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CHARACTERIZATIONS OF VITALI CONDITIONS WITH

OVERLAP IN TERMS OF CONVERGENCE OF CLASSES OF
AMARTS

ANNIE MILLET AND LOUIS SUCHESTON

In a series of fundamental papers [20], [21], [22], [23], K. Krickeberg intro-
duced ‘Vitali’ conditions on o-algebras and showed that they are sufficient for
convergence of properly bounded martingales, and supermartingales. It is now
known that the conditions V, (= V), and V' are both sufficient and necessary
for convergence of L!-bounded amarts, and ordered amarts (Astbury [1];[24],
[25]); an amart (ordered amart) is a process (X ;) such that the net (EX,),crx
converges, where 7* is the net of simple (ordered) stopping times. We
undertake here to similarly characterize the Vitali conditions 7,, 1 £ p < o0,
in terms of convergence of properly defined classes of amarts. (In terms of
convergence of L”-bounded martingales, Krickeberg himself [22] was able to
characterize V,.) It is easy to see that the condition V_ can be stated in terms
of stopping times as follows: For any adapted family of sets (4,), the set
ess lim sup A4, can be covered up to € by 4,, where 7 is a simple stopping time.
To obtain an analogous formulation of 1/, for p # o0, we introduce multi-
valued stopping times, with ‘overlap’ converging to zero in L?. Essential con-
vergence of L'-bounded ‘amarts for M,’ defined in terms of such stopping
times, characterizes o-algebras satisfying V,. Martingales bounded in L? are
shown to be amarts for M, but also other examples are given.

Sections 1 and 2 sketch the theory of amarts for M, analogous to that of
amarts. Section 3 gives extensions to Banach spaces. At the end of the paper it
is briefly shown how one can replace L? spaces by Orlicz spaces.

Sections 1 and 2 are independent of other work on amarts. Section 3 depends
in part on [24] and [25].

1. Real valued case without Vitali conditions. Let J be a set of indices
partially ordered by < ; s, t and u are elements of J. J is a directed set filtering
to the right, i.e., such that for each pair ¢, t; of elements of J, there exists an
element ¢3 of J such that ¢; £ t;and ¢, < ¢5.

Let (2, %, P) be a probability space. Functions, sets, random variables are
considered equal if they are equal almost surely. Let (X,) be a family of
random variables taking values in R. The essential supremum of (X,) is the
unique almost surely smallest random variable ¢ sup, X, such that for every ¢,

esup, X, = X,a.s. The essential infimum of (X,), einf, X, is defined by
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einf, X, = —esup, (—X,). The essential upper limit of (X,), elim,sup X,
is defined by

elimsup, X, = einf; (esupz; X,).
The essential lower limit of (X ,), e lim inf, X ,, is defined by
eliminf, X, = —elimsup, (—X,).

The family (X,) is said to converge essentially if e lim sup, X, = e lim inf, X ;
this common value is called the essential limit of (X,), e lim X ,. The stochastic
upper limit of (X,), s lim sup, X ,, is the essential infimum of the set of random
variables ¥ such that lim P({Y < X,}) = 0. The stochastic lower limit of
(Xy), sliminf, X, is defined by sliminf, X, = —slimsup, (—X,). The
family (X,) is said to comverge stochastically, or to converge in probability, if
slim sup, X, = slim inf, X ,; this common value is called the stochastic limit
of (X,), slim X, If (4,) is a directed family of measurable sets, the essential
upper limit of (4,), elim sup, 4 ,, is the set such that

Loum sup, 4, — € lim sup, La,.

A stochastic basis (& ,) is an increasing family of sub c¢-algebras of % (i.e.,
for every s = t, # , C & ). A stochastic process (X,) is a family of random
variables X ;: @ — R such that for each ¢, X, is # , measurable. The process is
called integrable (positive) if for every t, X ,is integrable (positive). The process
is L”-bounded (1 < p < ) if sup|| X, < o0, where || ||, is the L? norm.
Given a stochastic basis (% ), a family of sets (4,) is adapted if for every
t€J, A, €F,

Denote by / the set of finite subsets of J. An (incomplete) multivalued
simple stopping time is a map r from € (from a subset of Q called D (7)) to *
such that R(7) = Uwen(n 7(w) is finite, and such that for every ¢ € J,

fr=tl =locQtcrw cF.

R(7) will be called by extension the range of r. Denote by M (IM) the set of
(incomplete) multivalued simple stopping times. Denote by 7  the set of
simple stopping times, i.e., of elements 7 of M such that for every w, 7(w) is a
singleton of J. Let 7 € IM; the excess function of 7 is

e, = ZxEle;T:z; — 1p.

