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Abstract

Seasonal autoregressive integrated moving average (SARIMA) has been used to model nation-
wide tuberculosis (TB) incidence in other countries. This study aimed to characterise monthly
TB notification rate in China. Monthly TB notification rate from 2005 to 2017 was used.
Time-series analysis was based on a SARIMA model and a hybrid model of SARIMA-general-
ised regression neural network (GRNN) model. A decreasing trend (3.17% per years, P < 0.01)
and seasonal variation of TB notification rate were found from 2005 to 2016 in China, with a
predominant peak in spring. A SARIMA model of ARIMA (0,1,1) (0,1,1)12 was identified.
The mean error rate of the single SARIMA model and the SARIMA–GRNN combination
model was 6.07% and 2.56%, and the determination coefficient was 0.73 and 0.94, respectively.
The better performance of the SARIMA–GRNN combination model was further confirmed
with the forecasting dataset (2017). TB is a seasonal disease in China, with a predominant
peak in spring, and the trend of TB decreased by 3.17% per year. The SARIMA–GRNN
model was more effective than the widely used SARIMA model at predicting TB incidence.

Introduction

Tuberculosis (TB) is the ninth leading cause of death worldwide and the leading cause of death
from a single infectious agent in 2016 [1]. The estimated years of life lost with TB were 40
718.8 thousands in 2016 [2]. An estimated 10.4 million people (incident cases) fell ill with
TB in 2016 worldwide [1]. China ranks fifth among the 30 TB high-burden countries during
the period 2016–2020 [1]. Globally, the TB incidence is falling at about 2% per year, and this
needs to improve to 4–5% per year by 2020 to reach the first milestones of the End TB Strategy
[1]. In China, TB is categorised to class B notifiable diseases, and the incidence ranks second
among all of the class B notifiable diseases [3]. The seasonal autoregressive integrated moving
average (SARIMA) model is widely used to predict the incidence of infectious diseases [4–7],
and also adopted as the main method in TB prediction around the world [8]. However, TB
seasonality in China was mainly reported in local areas and the recent nationwide trend
has not been reported [8, 9]. Analysis of the seasonality is critical to identify the emerging con-
cerns and provide evidence for prevention and control strategies on TB [8]. In addition, in
recent years, nationwide TB prediction in other countries was mainly based on the
SARIMA model that only considers linear information [10–12]. Therefore, in this study, we
adopted the SARIMA model and the generalised regression neural network (GRNN) model
that considers both linear and non-linear information to assess the nationwide TB seasonality
in China.

Materials and methods

Data collection

The monthly and annual notification data for notifiable diseases including TB from 2005 are
released by the National Health and Family Planning Commission of the People’s Republic of
China [3]. In China, all TB cases verified by the clinical or laboratory diagnosis must be
reported within 24 h, and then must be checked by professionals from local centres for disease
control and prevention. Duplicate cards from the same case must be checked and addressed by
the end of each month. The monthly notification rate of TB from 2005 to 2017 is included in
this study. Ethical approval is not required for this study because these are secondary data for
public access.

Statistical analysis

Smoothing was first conducted to discern underlying patterns because of the high-frequency
variations of the time series. Monthly TB notification rate from 2005 to 2016 was used as the
modelling dataset, and data from 2017 were used as the forecasting dataset. The basic structure
of a SARIMA model represents as SARIMA ( p, d, q) (P, D, Q)S, where p, d and q are the
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autoregressive order, number of difference and moving average
order, respectively; P, D and Q are the seasonal autoregressive
order, number of seasonal difference and seasonal moving average
order, respectively; and S is the length of the seasonal period.
SARIMA was modelled with the Box and Jenkins strategy [13]
including the following four stages. First, the Augmented
Dickey–Fuller (ADF) method was used to determine whether
the sequence was stationary, and logarithmic transformation
and/or differencing could be adopted if the sequence was not sta-
tionary. In addition, the stationary sequence should not be a white
noise, which was assessed with Ljung–Box portmanteau test.
Second, the autocorrelation coefficient (ACF) and partial autocor-
relation coefficient (PACF) of the above stationary sequence were
employed to identify the optional model parameters ( p, d, q and
P, D, Q) to establish one or more alternative models. Third,
goodness-of-fit tests of the Akaike information criterion (AIC)
and Bayesian information criterion (BIC) were used to select
the best SARIMA model from competing alternatives, which
should comply with the parametric test and the Ljung–Box port-
manteau test that its residual series should be a white noise.
Finally, mean error rate (MER) and determination coefficient
(R2) were used to evaluate the accuracy of the most preferred
model [14].

