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Abstract

Let & denote the Banach space {(under the sup norm) of quasi-continuous functions on the unit
interval [0, 1]. Let .# denote the closed convex cone comprised of monotone nondecreasing
functions on [0,1]. For f and g in & and 1 < p < oo, let hp denote the best Lp-
simultaneous approximant of f and g by elements of .4 . It is shown that hp converges
uniformly as p — oo to abest L -simultaneous approximant of f and g by elements of . .
However, this convergence is not true in general for any pair of bounded Lebesgue measurable
functions. If f and g are continuous, then each A, is continuous; so is lim, A, =h .

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 41 A 28;
secondary 41 A 30, 41 A 65.

0. Introduction

Let Q be the real unit interval [0, 1]. Let u be the Lebesgue measure
on Q and let &/ be the collection of all measurable subsets of Q. Let
Lp(Q, &, 1), 1 <p < oo, be the well known Lp Banach spaces and let
@ C L,(Q, s, u) be the Banach space (under the sup norm) comprised
of all quasi-continuous functions defined on Q, that is, functions having at
most discontinuities of the first kind only. Let & C & be the subspace of
continuous functions on €2, and let .# be the closed convex cone in &
consisting of all monotone nondecreasing functions on Q. Let f and g be
two bounded Lebesgue measurable functions on . It was shown in [3] that
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392 Salem M. A. Sahab 2]

if f ¢ # or g ¢ A, then there exists a unique hp e#,pe(l, o)),
such that

4 pyl/p _ . P pql/p
(0.1) WS =hll, +1lg=h,lI,1" = hlél}[llf = hll, + 1&g = All,]"".

We call hp the best Lp-simultaneous approximant of f and g by elements
of .# . Unless indicated otherwise hp will be referred to as the b.s.a. of f
and g. In general we say that f and g have the simultaneous Polya prop-
erty if A, =1lim,  _ h, is well defined as a bounded Lebesgue measurable
function on Q.

When f = g in (0.1), we have the usual Lp-approximation of a sin-
gle function f by elements of .# . If j; is its best Lp-approximant, then
limp_m j; = f exists provided f is quasi-continuous, that is, f has the
Polya property in this case (see [2]). In this paper, we try primarily to gener-
alize the results discussed in [2]. As for now, there has been no similar work
concerning the convergence of hp as p — 0.

We devote the next section to studying the case when both f and g are
real-valued functions defined on a finite point set X . We state formulas for
computing hp and A_ in this case, and we establish the basic convergence
results needed later.

In Section 2, we utilize the results of Section 1 to establish convergence
results in the space of step functions defined on Q.

The fact that the step functions are dense in the space of quasi-continuous
functions together with the results of Section 2, enable us to obtain the si-
multaneous Polya property. This is done in Section 3 where we establish as
well the continuity of hp , p>1, whenever f ang g are continuous.

In Section 4, we show by an example that the simultaneous Polya prop-
erty does not hold in general for any pair of bounded Lebesgue measurable
functions. In particular, we consider the case when f is approximately con-
tinuous on Q.

Throughout this report we may assume (unless otherwise indicated) that

either f and/or g does not belong to .# .

1. Best Lp-simultaneous approximation on a finite set

Let X = {x,, x,,...,X,} be a finite subset of &£ with x;, < x, <
- < x,. Let B = B(X) be the linear space of real functions on X and
#H = #(X) the closed convex cone of monotone nondecreasing functions
in B, that is, functions 4 satisfying A(x) < h(y) whenever x ,y € X and
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x <y. Foreach p €[l, oo), define a weighted L,-norm wil-l, BY

n I/p
(1.1) W, = (Zw,-lfil") ,
i=1

where f = {f}._, = {f(x)}, € B, and w = {w,;}}_; > 0 is a weight
function satisfying Y., ,w,=1.

