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Abstract

This paper is concerned with the question of whether n-Engel groups are locally nilpotent. Although this
seems unlikely in general, it is shown here that it is the case for the groups in a large class <& including
all residually soluble and residually finite groups (in fact all groups considered in traditional textbooks
on group theory). This follows from the main result that there exist integers c(n), e(n) depending only
on n, such that every finitely generated n-Engel group in the class <€ is both finite-of-exponent-*?(n)-by-
nilpotent-of-class< c(n) and nilpotent-of-class< c(«)-by-finite-of-exponent-e(n). Crucial in the proof
is the fact that a finitely generated Engel group has finitely generated commutator subgroup.

1991 Mathematics subject classification (Amer. Math. Soc): 20F45, 20F19, 20E10.

1. Introduction

A group is called Engel if for each ordered pair (g, h) of elements of the group there
is a relation of the form

(1) [...[[g,h],h],...,h] = l,

where [x, y] := x~ly~lxy, the commutator of x and y. Following the usual ieft-
normed' convention, we write the left-hand side of (1) as [g, h,..., h], or even more
briefly as [g, nh], where n denotes the number of entries of h. The Engel condition (1)
represents a generalization of local nilpotence: a locally nilpotent group is (clearly)
Engel. Essentially the only known examples of non-locally nilpotent Engel groups
are those of Golod (see [8, p. 132]): for each d > 2 there is a d-generator non-
nilpotent group Gd each of whose (d — 1)-generator subgroups is nilpotent (and Gd

is in addition residually finite and a p-group). It is interesting to contrast with this the
known positive results: of Wilson and Zelmanov [12, Theorem 5] that a profinite Engel
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group is locally nilpotent, of Baer (see [10, p. 360]) that an Engel group satisfying
the maximal condition is nilpotent, and of Gruenberg [3] that a soluble Engel group
is locally nilpotent.

However it is unknown whether or not n-Engel groups, that is, those satisfying
the law [x, ny] = 1 for some fixed n, must be locally nilpotent (although this seems
unlikely). This has been established for n < 3 (see [6]), and, for general n, for the
class of residually finite n-Engel groups [11]. (Note that there are relatively easy
examples of non-nilpotent «-Engel groups; see, for example, [8, p. 132] or [10, p.
362, Ex. 1].)

In the present note we call attention to a simple general fact about Engel groups
which has apparently hitherto gone unnoticed, and from it infer firstly the local nil-
potence of Engel 'SB-groups' (these are defined below; they include soluble groups),
and then a quite specific global description of the n-Engel groups in a large class "io
of groups (including soluble and residually finite groups), yielding in particular their
local nilpotence.

The 'simple fact' in question is as follows:

PROPOSITION. A finitely generated Engel group G has finitely generated commut-
ator subgroup [G, G]. Moreover if G is d-generator and n-Engel, then the rank of
[G,G] is bounded in terms of d and n.

It is immediate that a finitely generated soluble Engel group is polycyclic, and
therefore, in view of Baer's result mentioned above, nilpotent. In fact this argument
applies to the larger class of 'SB-groups', defined as follows: An SB-group G is a
group with a subnormal series

G = Go > G, > • •• > Gk = {1},

each of whose factors G,•/ G,+i is either soluble or locally finite of finite exponent, that
is, G lies in a product 6/, 23,,, • • • 6/,. 25 fr of varieties, where 6/ denotes the variety of all
soluble groups of length < / and Q3P the variety consisting of all locally finite groups
of exponent dividing e. (That the class (Be is actually a variety is a consequence of
Zelmanov's solution of the restricted Burnside problem.) Thus we have the

COROLLARY 1 (Cf. Gruenberg [3]). An Engel SB-group (in particular a soluble
Engel group) is locally nilpotent.

The above-mentioned class *€, originally introduced in [1], is obtained from the
class of all SB-groups by closing under the operations L and R, where for any group-
theoretical class SIC, LS£ denotes the class of all groups locally in 2C, and RSC the
class of all groups residually in 3C'.

