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1. Introduction

We have previously studied in some detail the multiplicative properties of a
given arithmetic function f with respect to a fixed basic sequence # (see, for
example, (1), (2)). We investigate here the structure of M(f), the collection
of all basic sequences & such that f is multiplicative with respect to £, and in
particular we focus our attention on the maximal members of M(f). Our
principal result will be a proof that each maximal member of M(f) contains the
same set of type Il primitive pairs. Moreover, we will give a simple criterion
for determining, in terms of the behaviour of f, whether or not a particular
primitive pair (p, p) is in any (and therefore every) maximal member of M(f).

A basic sequence A is a set of pairs (a, b) of natural numbers for which

) Lkes, k=1,2,..;
(2) if (a, b) € &, then (b, a) e B;
() (a, bc) e 2 if and only if (a, b) € # and (a, c) € B.

If @ is any collection of pairs of natural numbers, we set T[®] = ﬂé", where
the intersection is taken over all basic sequences € which contain ®. If ® = ¢,
then I'[®@] = &, where & is the basic sequence consisting only of all pairs of
the form (1, k) and (k, 1) (k = 1,2,...). A pair (a, b) of natural numbers is
called a primitive pair if both a and b are primes. Itis of type Iif a # b, type IT
ifa=5. ;

We assume, in order to avoid trivial situations, that no arithmetic function
is eventually zero. An arithmetic function f is said to be multiplicative with
respect to a basic sequence & if f(m)f(n) = f(mn) for all (m,n)e B. The set
of all arithmetic functions which are multiplicative with respect to 4 is denoted
by M(%), and for a given arithmetic function f, M(f) represents the set of all
basic sequences # for which fe M(%#).

A basic sequence Z is a maximal member of M(f) if fe M(2A), but f ¢ M(#")
for any basic sequence &' which properly contains %. The set of maximal
members of M(f) is denoted by M*(f). We prove in Lemma 2.1 that every
member of M(f) is contained in a member of M*(f), hence for the study of
M(f) it is sufficient to confine our attention to M*(f).
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2. The structure of M*(f)

We will show first that for M*(f) to be non-empty it is both necessary and
sufficient that f(1) = 1. This result is an easy consequence of

Lemma 2,1. If B, € M(f), then there is a basic sequence B' in M*(f) such
that By<%B’.

Proof. The proof of the lemma will depend on Tukey’s Lemma: Every
non-empty family of sets of finite character has a maximal member. (A family
A of sets is of finite character provided A € A if and only if every finite subset of
Aisin U. A is a maximal member of U if A € A and if there is no member
A’ of A such that 4’ properly contains A4.)

Let @, be the set of primitive pairs in 8, (take ®, = J if B, = &) and
define A to be the family of all sets @ of primitive pairs for which

fe MT[®ud,)).
We will show that 9 is non-empty and of finite character. By Tukey’s Lemma,
A will then contain a maximal member, say @', and it is clear that the basic
sequence #’ = I'[®’] will satisfy the requirements of Lemma 2.1.
U is non-empty, since fe M(%B,) = M(T'[¢uDs]), so ¢ € A.
Suppose that ® € A and that ¥ is any finite subset of ®. Since
fe M(T[@ud,))
and since I'[Wu®,]cT[DPUD,], it follows that fe M(T[YuUD,]); hence
¥ e U.
Conversely, let @ be a set of primitive pairs and suppose ¥ € U for every

finite subset ¥ of ®. Let (a, b) be any pair in T[®U®,] and let ¥, be the set
:of all primitive pairs (p, q) for which p|a and ¢|b. Clearly ¥, cdud,.

Now set
‘1’ = ‘Pl ﬁ(D.
Then ¥ is a finite subset of ®, so by assumption W € A. Therefore
fe M(T[Y ud,)).
But

(a, b) e T[¥,] = IT[¥; n(@UD,)]
=T U(¥1 n®)]<T[¥ LB,

so f(ab) = f(a)f(b). It follows that fe M(I[®U®D,]) and so D€ U.
Thus U is of finite character and the proof is complete.
The result of Lemma 2.1 provides the basis for an easy proof of

Theorem 2.2. M*(f) # & if and only if f(1) = 1.

Proof. If f(1) = 1, then fe M(¥), so & € M(f). By Lemma 2.1 there is
a basic sequence &’ in M*(f), therefore M*(f) # ¢J.
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On the other hand, if f(1) # 1, then f¢ M(Z#) for any basic sequence %;
that is, M(f) = . But since M*(f)c M(f), we have M*(f) = (J.

The next theorem will yield not only the previously mentioned result about
the type II primitive pairs in the members of M*(f), but also will provide
information about the distribution of the type I primitive pairs. We will use
the following notation: For a given basic sequence & and a given prime p,
we define

Ca(p) ={q | q prime, (p, q) € %}.
Theorem 2.3. If
f0°q") =f(p") (3" @.n
for all natural numbers a and b, then the primitive pair (p, q) is contained in
every basic sequence B in M*(f) for which Cg(p) = Cg(q).