Let f={f},, and g = {g;}\_, in B be fixed. For each p € [1, =),
a function A = {hp’,.};'=1 € A is called a best weighted L, -simultaneous
approximant of f and g if

Y
(Il =B llp + 18 = A, l5)"°

(1.2) B , pelp,
=inf{(, I/ - All, + g —hl,) ":he A},
or,
n 1/p
[Zwi(if,» —h, S +1g - hp,if)]
(1.2 i=1

n l/p
< [Zwi(|f,~—h,~|p+ |gi_hi|p):| ’
i=1
forall h={h:i=1,... ,n}eA.

It was shown in [3] that hp is unique (up to equivalence) when p €
(1, 00).

To this end we shall discuss briefly the computation of the values of hp
explicitly, we start with the following definitions.

DEFINITION. A subset L C X is said to be a lower set if x;, € L and
x; € X, X; < Xps imply that x;€L. Similarly, U C X is an upper set if
x;€U and x; € X, X; 2 X, imply that X, €X. For simplicity we will
write €Y C X instead of x, €Y.

Fix p e (1, o0). If LNU is nonempty, define u,(LNU ) to be the unique
real number minimizing

{ij[lfj—u|p+|gj—u|”]:jeLnU}.
J

Let hp={hp’i: i=1,2,...,n} bethe function defined on X by

(1.3) .1 = {U: flEXU}{Lmzlo?L}”P(Lﬁ v,
' min m,(LNU).

{L tGLNU 16U1
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It is shown in [8, pages 21-38] , that hp is the unique solution satisfying
(1.2). Before we proceed we remind the reader of the sup norm defined by

Iflloe = max{|f|:i=1,..., n}.

DEFINITION. Let a=min{—|f||.,, —llgll,.} and b=max{| Sl Igll.} -
Forfixed f = {f};_, and g = {g;},_, , We define functions <, : [a, b]" - &
and xp:[a,b]—>.9? for 1 <p < oo by

(1.4) Z Afi-wl +1g-uwl), p<oo,
(15) @ = max (- w18, - ),

(1.6) K, (u) = Z (-l + g —ulf),
(1.7) Koo(U) = maX(If—uI,Ig, ul),

where %= (u,,... , u,) € [a, b]" and u € [a, b].

LemMMa 1. Suppose w, = {w, };_; >0 with ©_w, ;=1, and

(1.8) hpn_l.ggfw ; > 0.
Then

(1.9) Jim (z,@)" =@,
and

(1.10) Jim (1, )" = K o),

and the convergence is uniform on the compact sets [a, b]" and [a, b] re-
spectively.

Proor. From (1.8) we conclude that there exist real numbers J,, J, €
(0, 1] and p, > 1 such that w, ; € [4,,d,] forall i and all p > p,. Hence

Tp(ﬂ) = pr’i(lf;' - uiIP + |g1 - uilp) ’
i=1
< D811, @) + (1, (@)1
i=1

= S 25, @) = 20,0z, @)
i=1
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for all p > p,. In other words,

(1.11) (@)’ - @) < [(2n8,)""F - 1)z _ (7).

Since X is finite, we may assume without loss of generality the existence of
an integer k, 1 < k < n, such that

T (7) = |f — ul-

Hence,
T,(0) 2w, llf - w |l >6,(t @),

which implies that
(1.12) @ ~ D @) < (1,@) " - 7, (@)
Combining (1.11) and (1.12) it follows that

I7,(@)'" - (@) < max{|(2n8,)"” - 1|, 1617 - 1]}z (@).

Now 7_ (%) is continuous in 7, so it is bounded on the compact domain

[a, b]". Hence the uniform convergence of (tp(ﬂ))l/” to 7__ (%) follows.
This establishes (1.9). To obtain (1.10) take @ = (u, ... , u).

REMARK. In the above lemma, we may waive the requirement that

n
pr,i =1,
i=1

if we require instead that

0< liminpr i < limsupwp ; < oo.

p—0 p—oo

The proof is essentially the same. See [7, Theorem 1] for a similar argument.

LEMMA 2. For 1 <p <, K, (u) has a unique minimizer u, . Moreover,
lim U, =ty ,

p—o0

and u is the minimizer of k_(u).