Our main theorem is then as follows:
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THEOREM. There exist integers c(n),e(n) depending on n only such that alln-Engel
groups contained in the class ^ are actually contained in the variety

(2) 5Jn :=mcW
fBe

where 9t( denotes the variety of all groups nilpotent of class < c.

Note however that there are Engel (as opposed to n-Engel) groups in the class
^ which are not locally nilpotent, as is shown by the above-mentioned examples of
Golod.

This theorem includes, in particular, the result of Gruenberg [4] that an n -Engel
soluble group of derived length d must belong to ^Be(n)%~(j.n) for some positive integers
e(n) and c(d, n). Note also that a result of Groves [2, Theorem C] implies a similar
conclusion to that of our theorem for n -Engel groups lying in a product of a succession
of soluble or Cross varieties. The most significant improvement, in our theorem, over
these results consists in the dependence of the nilpotency class c(n) and the exponent
e(n) exclusively on the Engel class n. (Compare the result of Heineken [6] and Gupta
and Newman [5] that every 3-Engel group belongs to '820^5• No such precise facts
appear to be known for 4-Engel groups, not even whether they are all locally nilpotent.)
Our theorem also generalizes [1, Corollary 2] stating in part that a residually finite,
torsion-free, «-Engel group is nilpotent of class bounded in terms of n: by the theorem
any n -Engel group from the class ^ , and so in particular any residually finite n -Engel
group, is nilpotent of class bounded in terms of n, modulo a normal subgroup of finite
exponent.

The local nilpotence of n-Engel groups in <£ follows easily from the theorem; we
leave the details to the reader:

COROLLARY 2. The n-Engel groups in the class ^ are locally nilpotent.

The proof of the above theorem is given in Section 2, and of the proposition in
Section 3.

REMARK. AS noted in [1], it seems reasonable to suggest the class ^ as comprising
just those groups accessible to analysis using what might be called the 'classical'
methods of group theory (such as those used in the textbooks [10] and [8]), in contrast
with those outside ^ which, one may conjecture, require the quite distinct 'industrial'
techniques of, most notably, Adjan-Novikov and Ol'shanskiT, used in connection with
the negative solution of the general Burnside problem and related problems, and
involving the construction of 'monsters'.
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2. Proof of the Theorem

Let G be an n -Engel group in the class *€. We wish to show that G lies in the
intersection (2), that is, in the variety 5Jn.

We firstly prove that G belongs to %.t(n)*8«., (n, for some c, (n), e\ (n) depending on
n only. If we can prove this for an arbitrary finitely generated «-Engel SB-group then
it will follow for every n -Engel group in *& in view of this exclusive dependence on
n. Hence we may assume without loss of generality that G is a finitely generated
SB-group. Then by Corollary 1 above G must be nilpotent, and therefore certainly
residually finite. Now it follows from a theorem of Wilson [11, Theorem 2] that every
2-generator subgroup of a residually finite n -Engel group is nilpotent of class bounded
in terms of n alone, and hence, according to Mal'cev [9], such a group satisfies a (2-
variable) semigroup law of degree depending only on n. Hence our group G satisfies
such a semigroup law, whence by [1, Theorem A], we have

(3) Ce9l,(Aw,

for some cx{n),e\(n) depending only on «, as required.
We now complete the proof of our theorem by deducing from (3), just established,

together with the assumption that G is finitely generated and n -Engel, that

(4) G € <&eiin)%.2(n),

for some e2(n), c2(n) depending on n only. We proceed by induction on the parameter
cx in (3). The initial case r, = 0 (that is, G e iB,,) is trivial; suppose that c, > 0 and
inductively that a containment of the form (4) holds for classes < c,. Set

/ / : = ) / , , ( G " ) : = [ G " , . . . , G " ] < G .

By (3) H is contained in the centre of Ge', so that H is certainly abelian. Since
G/H € tft,.,-!®,,, we may assume by the inductive hypothesis that G/H e 0 3 , , ^
for some functions e3 = ej,(n), c3 = c3(n) of n only.