Proof. Suppose that Z € M*(f) and Cye(p) = Cg4lg), but that the primitive
pair (p, q) ¢ . Define the basic sequence #’ by
% =T[Zu(p, 9)].
Since &' properly contains 8, f¢ M(%').
Any element in &' —% must be of the form (p°, ¢*w) or (¢*w, p°v) where
ptv and gyw, where a = 1 and b = 1, where v and w are divisible only by
primes from Cg(p) (= Cg4(9)), and where (v, w) e 8. Since (p,v), (p, w), (g, v),

(g, w) are all in 48, (p°q®, vw) is also in B. Therefore, for any pair (p°, ¢°w) in
B’ — B, we have

S°g*ow) = f(p°q") f(ow) = f(°a°) f(0) f(w), 2.2)

f°0) =f(p) @), f(g°w) =f(g")f(w). 2.3)

On the other hand, since f'¢ M(%’) there is a pair (m, n) in 8’ —2% for which
f(mn) # f(m)f(n). So for some choice of a, b, v, w we have

f(p°gvw) # f(p°0)f(q"W)- 2.9
For this choice of a, b, v, w, relations (2.2), (2.3), (2.4) yield
(0" f(©) f(w) # f(p°) 1(g°) f(0) f(w),
and so f(p°q") # f(P") f(a").
Corollary 2.4. If # and #' are members of M*(f) and the primitive pair

(p9 q) G@'—.@, then C@(p) # Cﬁ(q)
A prime p is said to be isolated from a basic sequence & if Co(p) = 7.

Corollary 2.5. If # and B' are members of M*(f) and the primitive pair
(p. q) € B', then either p or q (or both) is not isolated from 4.

If we set p = g in Theorem 2.3 we get the desired characterization of the
type II primitive pairs in the members of M*(f).
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Theorem 2.6. Every basic sequence in M*(f) contains the same set of type I1
primitive pairs, namely, those pairs (p, p) for which p satisfies

@)Y= (n=1,2,.) (2.5)

Proof. If f(1) # 1, then M*(f) is empty and there is nothing to prove.
Otherwise, suppose f(1) = 1 and (p, p) € B, for some basic sequence &, in
M*(f). Then (p° p*) e B, and, since fe M(%B,), (2.1) holds (with p = g).
Since p = q implies Cx(p) = Cglg) for every basic sequence &, it follows from
Theorem 2.3 that (p, p) is in every member of M*(f). Thus the members of
M*(f) contain the same type Il primitive pairs, and these are clearly just the
pairs (p, p) such that p satisfies (2.5).

3. An example

In the previous section we investigated the structure of M*(f), the set of
maximal members of M(f). We may now ask the following question: Suppose
the requirement that f be multiplicative with respect to £ is replaced by the
less stringent requirement that f be non-singular with respect to # (and, accord-
ingly, M(f) is replaced by the larger collection N(f), consisting of those basic
sequences & such that f is non-singular with respect to #). What can be
said about the structure of N*(f), the maximal members of N(f)? We will
show here (in Example 3.1) that there are arithmetic functions f for which N(f)
has no maximal members, even though f(1) = 1 and N(f) is not empty (compare
this with Lemma 2.1 and Theorem 2.2). Thus while the requirement (1) = 1
is enough to guarantee that N(f) is not empty, it is not sufficient to ensure that
N*(f) is not empty.

As a matter of convenience we repeat here the pertinent definitions (see (1)
for a more complete exposition). For an arithmetic function f and a pair
(m, n) of natural numbers we set

Sy —fmny .
aym, my = A Fomy ] [fmm)] 1 TODI] + [Smm] >0,

0 if f(m)f(n) = f(mn) = 0.
We say that the index of multiplicativity of f with respect to the basic sequence
2 exists and has the value I(f, #) provided

lim ay(my, n) = I(f, B)
k—

for every sequence of pairs {(m,, n,)}°- ;- contained in & for which

lim myn, = 0.
k=

We say f is non-singular with respect to & if I(f, #) exists and has the value
zero, and we denote the set of all functions which are non-singular with respect
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to & by N(#). We denote by N(f) the set of basic sequences & for which
fe N(#), and by N*(f) the set of maximal members of N(f).
For any arithmetic function f, if fe M(%) then clearly fe N(#). Therefore

M(f)= N(f).

The above inclusion may or may not be proper; it is easy to find functions
satisfying either alternative.

Example 3.1. Define f by

S =1, f(p) = 1 (p prime), f(n) = O otherwise.
We note that M(f) = M*(f) = {¥}, for if (p,q) is any primitive pair, then
f(pg) = 0 # 1 = f(p)f(q).

The proof that N*(f) is empty will depend on the fact that f'¢ N(£) for any
basic sequence # which contains infinitely many type II primitive pairs. For
suppose the sequence of primitive pairs {(p,, p,)}7- ; is in %, where we may
suppose that p, <p,<.... Then

) L) =103)
T +f(0?)

Therefore lim a,(p,, p,) # 0 and so f¢ N(A).

n—co
Suppose now that 4 is any member of N(f) (these exist: &, for example,
or any basic sequence generated by a finite number of type II primitive pairs).
By the remark above, & can contain only finitely many type II primitive pairs.
Suppose then that (g, ¢) ¢ # for some prime g and let

@ =T[# (4, 9)].

Since &’ properly contains 4, it is sufficient to prove that fe N(%#’).

Let {(m,, n,)}?< , be any sequence of pairs in #’ for which m,>1, n,>1,
m,n,—o0. Split the sequence {m,, n,} into two parts: (1) those (m,, n,) in 24,
(2) those (m,, n,) in B' —A.

For (1) we have immediately lim a(m,, n,) = 0 since f'e N(%).

af(pm pn

Suppose then that (m,, n,) € #'—# and m,n,>q*. Then
m, = x,q%, n, =y,q> witha, 21, b,2 1, (3.1

and either m,>q or n,>q, say m,>q. If m, were prime, then m, = g by (3.1).
But m,>g, so m, is not prime and f(m,) = 0. Hence f(m,)f(n,) = 0. On the
other hand, mn, is not prime since m,> 1 and n,> 1, and therefore f(m,n,) = 0.
Thus f(m,n,) = f(m,)f(n,) and lim a,(m,, n,) =0 as my,—o0 with (m,,n,) in
B -3 T

It follows that fe N(#') and the proof that N(f) has no maximal members
is complete.
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