The overlap of order pof 7,1 < p < 00,is O,(r) = |le.|[,. If (X,) is a stochastic
process, let

X, = D iermlimnXe

If (4,) is an adapted family of sets, let A, = U ({r =t} M 4,). Let g and 7
be in M; we say that

o = 7if Vs, VYVt {o = s} M {r =1t} 0 implies that s < ¢.
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(In the case where ¢ and 7 € T, it is the usual order <.) For the order £, M is
a directed set filtering to the right. An integrable stochastic process (X,) is
an amart for M, if the net (EX.).¢y, converges when 7 € M and O,(r) — 0,
1.e., there exists a number L such that for every ¢ > 0, there exists s € J and
a > 0, such that 7 € M, 7 = 5, 0,(7) < « imply |EX, — L| < e. An amart
for M, is simply called an amart. Throughout this paper, if 1 £ p < 0 we
assume that1 < ¢ <0 and1/p + 1/q¢ = 1.

ProposiTION 1.1. Let (X,) be an Li-bounded martingale, then it 1s an amart
for M,. Conversely, if (X ,) is an amart for M, and etther an L'-bounded martin-
gale or a positive submartingale, then (X ;) 1s Li-bounded.

Proof. Let (X,) be an L?-bounded martingale; then (X,) is L!-bounded.
Let ¢ € M and let ¢ be bigger than the elements of R(s). Then

EXU = Z-\’€R(U)E(1K6=.\'1X.§) = ZSER(V)E(1§v=s!Xt) = EXl + E(X,e,).

Since |E(X ¢,)] < 0,(s)sup || X /|,, the net (EX,).en, converges.

Conversely, let (X,) be an L!'-bounded martingale (resp. a positive sub-
martingale) which is an amart for M,. Assume that (X,) is not L¢bounded.
In both cases since (||X,|],) is an increasing net, there exists an increasing
sequence (r,) such that if s, = 7, \V#, then sup || X,,||, = . Since (X,) is an
amart for M, there exists an increasing sequence (¢,) of indices, and a sequence
(a,) of numbers such that if ¢, = r, V%, and if 7 € M satisfies 7 = {, and
0,(r) < ay, then

|EX1 —_ linl1€M1,EXT| é 27",

Denote Y, = X,,; the stochastic process (V,, % ;) is an amart for M,, and
sup || Y,l|, = oo. Since (Y,) may be replaced by a subsequence, we may and
do assume || Y,*||, > n?V#n. There exists a random variable Z, such that
1Z,ll, £ 1/n,and E(Y,*Z,) > n. One may require that Z, be # ,, measurable,
positive, and that the support of Z, be included in the support of V,*. Define
S, by S,=% on the set {k<Z, <k+1} for k<K, and S, =0 on
{Z, = K,}. By a proper choice of K, one has E(S,V,*) > n — EV,*. Set
7(w) = {ty tasty - -+ buar) fOor @ € {S, = k}; 7€ M, e, = S,, and since for
every t, {r =t} ¢ ¥ ,,

EX, = ZiE(1(r=tn+letn+j) _2_ ZjE(ltr=tn+lezn) >n — Eth_~

If (X,) is an L!'-bounded martingale (resp. a positive submartingale), the
previous inequality shows that the net (EX.).¢u, is not bounded, which brings
a contradiction.

An integrable process (X ,) is a semiamart for M, if there exists s € J such
that the net (EX,):¢um,,»=s is bounded.
The amart case of the following result is due to [2], [12], [1].
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THEOREM 1.2. (a) Let (X,) be « semiamart for M,. If lim inf EX,~ < o
(resp. lim inf EX & < 00), then (X, F) (resp. (X ,7)) is a semiamart for M,.

(b) Let (X,) be an L'-bounded amart for M,; then (X ), (X,7) and (|X])
are amarts for M,.

Proof. (a) Assume that liminf EX,~ < o0; let € R, s € J and ¢ > 0
be such that if 7 € M, 7 =5, O,(r) = ¢, then EX, < B8. Let 0 € M, ¢ = s,
0,(s) < e. Choose ¢ bigger than the indices s € R(¢), such that

EX/~<liminf EX,~ + 1.

Define 7 € M as follows: for s € R(s), s € 7(w) if w € {o = s} N {X, = 0};
let

4=V (le =5} N{X, =0})

and set 7 =t on 4° Then O0,(r) £ 0,(s), 7 = s, and if we set U, = X+,
then
EUs = 2ieroEX Liomsi 0 ixaz0) = EX, — E(14eX )
<B4+ Iliminf EX~ 4+ 1.