ProoF. The proof of [7, Lemma 2] can be modified to obtain the desired
result.
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THEOREM 3. Assume that , = {w, ;};_, > 0 satisfies (1.8) and

n
pr’i=1 forallp,1 <p < oo,
i=1

Then the solution hp = {hp ;si=1,...,n} given by (1.3) and satisfy-
ing (1.2) converges as p — oo to a solution hy ={hy ;ii=1,...,n}
satisfying

' = inf{max(||f - Al lg§ - Al ): h e £},
or,
max (1f;—heo il 18—hey i) < max (fi=hl. lg=h),  h= {h}i e
Moreover
(1.14) Poo.1 = My 1 = (I (i e O O

) = min max u_(LNU),

{L:i€LHU :ieU} =

for every i, where L and U are lower and upper sets respectively and
b (LNU) is the unique real number minimizing

max —Uu U
max (11, - ul, |g; ~ ),

forall real u.

Proor. Putting LN U instead of X in Lemma 2 above we conclude that
l}ilgloup(Ln U)=u (LNU)

exists and p_(LNU) is the minimizer of max{|fj —ul, lg; —u|: je LnU}.
Since X is finite, the number of lower and upper sets is finite, so (1.3)
implies that the limit of h |; exists as p — oo for all i, and therefore
(1.14) holds and it has a real value, say hoo s i=1, ,n.

It remains to show that (1.13) holds, that is, hco is mdecd abest L_-
simultaneous approximant of f and g. Since {hp’,.};'=l € A for every

p<oo, {h, }i_, €A . Clearly
min(f;, &) < h, ; <max(f}, &),

forall p and i. By definition of {k, ;};_, , we have (,(h,))""” < (z,(@)""”
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for all #w € &". Now, let p — oo to conclude from (1.9) that 7_ (k) <
1 (u) for all @ € #£". Hence h, satisfies (1.13). This completes the
proof.

2. B.s.a. to step functions

DEFINITION. Let 7 be a finite partition Q with points {¢,:i=0,1, ...,
n} such that 0 = ¢, < ¢, < --- <, = 1. Let I; denote the indicator
function of a subset E of Q. Let S, be the linear space comprised of all
step functions of the form

n
(2.1) f= Zf,.l(ti_l,,i],
i=1
where f, € # forevery i, and for i =1, we include the point #,=0.

LEMMA 4. Let f and g bein S, and let hp, 1<p< oo, bethe b.s.a. of
f and g by elements of # . Then h,€S,.

PROOF. Suppose hp is not constant on some sub-interval (tj -1, tj]. Let
[ =essinf{h,(1): ¢;_, <t <t}

and

u = essup{h,(): 1 <t< t;}.
Clearly / < u. Choose { € [/, u] such that
;= (P +1g; = ¢ = inf{lf, - +|g; — s r € [1, ul},

where j; and g; are respectively the values of f and g on (tj_1 , ¢;]. Now,
let h; be the element of .# defined by

, o <t<t,

hy (1) = { h,(t), otherwise.
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Then h; is a better b.s.a. of f and g since

n t
I =l + g =l = [ 1= B0 +1g; - hy(OP)at
i=1 i—1

i#j

4
+f " (5= o +lg; — €

<X / 1= B(OF + 18, = Ry (0

ifj
Y B () b (O)F)d
+ / U= Ry + 18~ B0,
or,
If = h\o+1lg = mllb < IIf =Bl + llg = A,
a contradiction. Therefore hp must be constant on (¢ i~ 1,¢ j], or hp €S,.

LEMMA 5. Let p € (1, oo) be fixed. Let f|, f,, & and g, be elements
of S,. Let h; and h, be the bs.a. of f,, g and f,, g, respectively. If
fi<f, and g < g,, then hy < h,.

Proor. It was shown in [5, Lemma 2] that for 1 < p < oo and for all real
numbers a, b, ¢, d with a >c,
22)  Ja-b]" +|c—df > |a—-max(b, d)[’ +|c —min(b, d)f.

