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Abstract
This paper presents an integrated power amplifier (PA) following the orthogonal load-
modulated balanced amplifier (OLMBA) topology. The fixed-phase prototype in this paper is
implemented with 22 nm complementary metal oxide semiconductor (CMOS) fully depleted
silicon-on-insulator (FDSOI) process. The proposed PA operates at 26 GHz frequency range,
where it achieves 19.5 dBm output power, 16.6 dB gain, 15.7% power added efficiency, and
18.3 dBm output 1-dB compression point (P1 dB). The PA is also tested with high dynamic
range modulated signals, and it achieves, respectively, 11.4 dBm and 4.9 dBm average output
power (Pavg) with 100 MHz and 400 MHz 64-QAM third-generation partnership project/new
radio frequency range 2 signals, and 14 dBm Pavg with 0.6 Gb/s (120 MHz) single carrier
64-QAM signal, measured at 26 GHz and using −28 dBc adjacent channel leakage ratio and
−21.9 dB (8%) error vector magnitude as threshold values. The proposed OLMBA is also
compared to a stand-alone quadrature-balanced PA. Modulated measurements show that the
stand-alone quadrature-balanced PA has better linearity in deep back-off, but the OLMBA has
better efficiency.

Introduction

Fifth generation (5G) and the forthcoming sixth generation (6G) networks aim to provide
higher data rates and reliable, low latency, and power-efficient wireless networks [1–4]. In order
to achieve these goals, third generation partnership project (3GPP) new radio (NR) standard
allocates several wideband millimeter-wave (mmWave) frequency bands between 24 and 71
GHz [5]. In order to compensate for increasing path losses, large phased arrays with multi-
ple antenna elements and RF beamformer at mmWave frequency range are proposed [6–8].
Indeed, link analysis indicates the need for excessive antenna gain [9, 10]. As a result, mmWave
transceivers require small-form factor front-end circuitry due to the physically tight antenna
spacing.When the number of active antenna terminals increases, less power froma single power
amplifier (PA) is needed and therefore compact, silicon-based PAs become a feasible option
[11, 12]. In contrast to the lower frequency PAs, integrated mmWave PAs cannot be easily lin-
earized with digital pre-distorter due to the wide modulation bandwidths and a large number
of parallel PAs to be linearized [13]. As a result, research has been ongoing for years to seek out
suitable PA solutions for mmWave transmitters [14–22].

In order to achieve high efficiency, Doherty load modulation PA has been popular [22, 23].
Besides Doherty, a recent technique for active load tuning called load-modulated balanced
amplifier (LMBA) has been proposed, and integrated mmWave implementations already exist
[24–26]. In the LMBA technique, the RF control signal is injected in the isolation port of
the output quadrature coupler and the balanced PA pair experiences symmetric load modu-
lation. Since the load modulating signal is injected on the output side, it needs to be roughly
the same magnitude as the primary PA outputs in order to vary the load. On the other hand,
the control signal can add to the total output power. Recently, LMBA has further evolved into
an orthogonal load-modulated balanced amplifier (OLMBA) [27]. In OLMBA, control sig-
nal is injected into the isolation port of the input quadrature coupler and the reactive load
at the output quadrature coupler reflects the control signal back to the balanced PA pair
outputs, resulting in load modulation. The load seen by the balanced amplifier pair, there-
fore, depends on the phase and amplitude of the control signal, as well as the reactive load.
The advantage of OLMBA is the fact that the control signal can be weak, as it is ampli-
fied by the balanced amplifier pair. In addition, OLMBA load modulation is asymmetric by
default. Asymmetric loadmodulation can be beneficial for example in load-pullmitigation [28].
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This paper is an extension of [29], which presented, to
the authors’ best knowledge, the first fully integrated OLMBA,
designed and fabricated using GlobalFoundries 22 nm fully
depleted silicon-on-insulator (FDSOI) [30].The following sections
provide the design overview of a fixed-phase prototype OLMBA,
followed by extensivemeasurements featuring high dynamic range
5G signals. This extended version is thoroughly revised, provides
a more detailed look into design theory, and presents additional
measurement results comparing the performancewith stand-alone
quadrature-balanced PA.