The next step in the proof requires the following

LEMMA 1. For each x € G, h e H, and positive integer k, we have

(5) [h,x]e> =[h,ilx]±l---[h,i,x]±l

for some t > 1, /| , . . . , / , > k.
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PROOF. It suffices to show that for every i > 1,

(6) [h,ixr=[h,j,x]±l---[h,j,x]±l

for some t > 1, j \ , . . . , j , > / + 1. The equation (5) follows from this by means of
an easy induction on k, using the facts that H is normal in G and abelian.

For / = 1, (6) has the form

(7) \h,xT =[h, hxf •••Yh, h

This follows by repeated application of the group identity [cr, be] = [a, c][a, b][a, b, c],
invoking the abelian-ness and normality in G of H: thus

[h,x2] = [h,x]2[h,x,x],

[h, x3] = [h, x2][h, x][h, x, x2] = [h, x]3[h, x, xf[h, x, x, x],

and so on, whence, eventually,

[h,xe'] = [h,x]"[h, hx]---[h, j , x ] ,

where j i , . . . , j , > 2. Since xe] commutes with h, an equation of the form (7) follows.
Now suppose that / > 1 and inductively that (6) holds with / — 1 in place of /. We

have

[h, , -JC]" =[h,x,i-lxY< =[hi,i-lx]«,

where hi := [h, x] e H. The inductive hypothesis then gives

where r > 1, /,, . . . , / , > / . Since hi — [h, x], the desired conclusion (6) follows for

Returning to the proof of the theorem, we conclude from this lemma and the
assumption that G is n-Engel, that [G, HY" = {1}. Since this exponent depends only
on n, we may work modulo [G, / / ] , that is, we may assume without loss of generality
that H is central in G. Thus to summarize, we are now in the situation of a finitely
generated n-Engel group G with a central subgroup H such that

G/H e *nri_,Q5,I n <Bf,91,,,

and we seek to establish (4) for such a group G. As noted before, we also have by [ 11,
Theorem 2] that every 2-generator subgroup of G is nilpotent of class < c4 for some
c4 depending only on n.

To conclude the proof we shall need the following
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LEMMA 2. Let G be as above. Then for any x e yCi(G), g € G, the commutator
subgroup [{x, g), (x, g)] of (x, g), has exponent dividing ec

3"~l.

PROOF. Since by [11, Theorem 2] the 2-generator subgroup {x, g) is nilpotent of
class < c4, it suffices to show that for each / > 2 the quotient y,((x, g))/Yi+i((x, g))
has exponent dividing e3. Now by definition y,((x, g)) is generated by the commut-
ators of the form [xu g{], X\ e Yi-\({x, g)), g\ £ {x,g). One has

[*,, g , P = [x\\ g,] mody , + 1 «x ,g ) ) ,

and then since X\ e yC}(G), which has exponent dividing e3 modulo the centre of G,
we have that Lrf\ g\] = 1, whence the lemma.

Using this lemma we shall now show that

(8) K , !

From this the desired conclusion (4) follows, with c2 = c3 + 1, and e2 some more
complicated function of ex, n, e3, c4, and so ultimately of n alone.

Write e4 := c4 le'3 . By definition of yo + 1 (G) each element of that group is a product
a] • • • a, of commutators a, of the form [x, g]*1, x e yCi(G), g G G. We prove by
induction on t that every such product has order dividing e4, that is,

(9) (a, • • •« , )" = 1.