(b) Given e > 0, choose s € J and « > 0 such that if s <7 € M, O,(x)
< 2a, then |EX, — EX,| < e. Next using (a) choose ¢y ¢ M with ¢y = s and
0,(00) < @, such that

E(Us) 2 Supfgx,()p(f)<aEUr — €,

where U, = X . Set R(oy) = {51, S2, ..., s,}; choose t € J bigger than the
elements of R(op). Let 7€ M, 1= ¢, 0,(r) < a; set R(r) = {t, ..., 4}.
Define " € M as follows: Set

A = Uién({ao = Si} M {X.\., < 0%)§A € ng~z-

For every 1 £ n, 5s; € 7' () if w € {09 = s} N {X,;, <0}. For every j < k&,
t; € 7' (w) if w€ {r =1} N A° Then e, < e,, + €., and 7' = s. Further-
more,
Uvo - UT = Zi§n1{oo=si]ﬂ {Xm‘gO;Xsi - Z]’ékltr=t;}ﬂ (X/jglnth
= Ziénliao=si]X.ﬁ - Zénl {oo=si] N (X.n'<0]X.ci
- Zjékl r=4;1N lXtiéUIth
=X, — X0 = 1a 2zl =iy ix20X o
+ 1A‘ Zi§k1!f=tj]ﬂ lth<0]th é Xvo - XT’-

Hence EU,, — EU, < 2¢. From the definition of ¢, EU,, = EU, — ¢, and
therefore

|Eqy — EU,| £ 2e.
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A similar proof shows that (X,”) is an amart for M,, and since |X,| = X ,*
4+ X,~, (|X,]) is an amart for M,

The amart case of the following result is due to [12].

TueorEM 1.3. (Riesz decomposition of amarts for M,). Let (X ,) be an amart
for M,. Then X, can be uniquely written as X, = Y, + Z,, where (Y,) is a
martingale and an amart for M,, and (|1Z,|) is an amart for M, which converges
to 0w L.

Proof. Fix s € J;let A € F,and s’ =2 5. Giveno, 7€ M, 025,727,
define ¢’ and 7’ as follows: Let ¢ € J be bigger than all the elements of R (o)
and R(r); set ¢’ = ¢ and 7' =7 on A, ¢ =7 =1 on A° Since ¢ = ¥,
=25, e, £ e, e < e, and since

E14X, — 1,X,)| = |[EX, — X.)|,

the net (E(14X.))sen, is Cauchy uniformly in 4 € # . Hence the net
(E[14X.])rem, converges to p,(A4) uniformly in 4 € %, and g, is finitely
additive on % ;. Let 4, \u#, 4, € F ,; given ¢ > 0, there exists s’ such that
for every n,

I#s(An)I < e + |E(1AnXx’)i'

Hence there exists # such that |u,(4,)] < 2, so that u, is s-additive on & |,
and absolutely continuous with respect to P. Let ¥ be the Radon-Nikodym
derivative of u, with respect to P; clearly (V) is a martingale. Let 7 € M,
7 2 5, and denote R(r) = {t,...,t,}. Given ¢ > 0, choose u; < ... < u,,
such that for every ¢ < n, u; = ¢;, and

|E[1(T=l1](yli - X’lh)]| = 6/71.

Define 7 € M as follows: for every 1 £ n, {7 = u;} = {r = t;}; then e, = e,
and 7w = s. Furthermore,

EY, = ZiénE(1{f=h]Xui) + ZiénE[1{r=u](Yti - Xw)]
= EX,, + Zi§nE[1:1=u](Yu - X‘lh')]'

Hence |EY, — EX.| < ¢ which proves that lim,ey,EY, = lim.cy, EX,.
Foreveryt,setZ, = X, — Y, Since E[1,(X, — V,)] converges to 0 uniformly
in 4 € %, Z, converges to 0 in L'. Since (Z,) is an amart for M,, (|Z)])
also is by Theorem 1.2.

THEOREM 1.4. Let (X ,) be an L'-bounded amart for M,. Then the net (X:)renm,
converges stochastically.

Proof. Assume at first that (X,) is an L®-bounded amart for M,. Define by
induction (a,), a1 > a2 > ..., a, — 0, and an increasing sequence of indices
(s,) such thatif ¢ € M, o = s,, 0,(¢) £ a,, then |EX, — L| < 1/n, where L

denotes the limit of (EX.).¢a,. Set B, = a, — o415 let (o,) be an increasing
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sequence of elements of M, such that o, 2 s,, O,(s,) = 8,, and such that

there exists an increasing sequence of indices (¢,), o, < {, < 0,41 for all n.