Design

The integratedOLMBA implementation in this paper (Fig. 1) com-
prises four PA blocks and three quadrature hybrids. The output
stage contains two PAs (BA1 and BA2) and the driving stage con-
sists of themain driver amplifier (DR) and loadmodulating control
amplifier (CA). All of the building blocks are matched to 50 Ω.The
benefit of the 50 Ω-matched block approach is simplicity since all
the building blocks in the line-up can be designed and treated as
separate entities.The disadvantage to this approach is the increased
amount of intermediate matching, along with the losses and area
costs involved.

PA block

Starting point of the PA design was a 75-μm-wide three-stacked
power cell containing also the upper gate capacitors needed for
even voltage distribution among the stacked transistors. The
stacking enabled increasing the drain bias voltage up to 2.7 V.
The main signal driver (DR) and the PA pair forming the output
stage (BA1 and BA2) were then assembled by grouping the
power cells into 150 μm pseudo-differential branches as in Fig. 2.
The width of the PA blocks was chosen to maximize output
power with good linearity. Differential topology was chosen for
reliability and for the ease of power cell combination and drain
supply feeding via center tap of the output balun. The CA can be

Figure 1. Block diagram of the integrated OLMBA.
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Figure 2. Schematic of a pseudo-differential PA building block.
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Figure 3. (a) Schematic of the transformer-based quadrature hybrid and
(b) EM-simulated S-parameter plot.

much smaller than the rest of the amplifier blocks, since control
signal levels of −10 dB compared to the main input signal can
already cause significant load modulation [27]. CA has half of
the width (75 μm per branch) compared to the other PA blocks
and has a source degeneration transistor (M0, 100 μm) with
back-gate bias option in addition to the normal gate bias Vg1,
allowing better adjustment of its output power. CA output range
spans from −27 dB to −4 dB, compared to the driver amplifier
output power, and it can be adjusted with 1–2 dB steps. All of
the PA blocks follow the same principle; the input matching
and transformation from single-ended to pseudo-differential
mode is done with a stacked transformer. On the output
side, the power matching and transformation from pseudo-
differential to single-ended is implemented with a center-tapped
transformer, where the center tap functions as the drain
bias line.

Quadrature hybrid

YQhyb =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

ZC1
+ ZL2

ZL1ZL2−Z2
M

− 1

ZC1
− ZM

ZL1ZL2−Z2
M

− ZL2

ZL1ZL2−Z2
M

ZM

ZL1ZL2−Z2
M

− 1

ZC1
− ZM

ZL1ZL2−Z2
M

1

ZC1
+ ZL1

ZL1ZL2−Z2
M

ZM

ZL1ZL2−Z2
M

− ZL1

ZL1ZL2−Z2
M

− ZL2

ZL1ZL2−Z2
M

ZM

ZL1ZL2−Z2
M

1

ZC2
+ ZL2

ZL1ZL2−Z2
M

− 1

ZC2
− ZM

ZL1ZL2−Z2
M

ZM

ZL1ZL2−Z2
M

− ZL1

ZL1ZL2−Z2
M

− 1

ZC2
− ZM

ZL1ZL2−Z2
M

1

ZC2
− ZL1

ZL1ZL2−Z2
M

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(1)

The quadrature hybrids in this work are based on a transformer
tipped on its side. The coupling is further adjusted with capaci-
tors. Benefits in utilizing transformer-based quadrature hybrids,
as opposed to transmission line-based coupler implementations,
are compact size and straightforward design approach. Figure 3
shows the quadrature hybrid schematic and frequency response.
The general form of the resulting network is shortest to illustrate
with a Y-parameter matrix (1). ZL1, ZL2, and ZM in Equation (1)
are the impedances of the primary side, secondary side, and
mutual inductance, respectively. ZC1 and ZC2 correspondingly
are impedances of the tuning capacitors. When the Y-parameter
matrix is converted to the S-parameter matrix and we assume that
the quadrature hybrid is symmetric (L1 = L2 and C1 = C2),
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(a) (b) (c)

Figure 4. Illustration of load modulation behavior during power sweep depending on (a) DR and CPA bias settings, (b) BA1 and BA2 bias settings, and (c) both utilized
simultaneously. The bias settings were swept from 290 mV to 380 mV with 30 mV steps. CA back-gate bias was set to 1.5 V (resulting in |𝛼| in the range of −10 to −7 dB.) Blue
and green lines depict impedances in BA1 and BA2 75 𝜇m power cell drain, respectively. Black and magenta circles indicate the endpoints of the power sweep. The red
square indicates the optimal impedance for back-off efficiency and the red pentagram is the maximum power efficiency point.

