 1 is a proper subset of S.
We also regard Jt as a proper subset of &, so in fact J! = J? n &*.

DEFINITION. Let / be a bounded Lebesgue measurable function on [0,1] ,
and let n be a partition of [0, 1]. Then fn in S is defined by

( 3 . 1 ) f n ( x ) = sup{f(y):ye(ti_l,ti]}, x G ( ? , _ , , t,], I > 1 .

We define / similarly by replacing sup by inf.
A bounded function / is in @ if and only if, for any e > 0, there exists a

partition n of [0, 1] such that 0 < / - / < e. Thus, lim, / . = lim, / =
/ . Moreover, if n is a refinement partition of n, then we have

(3-2) LK<ln, <7 , .<7 , .
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For more details see [2]. Thus, when / , g e $, we are able to get as close as
we like to / and g. Of course, we count here on the fact that the projection
m a p ( / , g) *-+ hp is continuous.

LEMMA 9. Let f, g € &, and let e > 0 be given. Let n be a partition
such that 0 < fn - / < e and 0 < ~gn - g_ < e. Then there exists a
refinement ri of n such that

(3.3) K,P<K' ,P<K\P<K,P<K,P + *>
and

(3.4) hn,oo<h][l>00<hnl>oo<hn>O0<h7[00 + e,

where these h 's are as defined earlier in the last remark at the end of Section
2.

PROOF. The discussion preceding the statement of the lemma implies that
(3.2) holds for both / and g with the addition of fn < £ + e, and
~gn < £ „ + £• Apply Lemmas 8 and 9 to conclude (3.3). Letting p -* oo
gives us (3.4).

The proof of the next theorem can be obtained following the same line of
proof as [2, Theorems 4 and 5], respectively, with the proper changes in the
notations used.

THEOREM 10. Let f,ge£, and let hp, p e (1, oo), be their b.s.a.. Then

(3.5)

(3.6) T*.°° £^.°° °
The convergence being uniform in both cases.

REMARK, (a) Let f, g, hp, h^ be as denned above. Let hp be the best
Lp-simultaneous approximant of / + c and g + c. Then, lim hc =
h^ + c, where c e ^ .

(b) Let / , < f2 , gx<g2, and let hx p, hlp be the b.s.a. of / , , gx and
/ 2 , g2 respectively, 1 < p < oo. If hk' ^ = l i m ^ ^ h k p,k = 1 , 2 , then

Voo<A2,oo-
Our next and final result in this section is a generalization of [2, The-

orem 6].
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THEOREM 11. Suppose f and g are continuous. Then hp is continuous,
and so is h^.

PROOF. The second part of the conclusion is immediate once the first part
is established. So let x be an arbitrary but fixed point in (0, 1), and let
e > 0 be given. Then

Since

\hp(x) - hp{y)\ < \hp(x) - hnjx)\ + \hnp{x) - hnp{y)\

hp(t)=\imhnjt)

for all t € Cl, we may choose a partition n = {tt : i = 0, I,... , n} such
that

(i) each of the first and third term on the right-hand side of (3.7) is less
than e /3 .

(ii) / and g can be written as

(3.8) fn =
1=1

and

(3-9) gn:

with

(3.10) |a, .-a,_, |<e/9,

and

(3.11) \bi-bi_l\<e/9,

for all i = 2 , 3 , . . . , n .
Thus, (3.7) becomes

(3.12) \hp{x) - hp(y)\ < e/3 + \hnjx) - hnp(y)\ + e/3,

for all y e [0, 1]. We still need to find 8 > 0 such that

(3-13) \hn p{x)-hK p(y)\ <e/3 ,

provided y £{x-8,x + 8). We first observe that if fn and gn are given
by (3.8) and (3.9) respectively, then Lemma 7 implies that hn must have
the form

1=1
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for some real numbers cx < c2 < • • • < cn . We now have only a few cases to
consider.

Case 1. If tj_{ < x < tj for some j < n , then it follows that

(3.15) \hnp(x) -hK<p{y)\ = \Cj-Cj\ = 0 < e/3,

for all y e (f,_,, tj]. Let 8 = min{(x - *,_,) , (tj - x)} > 0 so (3.13) holds
for all y e {x - 8, x + S) and the continuity of hp at x is established.

Case 2. x = tj for some j < n . Then (3.15) holds for all y e (r;._j, x].
Thus suppose y e (x, tJ+l] = (tj, tJ+l], and suppose (3.13) does not hold,
that is,

(3.16) \hnjy) - hK>p{x)\ = hnjy) - hnjx) = cj+l - c, > e/3.

In Figure 1 below we fix c. , c.+1 and we may also without loss of generality
fix a j , a+1 and then we discuss briefly the various possibilities for the values
of bj , bj+l and each time we end up with a contradiction.

PI. If aj+l < bj+l < cj+l, then we may replace cj+i in (3.14) by

max(c;, bj+l) to obtain a better b.s.a. of / and g, a contradiction. A

similar conclusion holds if c; < j < cj+l.

P2. If bj+l < aj+l < cj+l, then we may replace cj+l by max(c;, bj+l) to
obtain a better b.s.a., a contradiction.