Set V =liminfX,,, W = lim sup X,,. Given ¢ > 0, choose K, such that
1/K, < e. Given any 6, 0 < 6 < ag,, there exists an index f; and two % .
measurable random variables 1”7 and W’ such that

PV — V| >8}) <, P({IW — W] >é8}) <.
We also assume that o, £ 6 and £ > K. Choose ¥’ = k such that

P(ngﬂgk'{lXﬂn - I'/| < 26}) ; ] - 25'

Set
A = Urzgnsw UIER(an)HC’n = t} M HXt - V/| < 25}]

For each n, k < n < k/, the cardinality of o,(w) is strictly larger than 1 for
w € B,; 1, £ e, so that P(B,) £ |e,!li < 0,(s,) = B,. Hence
PA)=21—26— QB =21 —20 —a, =1 — 36.
Set for each n, k < n £ F/,
Ay = |Uieren (o, =t} N H{IX, — V'] < 28})]
ML Niezjzaar Nyeropt| Xy — V| = 28]

Define 7 € M as follows: For every w € 4,, k =n =k, let { € 7 (w) if
w € o, =t N{X,— V' <28}, and set 7 = t,,; on A°. Hence

Sk é T, €r é Zkénék’ean

so that 0,(r) = ay, and 7(w) has a cardinality strictly larger than 1 on a set
of probability less than é. Since P({| X, — 17| < 26}) = 1 — 45,

|[EX, — EV'| £ 26 4+ 8§ sup | X ]|

In a similar way we define 7’ € M, 0,(r') < «y, s, < 7/, such that

EX. — EW'| < 25 + 88 sup | X ..
Since |EX, — EX./| £ 2/K,, we have
|[EW — EV| < 2¢ + 6(6 4+ 18 sup |X ]l.).

Since e and § are arbitrarily small, IV = W a.s. Hence the sequence X,, con-
verges stochastically, which proves that the net X, converges stochastically
when 7 € M, O,(r) — 0. Let (X,) be an L'-bounded amart for M,, and
assume that the net (X).¢y, does not converge stochastically. If s lim, ¢y, X,
= o (resp. —o0 ) on a set of positive measure, then s lim X, = o (resp. —o0)
on this set. Hence by Fatou’s lemma there exists « < b such that

P({slim,cp, inf X, < a < b < slimsup,ey,X.}) > 0.
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Set X/ =(—-1)VI[X, AN (b+1)]; by Theorem 1.2 (X/) is an L*-
bounded amart for M,. The argument above shows that (X,’),cx, converges
stochastically. Since for every r € M, X," = (¢ — 1) V[X, A (b 4+ 1)]on a
set of probability larger than 1 — O,(r), the net

((a —1) VIX. AN+ 1)]),€MP

converges stochastically, which brings a contradiction.

2. Real valued case: convergence with Vitali conditions. A stochastic
basis (& ,) satisfies the Vitali condition V, if for every adapted family of sets
(4,) and for every € > 0, there exists 7 € IM such that O,(r) < ¢ (overlap
limitation), P(elim sup 4 \4,) < e (deficiency of covering limitation), and
for every t € R(r), {r =t} C A, (It is easy to see that one gets an equiv-
alent formulation by replacing the condition P (e lim sup 4 \4.) < e with
P(elimsup 4,) — P(4,) < e. This definition is equivalent to the one given
in [23]. It generalizes the definition of V' = V_ given in [24], [25].) In this
section we characterize 17, in terms of essential convergence of amarts for A,
and give an example of an amart for M, which converges essentially.

The following theorem is a generalization of Krickeberg’s results [20], [22],
and of Astbury’s result [1].

TuroreM 2.1. Let p be fixed, 1 < p < 00. Let (¥ ,) be a stochastic basis; the
following conditions are equivalent:
(1) (¥ ) satisfies the Vitali condition V.
(2) For any process (X ,), the stochastic convergence of the net (X,):car, implies
the essential convergence of X ,.
(3) Every L'-bounded amart for M, converges essentially.
(4) Every amart for M, of the form (1,,) with lim P(4,) = 0, converges
essentially to 0.
Proof. (1) = (2). Denote X, = s lim,¢y, X+, let « > 0, and set
A =ecelimsup {|X, — X_| > «}.
Given ¢,0 < e < /3, thereexists s € J, X € % ,such that P({| X, — X| > €})
<e Choose s =2 sand @, 0 < a < esuch thatif s’ =7 € M and O,(r) £ «a,
then P({|X, — X_| = ¢}) < e.Foreveryt € J,ysetd, = {|X, — X| > a — ¢
ift 2 s’,and 4, = @ otherwise; then
Plelimsup 4,) =2 P(4) — e
By the Vitali condition 17, we can define ¢ € IM, s = §', 0,(¢) < «, such that
Pelimsup 4 \4,) < ¢,
and {0 =u} CA4, for every u € R(s). Furthermore, since A4, C
{1 Xo — X| > a — ¢ U support e, and P(support e,) < |le,|l, < «, we have
P(A) — 2¢ < Plelimsupd,) — e = P(4,) = P{|X, — X|>a — ¢)
+a=P{|X, — X | >a — 2¢) + 2¢ £ 3e.
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Since this inequality holds forevery e > 0, P(4) = Oandelim X, = X_.