Figure 5. Micrograph of the fabricated PA.

Figure 6. Block diagrams of (a) CW measurement setup and (b) modulated signal
measurement setup.

then at a center frequency, the hybrid’s S-parameter matrix can be
written as

SQhyb,fc =
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, (2)

that is the hybrid provides goodmatching and isolation, and direct
(S13) and coupled (S14) paths are equal in magnitude with phase
offset relation 𝜙c = 𝜙d + 90∘.

Loadmodulation

As established in [27], the OLMBA load modulation is achieved
by using the input quadrature hybrid isolation port (i.e. port 2
in Fig. 3, or correspondingly QH Mid. port 2 in Fig. 1) as a
second input. The second input RF signal is referred to as the

Figure 7. Measured and simulated S-parameters, with same bias settings as with
26 GHz results in Table 1.

control signal, and in Equations (3) and (4), it is expressed as rela-
tive term 𝛼 = Vin2

Vin1
, where Vin1 and Vin2 refer to main and control

signals, respectively.The control signal is amplified by the balanced
PA pair and reflects back to their outputs from a reflective load
placed to the output quadrature hybrid isolation port, causing load
modulation.

ΓBA1 =

(KBA2 − KBA1)jΓiso

+𝛼(KBA2 + KBA1)Γiso

(KBA2 − KBA1)jΓisoΓPA + 2KBA1

+𝛼((KBA2 + KBA1)ΓisoΓPA + 2jKBA1)

(3)

ΓBA2 =

(KBA2 − KBA1)jΓiso

+𝛼(KBA2 + KBA1)Γiso

(KBA2 − KBA1)jΓisoΓPA + 2KBA2

+𝛼((KBA2 + KBA1)ΓisoΓPA − 2jKBA2)

(4)

In this work, the control signal is generated by dividing it from
the main signal input with a quadrature hybrid (QH In in Fig. 1)
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Table 1. Measurement results using CW and modulated signals

Frequency (GHz)

24 26 27 29

IdQ (mA) 63.3 55.1 54.7 89

Gain (dB) 15.9 16.6 15.4 15.9

Psat (dBm) 19.6 19.5 19.2 18.7

PAE/DEmax (%) 15.8/21.6 15.7/24.8 13.9/19 11.4/16.6

P1 dB (dBm) 19.3 18.3 18.3 17.8

PAE/DE at 6
dB BO from
P1 dB (%)

7/9.4 6.8/10.9 6.7/9.2 4.4/6.6

AM-PM at
P1 dB (∘)

3.8 2.2 2.3 7.2

100 MHz 64-QAM 3GPP/NR FR2

Pavg (dBm) 12.1 11.4 11.2 11.5

EVM (dB) −23.8
(6.4%)

−24.0
(6.3%)

−24.3
(6.1 %)

−22.9
(7.2 %)

aACLR (dBc) −28.1 −28.9 −28 −28.1

PAE/DEavg (%) 5.7/7.8 5.6/9.3 5.6/7.7 4.3/6.7

Figure 8. CW power sweep results measured at 26 GHz.

and amplifying it with the CA in a parallel path to the main signal
driver amplifier (DR). This is to say that the control signal is fixed
to −90∘ phase shift compared to the main path, except for any bias
or frequency-dependent deviations in the phase relationship. The
proposed OLMBA is capable of providing the |𝛼| approximately
up to −4 dB. The output quadrature hybrid has its isolation port
terminated with a large capacitor, which is essentially a short cir-
cuit at the operating frequency. This control signal amplitude and
phase and output isolation port load choice combination realizes
load modulation between maximum and backed off power match-
ing points as illustrated in Fig. 4. Both of the output stage-balanced
PAs have their own bias controls, which enables additional degrees
of freedom in the load modulation. The general form of the load
modulation, expressed as reflection coefficients seen by BA1 and
BA2 when antenna port load is assumed to be Z0 = 50Ω, is given
in Equations (3) and (4), respectively. The equations are divided
into two sections: only bias and isolation port load dependent and
bias, control signal, and isolation port load dependent. KBA1 and

Figure 9. (a) Diagram and (b) micrograph of the stand-alone quadrature
balanced PA.