Define functions 7, and T, by T,(x) = min(h,(x), h,(x)) and T,(x) =
max(h,(x), hy(x)). Applying (2.2) at every x € [0, 1] with a = f,(x),
b=h,(x), c=fi(x) and d = h (x), we obtain

1£,(x) = by +1£,(x) = By (%)) > 1 £, (x) = Ty(x)f° + 1, (x) - T,(x)F,
and hence by integrating over [0, 1] we get
(2.3) 1fy = Byl + 1Lf; = Bl 2 11y = Tllb + 1Lf, — Tl

Similarly, we obtain

(2.4) ”gz - hz”f, + “gl - hlllﬁ 2 ”82 - Tz“ﬁ + "31 - T]“Z-
Adding (2.3) to (2.4), we conclude that either

(2.5) I, = holll + llg, = iyl 2 11y = Tollb + &, — THlI5
or

(2.6) 1A, = Bl) + 118y = Aylly = I = Tyl + 117 + llgy = Tl

https://doi.org/10.1017/51446788700032997 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700032997

9] Quasi-continuous functions 399
or both of them. If (2.5) holds, then by definition of 4, we must have

h, = T, = max(h,, h,) > h,.
If (2.6) holds, then we end up with A, = T, < h, . This completes the proof.

LEMMA 6. Let f and g be elements of S, , and let hp be their b.s.a. Then
h,+c is the bs.a. of f+c and g +c where ce % .

ProoF. This is clear, since hp +ce# forall c.

REMARK. The last two lemmas are true in general for all bounded Lebesgue
measurable functions on [0,1]. The proofs are essentially the same.

THEOREM 7. Let f and g be elements of S, given by

n
2.7) f=3f a1
i=1
and
n
(2.8) g=) &l .
i=1

Forevery p, 1 <p <oo, let w,= {wp,i};;l be defined by W, ; =t—1_
forall i, andlet h, = {hp’,.};'=1 be given by (1.3). Then, the b.s.a. of f and
g is given by

n
(2.9) h, = Z} hy o
I=

ProOOF. By Lemma 4, we know that h; €S,. Let X ={x,,...,x,},
where x; = (¢, +¢,_,)/2, i=1,...,n. Consider {f;:i=1,...,n} and
{g;:i=1,..., n} astwo finite real valued functions defined on X and let
{h;:i=1,...,n}, h, < hj for all i < j, be a monotone nondecreasing
function on X . Then by substituting the values of w, ; in equation (1.2")
we obtain

" 1/p
[Z(ti - ti—l)('fi - hp,ilp + |gi - hp’ilp)]

i=1

n 1/p
< {E(ti - t,‘-])(!fi - hilp + Ig,' - h,lp)]
i=1

1
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or,

n t 1/p
[Z/t ('ﬁ_hp,i|p+|gi _hp,ilp)]
i=1""ti—1
n t t/p
< [Z / <|f,.—h,-|"+|g,-—h,-|">] ,
i=1""%i-1

which implies that
If = KL +lig = Al < {1f = AIZ +llg = AL,

for any monotone nondecreasing function 2 = Z,’;l h,.I(L_] ] belonging to
S .
n
REMARK. Using Theorem 7, we are able to compute hp , D € (1,00),
when f and g arein S, by applying (1.3). To compute A, we may use
(1.14) and the following theorem.

THEOREM 8. Let f, g and h; be as given above. Then h; converges as
p — oo to the monotone nondecreasing function h._ € S, given by

n
hoo = z:hoo,il(t‘._l 417
i=1

where h_ ,=lim,_ _ h, . is given by (1.14). Furthermore, h’ is a best

L _-simultaneous approximant of f and g by elements of A .

ProoFr. Let X and w, be as defined above. Then Theorem 3 implies the

first part of the theorem. It also implies that h;‘o is a best L_-simultaneous
approximant of f and g by monontone nondecreasing functions in §, .