After SARIMA model was established that considers the linear
part of the actual data, the GRNN model was used to capture the
non-linear information [15]. Among the various artificial neural
network models, the GRNN model shows the advantage of strong
ability for non-linear mapping, good learning ability skills
and forecasting performance. Furthermore, construction of the
GRNN model is straightforward and only has a regulation param-
eter, the smoothing factor. Therefore, the GRNN model is also
adopted to predict the incidence of infectious diseases [16]. The
estimated monthly notification rate from SARIMA and corre-
sponding original values were used as two inputs, while there is
one output that was the reported monthly notification rate from
the GRNN model. The smoothing factor was chosen with the
method proposed by Specht [15] that the best smoothing factor

was chosen at which the root mean square error (RMSE) of the
network was the lowest.

An average of decreasing trend per year was performed using a
weighted linear regression on the year-specific incidence, using
year as the independent variable and year-specific number of
population as weights. All analyses were conducted with Stata
10.0, except for the GRNN model for which Matlab 7.0 software
package (Math Works Inc., Natick, MA, USA) was used.

Results

SARIMA model

A decreasing trend (3.17% per years, P < 0.01) and seasonal vari-
ation of TB notification rate were found from 2005 to 2016 in
China. The seasonal pattern showed that the peak was observed
during the spring season (March, April and May) and June
(Fig. 1, Supplementary Fig. S1). The time series was stationary
(ADF test: t = −21.88, P < 0.001) after the first-order regular dif-
ference and the first seasonal difference (Fig. 2). In addition,
the stationary sequence was not a white noise (P < 0.01)
(Fig. 2). The ACF and PACF graphs (Fig. 2) were used to explore
the parameters of the ARIMA model, and several candidate mod-
els were identified accordingly (Supplementary Table S1). As
described above, the most preferred model must show the min-
imum values of AIC and BIC, and also should comply with the
parametric and residual tests. Finally, SARIMA (0,1,1) (0,1,1)12
was identified as the most appropriate forecasting model, and
the monthly TB notification rates in 2017 were then forecasted.
Diagnostics for residual series are shown in Supplementary
Figure S2.

SARIMA–GRNN model

After first-order regular difference and the first seasonal differ-
ence, 13 samples were lost in the SARIMA–GRNN model con-
struction. The smoothing factor between 0.01 and 1.00 with an

Fig. 1. Monthly notification rate of tuberculosis
(January 2005 to December 2017) and results of
the SARIMA and SARIMA–GRNN models (February
2006 to December 2017).
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interval of 0.01 was used to identify the minimum RMSE, because
higher RMSE was found when smoothing factor was <0.01 or
>1.00 (Supplementary Fig. S3). The best smoothing factor was
chosen at 0.02 for which the RMSE (0.28) of the network was
the lowest (2014m10 and 2016m5 were randomly chosen as the
testing samples). The forecasting outcomes of the SARIMA
model from January 2017 to December 2017 were selected as
the entry value of the GRNN model, and the output values
were the predictive values of the SARIMA–GRNN model. Both
the fitting and forecasting performances of the models are
shown in Table 1, and the SARIMA–GRNN model showed
both higher R2 and lower MER than SARIMA. The results of
the SARIMA and SARIMA–GRNN models are shown in Figure 1.

Discussion

To our knowledge, this is the first study to report the trend of TB
notification rate in recent years in China with the SARIMA–
GRNN model. In this study, a decreasing trend of TB notification
rate was found (3.17% per years), and there was a seasonality of
TB notification rate from 2005 to 2017 in China, with a predom-
inant peak observed during the spring season. The SARIMA
(0,1,1) (0,1,1)12–GRNN model performed better than the single
SARIMA model in forecasting TB notification rate in China.