For t = 1 this follows from Lemma 2, since by that lemma any element of the form
[x, g], x e yCi(G), g e G, has order dividing ec

3\ which in turn divides e4. Suppose
that t > 1 and inductively that the analogue of (9) holds for such products of length
< t. Write a := a\, b := a2 • • -a,. By the Hall-Petrescu identity (see, for example,
[7, p. 317, Satz9.4])

aeibei = (ab)e4w2(a, b) • • • wu(a, b),

(e")where w,{a, b) e y, ({a, b))\' ' for each i = 2 , . . . , e4. We have ae" = 1 by Lemma
2, and be* = 1 by the inductive hypothesis. If / > c4 then y,((a, b)) — {1} since, as
noted earlier, every 2-generator subgroup of G has class < c4. On the other hand if
2 < / < c4, then it is easy to see that (̂ 4) is divisible by ec

3\ so that for these / we have
yi((a, b))('> = {1}, by Lemma 2. Thus for all / = 2 , . . . , e4, we have io,-(a, b) = 1.
Hence (ab)u = 1, completing the induction, and thence the proof of the theorem.
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3. Proof of the Proposition

We firstly show that if G is any Engel group, then for any x, y e G, the subgroup
{x)(v> is finitely generated. (This appears as Exercise 6 on p. 362 of [10]; we include
a proof for completeness, since the proposition is crucial in the above argument.)

Write Xi := y'xy"' for each integer /. We show by induction on n that [x, ny] has
the form

<]0) fr v l = « X±XV X±X

for some words un, vn in x _ , , . . . , X_(;,_D. For n = 1 we have [x, v] = x~xy~xxy =
X^'JC_I, which has the right form with u\ = V\ — 1. Assuming inductively that (10)
holds, we have

Since u]\ (:= y~xuny), and vy
n are expressions in x_2, • • • ,x~n only, we see that

[x, n+\y] has the appropriate form, completing the induction.
From (10) it follows that if [x, ,,y] = 1, then

(11) X_,, € (Xo, X_i, . . . , X_(,,_|)},

and

(12) x o e < x _ , , x _ 2 , . . . , x ^ ) .

Successive conjugations of (11) by y yields

x_, € (x0, JC_I, . . . , x_,,) for all / > n,

and successive conjugations of (12) by y~{ yields

x, € ( x _ i , . . . , x_,,) for all /' > 0.

Hence

( x ) w = ( x _ , , . . . , x _ n ) ,

showing that (x)(v> is indeed finitely generated. It follows that if H is any finitely
generated subgroup of G and g e G, then

(13) H(g} is finitely generated.
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The remainder of the proof, that is, the argument deducing from this that any finitely
generated subgroup of G has finitely generated commutator subgroup, is identical with
that of the proposition of [I]; we reproduce the proof here since, as already noted, the

present proposition is crucial to the theorem.
One first shows that given any two elements a,b € G, the commutator subgroup

(a, b)' is finitely generated. The crucial fact allowing this is that (a, b)' is generated
by the elements of the form [a, b]a"'h" where m and n are integers. This follows in
turn from the well-known fact that {a, b)' is generated by all commutators of the form
[ar, bs], r and s integers, via repeated application of the identities

a'[a',bs]a' =[a'+\bs][b\ail

b~'[ar,bs]b' = [bi,al][a'\bs+i],

starting with r = s = 1. Now {[a, b]){a) is finitely generated by the first part of the
proof, whence by (13) (([a, b]){a)){h) is finitely generated, as required.

This establishes the 2-generator case. Now assume inductively that the claim is
valid for subgroups of G which can be generated by < k elements, and suppose that
H < G requires k + 1 > 2 generators, say h,,..., hn+l. Write //, for the subgroup
generated by

Then by the inductive hypothesis [//,, H, ] is finitely generated, whence so is [//,, H,• ] w .
The conclusion now follows from the fact that [H, H] is generated by the set-
theoretical union of the [//,, Hj]{hi). For this it suffices to show that the subgroup
generated by this union, that is, by U := {Jj[Hj, / / , ] ( / l > , is normal in H. For instance

([// , , //,]'")*2 = [//,, Hi]hMh'-hl1 = [//,, Hx]
hl{huh-\

and since [//,, / / , ] * ' c £/ and [fc,, A2] e [/ /3 , / /3] , wehave [//,, M,]*1*2 < {£/).
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