Let & be any monotone nondecreasing function on [0,1]. We show that
there is a monotone nondecreasing function A* € S, such that

max(||f = A"l » 18 = h"llo,) < max(||f — hll,, g — All)-
Indeed, for i=1,2,...,n,let
h; = (1/2)[essup(h(x)) + essinf(h(x))] , t,_,<x<t,.
Then clearly
|f; = h;| < essup |f, — h(x)], i, <x<t,

and
lg;—hi| <essup |g,— h(x)|, t_ <x<t,
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for all i. Hence,
max(|f; ~ k]|, |g — h;|) < max(essup |f, — h(x)|, essup |g; — h(x)|)
for all /. Now define A" € S, by

h —Z“,l,

Then surely we conclude from the last inequality that
max(|lf =A™l » 18 = #7lloo) < (1 = Allog» 1S = &lloo)-

This completes the proof.
REMARK. We have seen that for f, g € S, , we also have hp, h €S,.
Let us define S to be the collection of all S, , that is,

= {US,, : T is any finite partition of [0, 1]} .
n

If f and g are elements of a particular S, , then we use the notation f , g, .
Let h, , denote the best L -simultaneous approximant of f, and g, and

let h, . =lim, , h, , denote thelimitof A, , as p increases to infinity.

3. B.s.a. of quasi-continuous and continuous functions

DeFINITION. A function f: [0, 1] — & is said to be quasi-continuous if
it has at most discontinuities of the first kind only. Let £ be the Banach
space (sup norm) consisting of all quasi-continuous functions on Q.

Let &" denote the space of all elements of & such that f(0) = f(0%)
and f(x)= f(x7), 0<x < 1. Then there is a linear isometry between &*
and &, so that we may work with elements of &* only. For simplicity we
denote &* by & . Hence S as defined in Section 1 is a proper subset of & .
We also regard .# as a proper subset of &, so in fact # =.# N&".

DEFINITION. Let f be a bounded Lebesgue measurable function on {0, 1],
and let 7 be a partition of [0, 1]. Then 7,, in S is defined by

(3.1) f.(x)=sup{f(y):ye(t,_,, ]}, xe(t_,t}, i>1

We define f similarly by replacing sup by inf.

A bounded function f isin & if and only if, for any & > 0, there exists a
partition 7 of [0, 1] such that 0 < fn [, <e. Thus, lim, fn = lim_ L!
f. Moreover, if n' is a refinement partition of z, then we have

(3.2) [ S0 S fw T
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For more details see [2]. Thus, when f, g € &, we are able to get as close as
we like to f and g . Of course, we count here on the fact that the projection
map (f, g) — h, is continuous.

LEMMA 9. Let f, g €@, and let ¢ > 0 be given. Let n be a partition
such that 0 < f, — Lt <eand 0L g, - g, <¢& Then there exists a

refinement ' of m such that

(3.3) hﬂ,p < b-fl',p < hn’,p < hn,p < hn,p té,
and
(3.4) By o<hy o <hy <h  <h,  +

where these h ’s are as defined earlier in the last remark at the end of Section
2.

ProoF. The discussion preceding the statement of the lemma implies that
(3.2) holds for both f and g with the addition of f < [f,+¢, and
g, < 8,+¢&. Apply Lemmas 8 and 9 to conclude (3.3). Lettmg P — o0
gives us (3.4).

The proof of the next theorem can be obtained following the same line of
proof as [2, Theorems 4 and 5], respectively, with the proper changes in the
notations used.

THEOREM 10. Let f, g € &, and let hp, p € (1, o0), be their b.s.a.. Then
(3.5) li;nhn’p=li1{nﬁnyp=h ,

P

(3.6) li7xtnﬁﬂ,oo =limh, , =h, = limh,.

p—oo

The convergence being uniform in both cases.

REMARK. (a) Let f, g, h,, h , be as defined above. Let hc be the best

Lp-simultaneous approximant of f+c¢ and g+ c¢. Then, hmp ooh; =
h, +c,where c € % .