P3. If bj > cJ+l > Cj, then replace Cj by a; to obtain a better b.s.a,
a contradiction. The same argument is valid if in addition we assume that

"f < e/9
e/3

i.
t .

J-1 x=t .

FIGURE 1
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P4. If bj < Cj and bj+l > cj+l, then bj+l - bj > e/9, contradicting
(3.11).

4. Examples

EXAMPLE 1. Let / be the real-valued step function defined on [0, 1] by

(^•l) / = 3^[O,l/15] + ^(3/15,4/15] + '•'(8/15,9/15]'

and let g = 0 on [0,1]. Then h2 = 1/2 on [0,1] which is the same as the best
L2 -approximant of the single function (f+g)/2. This is always true, that is,
the b.s.a. of / and g in the L2-norm is equal to the best L2-approximant
of their mean [6, Theorem 3]. However, h3 is not constant and it is given
by

h3 = (3/(>/5 + l))/pi3 /151 + (5/4)/(3 /15 ;8 /15] + (7/(713 + l))/ ( 8 / I 5 i „ ,

while

(4.2) ^ = (3/2)/ [ 0 3 / 1 5 ] + (5/2)/(3/15>8/15]

In general if g = 0 and / is given by

(4.3) / = Vto,,,] + V f t . y + • • • + **

where

and

2 < kx < k2 < • • • < kn ,

then for every p, hp must have the form

(4.4) /l
P = ^/[O,,2] + C2/(,2),4] + --- + Cn/(<2(n_i),1],

where 0 < f, < C2 ^ • • • ^ Cn and C, depends on p for every i. Let us
compute h2 which has the form (4.4). Clearly C{ is the unique real number
minimizing the quadratic function
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Differentiating T, we get

?(f,) = -2d(kl - f,)

Thus, d = 1/2. Similarly, £,- is the unique real number minimizing the
function

Ttf) = «J(*. - C)2 + 8? + 28{kt - 1)C2,
which implies that f. = 1/2 for all i>n. Hence A2 = 1/2 on [0,1].

Suppose next, that we want to compute h for p > 2. Then in general C,
is the unique real number minimizing the function

r,(C) = 6[kt - 0" + szp

Differentiating T{, we get

r;(C,.) = -P(kt - C,)""1 +p(2kt - l j f f 1 = 0,

which implies upon dividing by (pff"1) that

or
(2kt — 1) = (fc^/f,-) — 1, X = p — 1 ,

H e n c e

for / = 1, 2, . . . , n .
Now observe that ff. —• fc(./2 as p = X + 1 —> oo which implies that /jp

converges to a function

(4.6) ^ = H r n ^ = {kJ2)I{t^h] + (k2/2)I{h,t] + ••• + (^2)1^^,

which would be identical with the value of h^ computed using (1.14).
It can also be shown that C, increases as kt increases by differentiating

(4.5) with respect to kt and observing that the derivative is always positive.
Notice that a function A e J ' is a best simultaneous L^-approximant of

/ and g if and only if h < h < h, where h , h e JH are given by h = kJ2
on [0, 1], and

h = ((2k, - kn)l2)IM + ((2k2 - kn)l2)I(hU] + ••• + (*, , /2) V , , , n-

We show in Example 2 that the simultaneous Polya property does not
hold in general for any two bounded Lebesgue measurable function / and
g, that is, the statement of Theorem 14(b) is not true in general. But before
we proceed, we prove a little lemma.
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LEMMA 12. Let f and g be bounded Lebesgue measurable Junctions with
f^g. Let fp and gp be the best Lp-approximant of f and g respectively
by elements of J?, and let hp be their b.s.a. by elements of ^ . Then

(4-7) \\f-gp\\p>\\f-hp\\p,

and

(4.8) \\g-fp\\p>\\g-hp\\p.

PROOF. By definition of fp and gp we have

(4.9) \\f-fp\\p<\\f-hp\\p>
and

(4.10) \\g-gp\\p<\\g-hp\\p.

If (4.7) does not hold, then

\\f-gp\\p<\\f-hp\\p.
Combining this inequality with (4.10) implies that

or gp is a better b.s.a. of / and g, a contradiction Therefore (4.7) must
be true. Similarly we obtain (4.8). This completes the proof.

EXAMPLE 2. Next, let / be the bounded Lebesgue measurable function
given in [1] and defined on [0 ,2 ] . Let g = 7 on [0, 2]. Then clearly
g 6 / which implies that g — gp = 7 on [0 ,2 ] . Also / as given is
continuous on [0, 1) U (1, 2] and approximately continuous at 1. Let {pk}
be as chosen in [1]. Then 7 < f < 7.5 on [1, 2] and 5 < f < 6 on [1,2],
n = 1,2, ... . Since gn = gn = 7 on [0, 2]. Then, we clearly have by the

"in -1 "in

last lemma that hp > 7, otherwise we get \\f-fp\\p > Il /-Ap| | p . Similarly
for p 2 n we must have h^ < 7, otherwise we get \\f - gp\\p < \\f - hp\\p , a
contradiction. Therefore the sequence {hp }^=1 does not converge anywhere.
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