A previous review based on 12 studies conducted between the
period 1971 and 2006 from 11 countries/regions around the
world except for China found that the seasonal pattern of TB in
most of the subject countries is predominant during the spring
and summer seasons [17]. Seasonality of TB before 2011 in
China was assessed in a previous paper [18], and a SARIMA (1,
0, 0) (1, 0, 1)12 model was identified. In addition, the hybrid
model also showed better forecasting of TB notification rate
than the SARIMA model [18]. However, monthly notification
cases were included without considering the yearly number of
population in China [18]. In addition, the seasonality and fore-
casting model of TB in recent years in China has not been
assessed. In recent years, country-level seasonality and model
construction of TB with time-series analysis have been reported.
A time-series decomposition analysis of TB cases reported from
1993 through 2008 found that TB is a seasonal disease in the
USA, with a peak in spring and a trough in late fall [19]. In the
Netherlands [10], the time-series analysis of TB cases between
1993 and 2008 showed a seasonal pattern, with a peak in spring
and a trough in winter, and the best-fit SARIMA model was
SARIMA (0,1,1) (1,0,1)12. Retrospective time-series analysis
with TB data collected from 1995 to 2011 in Singapore found
that the peak of TB risk was observed in the month of July
with relatively more cases reported in March, July and October,
but the seasonal difference was not substantial [11]. Singapore
is one degree north of the equator, so would be unlikely to exhibit
the same seasonal trends as other non-equatorial countries. In
addition, a SARIMA (1,0,0) (2,0,0)12 model was identified, and
TB risk among the non-resident population was significantly lin-
early decreasing at a rate of 3% per year [11]. Based on the TB
cases diagnosed in 2000–2010 in Portugal [12], the time series
showed a downward trend (0.41% per month) in the seasonality
of TB diagnosis, with a peak in March and a trough in
December [12], and the model that best fits the data was
SARIMA(0,1,1)(0,1,1)12. A longitudinal time series from March

Fig. 2. Diagnostics for tuberculosis after first-order regular difference and the first seasonal difference (SDTB). (a) Stationary test; (b) autocorrelation coefficient
graph; (c) white noise test; (d) partial autocorrelation coefficient graph.

Table 1. The fitting and forecasting performance of the two models

Model

Fitting part Validation part

R2 MER (%) R2 MER (%)

SARIMA 0.73 6.07 0.70 3.62

SARIMA–GRNN 0.94 2.56 0.88 2.12

SARIMA, seasonal autoregressive integrated moving average; GRNN, generalised regression
neural network; MER, mean error rate; R2, determination coefficient.
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2001 to March 2011 in the north of Iran [20] showed that the
highest number of cases was registered in May, and the best
model was SARIMA (0, 1, 1)(0, 1, 1)12. Therefore, the seasonality
and forecasting model found in this study was comparable to
most of the data available. Although the above-mentioned
country-level TB prediction was based on SARIMA, the
SARIMA–GRNN had been adopted in other circumstances.
Based on the data in Hubei province, the hybrid model was
found to outperform the traditional SARIMA model in TB pre-
diction [16], and the hybrid SARIMA–GRNN model also showed
better hepatitis incidence forecasting than the single SARIMA
model [21].