(b)Let 1</, , 8§ <g,,andlet h; ,, h, , bethebsa. of f, g and
f,, &, rtespectively, 1 <p < co. If hk’m = lim p_wohk’p,k =1,2, then
hl , 00 < h2,oo

Our next and final result in this section is a generalization of [2, The-
orem 6].
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THEOREM 11. Suppose f and g are continuous. Then h, is continuous,
andsois h_,

Proor. The second part of the conclusion is immediate once the first part
is established. So let x be an arbitrary but fixed point in (0, 1), and let
€ > 0 be given. Then
(3.7) |h,(x) ~ h,()| < Ih,,(_X) —hy )|+ 1R, (x) =R, )|
+ lhn,p(y) - hp(y)l'
Since _

h,(t) = h;nh,,’p(t)

for all ¢ € Q, we may choose a partition 7 = {t;,: i =0, 1, ..., n} such

that
(i) each of the first and third term on the right-hand side of (3.7) is less
than ¢/3.
(ii) f, and g, can be written as
n
(3.8) f.= Zﬁil(,‘__l S
i=1
and
(3.9) Zb, T
with
(3.10) la,~a,_,| <¢/9,
and
(3.11) b, ~b,_,1 <&/9,

forall i=2,3,...
Thus, (3.7) becomes

(3.12) |k, (x) = b,(0)| < &/3 + R, ,(x) =k, ()| +e/3,
for all y € [0, 1]. We still need to find d > O such that
(3‘13) Izn,p(x)_zn,p(y)l S8/33

provided y € (x —J, x + J). We first observe that if 7” and g, are given
by (3.8) and (3.9) respectively, then Lemma 7 implies that Zn, , must have
the form

(3.14) Ec, ot ]
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!

for some real numbers ¢, < ¢, <--- < ¢,. We now have only a few cases to

consider.
Case 1. If L <x<t for some j < n, then it follows that
(3.15) Ry ,(X) =P, W) =lc;—c;|=0<¢&[3,

forall ye(s;,_;, 1;]. Let 0= min{(x—tj_l), (¢ —x)} >0 so (3.13) holds

forall y € (x —d, x +J) and the continuity of %, at x is established.
Case. x = t for some j < n. Then (3.15) holds for all y € (tj_l , X].

Thus suppose y € (x, ¢, ,]= (tj, tj+l] , and suppose (3.13) does not hold,

) J
that is,

(3.16) lhn,p(y) =h, (X)) =h, ,(¥)- hn,p(x) =Cjp =€ > €/3.

In Figure 1 below we fix ¢ i Ci and we may also without loss of generality
fix a i @iy and then we discuss briefly the various possibilities for the values
of b i 5]. .1 and each time we end up with a contradiction.

P1. I{ a;,, < Fjﬂ < Ciyps then we may replace ¢, , in (3.14) by
max(cj, b ; +1) to obtain a better b.s.a. of f and g, a contradiction. A
similar conclusion holds if ¢; < 5]. <Cj-

P2. If b,,, <@, <c,,,,then we may replace ¢;,, by max(c;,b,,,) to
obtain a better b.s.a., a contradiction.

P3. If bj > ¢ > €, then replace ¢ by a, to obtain a better b.s.a,
a contradiction. The same argument is valid if in addition we assume that

bivi > ¢
S c
_ j+1
T a'
t < €/9 j )
> €/3 a.
j+1
_l C.
J
1. = t
j-1 X tj j+1
FIGURE 1

https://doi.org/10.1017/51446788700032997 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700032997

[15] Quasi-continuous functions 405

5 11)411) If b, <c; and b, > ¢, , then b, , — b, > &/9, contradicting

4. Examples

ExXAMPLE 1. Let f be the real-valued step function defined on [0, 1] by

(4.1) S =30y 1159+ Sispis, a5+ iggis sy

andlet g =0 on [0,1]. Then A, = 1/2 on [0,1] which is the same as the best
L,-approximant of the single function (f+g)/2. This is always true, that is,
the b.s.a. of f and g in the L,-norm is equal to the best L,-approximant
of their mean [6, Theorem 3]. However, A, is not constant and it is given

by

hy = (3/(V5+ D)y 315+ 5/ 315 515 + T/ (VI3 + D) g 15 4y
while
(4.2) ho, = (3/2)Iy 315+ (5/2)1(3/15,8“5] + (7D g5 4y
In general if g =0 and f is given by
(4.3) f= kII[O,tl] + kzl(zz,t,] +ooot k"I(tz(,._l),t;,._nl ’
where