Figure 10. Simulated OLMBA results and comparison between OLMBA and
stand-alone quadrature balanced PA power sweep measurement results, measured
at 26 GHz. Light blue dashed lines indicate simulated OLMBA results and the
diamond shapes indicate 1-dB compression points.

Table 2. CW measurements results comparison between stand-alone BA and
OLMBA at 26 GHz

BA OLMBA

Pout,P3dB (dBm) 17.7 19.1

Gain (dB) 13.8 16.6

PAEP3dB (%) 14.5 15.7

PAE at 6 dB BO from P1 dB (%) 2.2 6.8

P1 dB (dBm) 14.3 18.3

AM-PM at P1 dB (∘) 2.4 2.2

KBA2 denote the fundamental bias-dependent transconductances
and Γiso denotes the output quadrature coupler reflective load. To
be exact, the load modulation depends also on the S22 of the PAs,
which is, in this case, assumed to be the same for both PAs and is
denoted by ΓPA.
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Figure 11. (a) ACLR and (b) EVM measurement results at 26 GHz.

The load modulation during a power sweep is illustrated with
simulations in Fig. 4. The choice of Γiso ≈ −1 and ∠𝛼 ≈ −90∘

causes the BA impedances to move both on a real and imaginary
axes, as illustrated in Fig. 4(a). Initially, the control signal pushes
the impedances higher toward the back-off efficiency matching
point (red square), and they release during the power sweep toward
the maximum power matching point (red pentagram). Black and
magenta circles in Fig. 4 indicate the endpoints of the power
sweep for BA1 (blue curves) and BA2 (green curves), respectively.
Figure 4(b), on the other hand, illustrates load modulation dur-
ing a power sweep, which can be achieved by setting BA1 and BA2
to uneven bias. When BA1 is at a higher bias, the load modula-
tion moves roughly in a similar direction as with load modulation
caused by the control signal. When BA2 dominates, the load mod-
ulation direction is the opposite. Lastly, Fig. 4(c) shows the ensuing
load modulation when all controls are used.

Measurement results

Continuous wavemeasurements

A micrograph of the fabricated circuit is presented in Fig. 5.
Continuous wave (CW) measurements were done using Keysight
PNA-X network analyzer (N5247B, 4-port, 67 GHz) and
FormFactor Infinity I40 probes. For the power sweeps, the
power calibration plane was at the end of the cables and the
probe losses (about 0.5 dB) were deducted from the results. The
calibration was normalized using an external calibration substrate
(Cascade P/N 101-190), and therefore the probe pads are included
in the measurements. The chip had programmable DC biases
for the lowest gates (Vg1) of the stacked transistors. Upper gate
biases (Vg2 and Vg3) were set to fixed values and generated with
off-chip voltage supplies, so that none of the transistors would
exceed maximum Vds of 900 mV. The PA bias settings and the
measurement equipment were controlled using MATLAB. Block
diagram of the CWmeasurement setup is shown in Fig. 6(a).

Measured and simulated S-parameters are presented in Fig. 7.
The measured frequency response (solid lines) has shifted lower
compared to the simulated (dashed lines). This is dominantly
because the whole structure was already demanding to simulate
as a single EM-block, and because of that, the metal fills were not
included in the simulations. The measured 3-dB bandwidth ended
up spanning from 22.8GHz to 28.5 GHz, with 26GHz as the center
frequency. S11 and S22 both remain below −10 dB throughout the
operating range. S12 stays below −45 dB and is omitted for clarity.