The exact reason why TB notification rates vary by season is
unclear; however, the observation of seasonality leads to assume
that TB transmission appears to be the greatest during the winter
months. A meta-analysis of observational studies indicated a
probability of 70% that a random-chosen healthy individual
would have higher serum vitamin D level than an individual
with TB [22], although reduced winter sunlight and its potential
effect on vitamin D levels did not appear to contribute signifi-
cantly to seasonality in the USA [19]. Overcrowding, increased
humidity, low airflow and diminished amounts of natural ultra-
violet light arising from indoor activities contribute to the TB
transmission in winter. In addition, the annual Spring Festival
in winter (the most important traditional festival in China) wit-
ness huge population flows throughout the country by train or
bus, which could sharpen the shortcomings of winter related to
TB transmission. Therefore, this fact is in accordance with the
preclinical period of TB from infection to the development of
active TB, i.e. few weeks to several months. Furthermore, TB dis-
ease resulting from recent infection with early progression to dis-
ease appears to be more influenced by season than disease that
results from the activation of latent TB [19]. Other factors also
have been suggested to give a plausible explanation including sea-
sonal change in immune function and health care-seeking beha-
viours [17]. In addition, changes in monthly moving average
concentrations of PM2.5, PM10, NO2 and SO2 in China conform
to U-shaped patterns with the highest in the winter (December
to February) and the lowest in the summer (June to August)
[23]. Limited data also showed positive associations between
ambient air pollution and risk of TB [24–26]. Therefore, the
impact of air pollution on TB warrants further investigation.

In China, vaccination, timely detection and effective treatment
may account for the steady decline in TB notification rate in con-
cert. First, the Bacille Calmette–Guerin vaccination coverage in
China is more than 99% [1]. Second, all suspected TB cases
who seek for healthcare will be confirmed by clinical or laboratory
diagnosis, and the confirmed cases must be reported via the
reporting system within 24 h. In addition, a nationwide scale-up
policy on ‘school TB prevention and control work’ has been
launched since 2010, and China already has a policy to screen
individuals with human immunodeficiency virus for TB. Third,
during the past several decades of steady economic growth,
China has made significant progress in combating TB, including
three national TB prevalence surveys done in 1990, 2000 and
2010, scaling up the TB control programme (based on the directly
observed treatment, short-course strategy) to cover the entire
population after 2000, and expanding its free treatment policy
to all patients with active TB [27]. Globally, the TB incidence is
falling at about 2% per year and 16% of TB cases die from the dis-
ease, and these figures need to improve to 4–5% per year and 10%,
respectively, to reach the first (2020) milestones of the End TB

Strategy. Specific targets include a 90% reduction in TB deaths
and an 80% reduction in TB incidence by 2030, compared with
2015. Achieving these targets requires the provision of TB care
and prevention within the broader context of universal health
coverage, multisectoral action to address the social and economic
determinants and consequences of TB and technological break-
throughs. A new vaccine and novel diagnostics and medicines
for treatment are key advances needed to end TB transmission.
In addition, achieving 90–90–90 targets (i.e., 90% of vulnerable
populations screened, 90% diagnosed and started on treatment
and at least 90% cured) will help accelerate progress towards
reductions in mortality [28]. In addition, as the seasonality
showed a peak of TB cases during spring in China, fully under-
standing the reasons underlying the seasonality would be very
helpful to control TB in China in future.

The strengths of this study included that we included nation-
wide TB data from 2005 to 2017, and validity of these data was
supported by the mandatory notification system in China.
However, there are also several limitations. First, the data included
all cases verified by clinical or laboratory diagnosis, and it may
miss infected individuals that have no access to healthcare profes-
sionals leading to under-reporting. However, the influence of
un-notified cases on our results could not be of a major concern
because the size of gap between the notifications of incident TB
cases and the best estimates of TB incidence has been decreasing
since the year of 2008 in China [1]. Second, detailed information
for TB cases are missing, such as age and sex, which preclude fur-
ther analysis in this study. Third, other factors that may influence
TB transmission and improve the accuracy of prediction model
are not available, such as climate and socio-economic parameters.
Fourth, using notification date instead of date of diagnosis or
onset of TB could influence the seasonality variation. Finally,
China is also one of the 20 countries with the highest estimated
numbers of incident multidrug-resistant TB cases. However,
these data are not available to us, thus further studies are war-
ranted to assess the incidence trends and seasonality of
multidrug-resistant TB in China.

In conclusion, TB is a seasonal disease in China, with a pre-
dominant peak in spring, and the notification rate of TB
decreased by 3.17% per year. The SARIMA–GRNN model may
be more effective than the widely used SARIMA model. The pres-
ence of risk factors in winter should be considered in decision-
making processes.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268818001115.
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