2<k <k, <---<k,,

and

-1
n

Hh=0= (Z k}') ’
j=1

i
t2,’ = Zk] J, j=z1,
j=1
vt =10, i21,
then for every p, hp must have the form
(4'4) hp = CII[O,tZ] + C21(12,14] oot C"I(’z(n—l) .12

where 0 < {, < {, <. <{, and {, depends on p for every i. Let us
compute s, which has the form (4.4). Clearly ¢, is the unique real number
minimizing the quadratic function

T,(0) =80k -0’ +60= 07+ (t, — )0 =0 + (1, - 1,)(0 = {)?
=680k, - 0)* + 60 +28(k, - 1N,
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Differentiating T, we get
Ti(¢,) = —26(k, — {,) + 260, + 46 (k, — 1){,
=20k, (2{,-1)=0.

Thus, {, = 1/2. Similarly, {;

; is the unique real number minimizing the
function

T(Q) = 8(k, - {)* + 60 +26(k, - 1)¢%,

which implies that {, = 1/2 forall i > n. Hence 4, = 1/2 on [0,1].
Suppose next, that we want to compute hp for p > 2. Then in general {;
is the unique real number minimizing the function

T(0) =68(k;— )" + 68" +28(k; - 1)¢*
Differentiating T, we get
Ti(¢) = —plk,— ) +p2k, - 1D =0
which implies upon dividing by (p{’~') that
1
2k; = 1= (/) - 1

or
@k, - 1) =(k/C) -1, A=p-1,
Hence
¢ =k /((2k - 1)+ 1),
for i=1,2,...,n.

Now observe that {; — k;/2 as p = A+ 1 — oo which implies that hp
converges to a function

(46) hy, = lim b, = (ki /DLy )+ (/DL g+ -+ (ko2

(tynoys 117

which would be identical with the value of h , computed using (1.14).
It can also be shown that {; increases as k; increases by differentiating
(4.5) with respect to k; and observing that the derivative is always positive.
Notice that a function % € .# is a best simultaneous L_-approximant of
f and g ifandonlyif A <h <h,where b, h € # aregivenby h=k,/2
on [0, 1], and

h= (2K, k)DL, o+ (2= k)DL, o+ + (e, /2]

We show in Example 2 that the simultaneous Polya property does not
hold in general for any two bounded Lebesgue measurable function f and
g, that is, the statement of Theorem 14(b) is not true in general. But before
we proceed, we prove a little lemma.

(tym—yy- 1"
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LEMMA 12, Let f and g be bounded Lebesgue measurable functions with
f#¢g. Let f; and g, be the best L ,-approximant of f and g respectively
by elements of # , and let h, be their b.s.a. by elements of # . Then

(4.7) If = gll, 2 1f = h,ll,»

and

(4.8) g =S, 2 1g = A,
ProoF. By definition of f, and g, we have

(4.9) W =Ll < =hl,,

and

(4.10) g~ g,ll, < lg = Al

If (4.7) does not hold, then
IS = &ll, <ISf =,
Combining this inequality with (4.10) implies that
» p P p
If = &ll, + 1&g =&, ll, <If =h,ll, + g =4,

or g is a better b.s.a. of f and g, a contradiction Therefore (4.7) must
be true. Similarly we obtain (4.8). This completes the proof.

ExaMpLE 2, Next, let f be the bounded Lebesgue measurable function
given in [1] and defined on [0, 2]. Let g = 7 on [0, 2]. Then clearly
g € # which implies that ¢ = g, = 7 on [0,2]. Also f as given is
continuous on [0, 1) U (1, 2] and approximately continuous at 1. Let {p,}
be as chosen in [1}. Then 7 < j;h_ <7.50n[l,2]and 5< f <6 on[l1,2],
n=1,2,.... Since &, =8, = =7 on [0, 2]. Then, we clearly have by the

last lemma that hp ) > 7 otherwise we get || f—f,|l, > I/ —4,|, . Similarly

for p,, we must have h, <7, otherwise we get ||f gll, <If=hll,, a
contradiction. Therefore the sequence {A, } x—1 does not converge anywhere.
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