Table 3. Modulated signal performance comparison between stand-alone BA
and OLMBA at 26 GHz with 100 MHz 64-QAM OFDM signal

BA OLMBA

Performance at Pavg = 12 dBm

EVM (dB) −23.3 (6.9%) −23.3 (6.9%)

ACLR (dBc) −30.5 −28.2

PAE (%) 4.6 6.1

Performance at Pavg = 9 dBm

EVM (dB) −26.9 (4.5%) −24.8 (5.7%)

ACLR (dBc) −36.8 −30.3

PAE (%) 2.3 3.5

For the power sweeps, the biases of DR, CA, BA1 and BA2
were swept with a focus on finding the settings producing the high
output 1-dB compression point (P1dB) with minimal amplitude
to phase modulation (AM-PM). The estimated bias range for the
(Vg1) sweeps was from 290 to 380 mV, with cut-off voltage being at
200 mV and saturation voltage at 490 mV. Measurement results at
different frequencies with their respective bias settings (for brevity
expressed as the total drain current IdQ) are listed in Table 1.
Figure 8 shows an example of a power sweep at 26 GHz, where
otherwise the same bias settings are compared with and without
control amplifier contribution. When the control amplifier is on,
which is the blue curves, we get some penalty in gain, but the com-
pression point improves by one dB and AM-PM improves by five
degrees. Additionally, the output stage drain efficiency improves
by three percentage points. Figure 8 also contains normalized ref-
erence lines for ideal class A and B efficiencies. At 6 dB back-off
from P1 dB, the efficiency is as good as with class B and 2.3 times
better than class A.

The integrated OLMBA was compared to a stand-alone inte-
grated quadrature balanced amplifier (BA) with 50 Ω loads at the
isolation ports, as illustrated in Fig. 9(a). The micrograph of the
BA PA is shown in Fig. 9(b). The stand-alone BA test circuit con-
sists of BA1 and BA2 without a driving stage, fed and terminated
with GSGSG pads. Power sweep results at 26 GHz are compared in
Fig. 10 and in Table 2. Without driver amplifier, the measurement
equipment source power was adequate to push the stand-alone
BA only to 3 dB compression. However, 3 dB compression can be
assumed close to saturation, and the comparison results indicate
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Table 4. Comparison to the state-of-the-art

This work [31] [25] [26] [32]

Technology 22 nm FDSOI 22 nm FDSOI 65 nm CMOS 28 nm CMOS 45 nm RFSOI

Architecture OLMBA Doherty LMBA LMBA Doherty

Frequency (GHz) 26 28 33 36 32.5

Supply (V) 2.7 2.4 1.1 1 2 & 1

Gain (dB) 16.6 26.1 10 18 –

Psat (dBm) 19.5 22.5 20 22.6 22

PAEmax (%) 15.7 28.5 23.3 32 40.5

P1 dB (dBm) 18.3 21.1 – 19.6 21.5

Modulation scheme OFDM 64-QAM SC 64-QAM SC 64-QAM SC 64-QAM SC 64-QAM OFDM 64-QAM

Bandwidth (MHz) 100 4x100 120 – – – – 200

Data rate (Gb/s) 0.492 1.97 0.6 2.4 0.6 6 12 –

Pavg (dBm) 11.4 4.9 14 10.9 11.8 10.6 16 9.5

EVM (dB) −24 −24.7 −26.6 −25.1 −25.1 −27 −25 −25.4

ACLR (dBc) −28.9 −28 −28.8 −28 −28.2 −29 – −25.8

PAEavg/DEavg (%) 5.6/9.3 1.7/3.1 8.8/13.7 9.2/– 11.6/– –/12.1 22/– 15.5/–
PAEavg
PAEmax

0.36 0.11 0.56 0.32 0.41 0.32 (DE) 0.69 0.38

Area (mm2) 0.484 0.2 1.47 1.44 0.62

that OLMBA is able to squeeze more power out, with better maxi-
mum and backed-off efficiency. PNA-X differential IQ mode was
used in the additional BA measurements and that causes some
phase fluctuation in the AM-PM results of the stand-alone BA.
Figure 10 also contains simulated results of the OLMBA, which
show roughly 1 dB more gain and slightly higher PAE. Overall, the
simulations match well with the measurements.

Modulatedmeasurements and comparison to the
state-of-the-art

Modulated measurements were conducted using the same bias
settings that were used with continuous wave measurements pre-
sented in the previous section.Threewaveformswere chosen as test
signals: 100 and 400 MHz 64-QAM 3GPP/NR frequency range 2
(FR2) waveforms (10.9 dB peak to average power ratio with 1e-3
peak probability) and a 0.6 Gb/s (120 MHz) single carrier (SC) 64-
QAM signal (0.35 roll-off factor). The signals were generated with
Keysight arbitrary waveform generator (Keysight M8190A) and
with Keysight programmable signal generator (Keysight E8257D).
The output channel power and adjacent channel leakage ratio
(ACLR) were measured with Keysight UXA (N9040B) signal ana-
lyzer. Error vector magnitude (EVM) was captured using vector
signal analyzer (VSA) software. Same as with previous measure-
ments, the sweeps were controlled and data were captured with
MATLAB. Measurement setup EVM and ACLR before the PA
under test were measured to be 2.3% (−32.8 dB) and −42 dBc,
respectively. Block diagram of the modulated measurement setup
is shown in Fig. 6(b).

3GPP defined limits for ACLR and EVM were used as thresh-
old values for reporting the average output power with modulated
signals. The limits are −28c dB and 8% (−21.9 dB) for ACLR and
EVM, respectively [5]. ACLR measurements with three different
signals are presented in Fig. 11(a) and EVM sweeps in Fig. 11(b).

ACLR can be seen to be more limiting, especially with 400 MHz
signal. Measured at 26 GHz, the PA reaches 11.4 dBm Pavg with 100
MHz 64-QAMOFDM signal and 4.9 dBmwith 400MHz 64-QAM
OFDM signal. With SC signal, OLMBA achieves 14 dBm Pavg with
good margin of linearity. Results with 100 MHz OFDM signal
are also summarized in Table 1, where the PA shows steady per-
formance throughout the tested frequencies, with average power
fulfilling the linearity specifications staying within 1 dB. Figure 11
contains also stand-alone BA measurement results with 100 MHz
64-QAM OFDM signal for reference. Stand-alone BA can be seen
to have better linearity in deep back-off but reaches the same out-
put power with the linearity threshold. The differences between
BA and OLMBA modulated performance are further examined in
Table 3. The comparison is done at two average output power lev-
els set 3 dB apart. OLMBA provides better efficiency in backed-off
power levels.

Measurement results at 26 GHz are compared to other state-
of-the-art advanced PA solutions in Table 4. With CW results, the
proposed PA delivers comparable output power, gain, and output
compression point. With modulated signals, the proposed PA pro-
vides comparable results, especially considering that most of the
others were not tested using 5GNR signals. It should be noted that
SC 64-QAM signal can have 4–5 dB lower PAPR compared to the
OFDM 64-QAM used in this work [12, 32].

Conclusion

This paper presented a fully integrated PA demonstrating OLMBA
architecture at 3GPP/NR FR2 frequency range 24.25–29.5 GHz.
Differing from the previously established theory of opera-
tion, the design part included also the effect of biasing the
output stage asymmetrically. The prototype was fabricated with
GlobalFoundries 22 nm complementary metal oxide semiconduc-
tor (CMOS) FDSOI. The PA was tested with CW measurements
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and several modulated waveforms, including demanding 5G sig-
nals. Measured at 26 GHz, the PA achieves Psat, gain, PAE, and
P1 dB of 19.5 dBm, 16.6 dB, 15.6%, and 18.3 dBm, respectively.
With high dynamic range 100 and 400 MHz 64-QAM 3GPP/NR
OFDM signals, the PA reaches 11.4 and 4.9 dBm Pavg with −28c dB
and 8% (−21.9 dB) as ACLR and EVM specifications, respectively.
With 0.6 Gb/s SC 64-QAM, the PA reaches 14 dBm Pavg. The pro-
posed PAwas also compared to a stand-alone quadrature-balanced
PA test structure, and the measurements showed that the OLMBA
reached the same output power within the linearity specifications
but with better efficiency. Compared to other load-modulated Ka-
band PAs, the prototype delivers similar or better performance
with a new architecture, showing that it is a promising candidate
for 5G mmWave use.
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