(2) = (3). Let (X,) be an L'-bounded amart for M,; by Theorem 1.4 the
net (X.),ca, converges stochastically. Hence if (2) holds (X,) converges
essentially.

(3) = (4). This implication is obvious.

(4) = (1). A similar argument appears in [1].

Let (4,) be an adapted family of setsand let 4 = ¢ lim sup 4 ,. Set

A={r e IMVtE€ R(r), {r=1t] CAL.

Define by induction two sequences () in A and (7;) in R as follows:
ro = sup {P[D(1)]|r € A, O,(r) < 1}.

71 is any element of A such that O,(r;) < 1and P[D(r,)] = ry/2; set

r1 = sup {P[D(r)\D(r1)]| 7 € A, O,(r) < 1/2, D(r) D D(r1)}.

If 7;_; and r;_; have been defined, 7, is any element of A such that O,(r;) < 1/k,
D(TL) D D(Tk_l), and P[D (Tk)\D (kal)] z 7}CA1/2. Set

ry = sup {P[D(r)\D(r)]| 7 € A, Op(r) < 1/k + 1, D(r) D D(rp)}.
Let 7 C A, Oy(r) < 1/(k + 1), D(r) D D(ry); then

i1 Z PID(r)\D(7)] + PLD(r:)\D (74=1)] Z PID(r)\D (r&)] + 7x-1/2.
Hence 7, £ 7,_1/2. Set

C, = A,\ Uzt Urenlme = uf, X = 1c,.

Let & € N, and choose ¢ ¢ J such that ¢ is larger than all the elements of
Us<eR(r;). Let 7 ¢ M, 7+ =2 t, Oy(r) < 1/k — O,(rx). Define o € M as
follows: ¢ = 7, on D(7), t € 6(w) if w € {7 =1t} NC, for { € R(s). Then
6 € AD(ec) DD(re1), ¢, < e + e,; hence

PID(0)\D (r-1)] S 1y S 2750
Furthermore, since

X, = ZtER(T)lCtﬂ tr=0) = lp@\nen + €

E(X,) £ 2% 4+ k=1, Hence (X,) is an amart for M, which converges
essentially to 0 under the assumption (4). Hence if B = \U D (7y),

A\B C elim sup (4 \B) C elim sup C,.

Hence P(A\B) = 0;since D(r;) increases to 3, given e > 0 there exists k such
that O, () < ¢, and

Plelimsup A \D(ri)) = Plelimsup A\4,,) < e

Example. Let J be a family of finite (countable) measurable partitions of
(Q, %, P), and order J by refinement (i.e., s < ¢ if every atom of s is a union
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of atoms of t). Assume that sup {P(4)[4 € t} converges to 0, and for every ¢
let %, be the s-algebra generated by t. Let Q be a measure of density X with
respect to P, X € L% 1 < g £ . Let fand g be real functions having deriva-
tivesat 0, g’(0) # 0, such that f(0) = g(0) = 0, and set

x,_ 3 JloWl

B ia glP(4)]

(X ;) is an amart for M,. In the classical case where @ = [0, 1]* with the Borel
o-algebra and Lebesgue measure, and where J is the family of finite (countable)
partitions of [0, 1]* into parallepipeds, (% ,) satisfies the Vitali conditions 17,
forl1 £ p < 0 ifn > 1,and (¥ ) satisfies V_if n = 1 (see [22] p. 298). Then
if1 < ¢ = 0, (X)) converges essentially to (f'(0)/¢' (0))X.

Indeed, set

_rO) [« o)
Ye=30) [; P(4) M ]

(Y,) is an Lf%bounded martingale:

0)|* (E[[1.X[D* _

EY(I ‘f( PAS /0(]!0 XmJ‘

| tl (O)|q1§/ P(A)q ( )—If()l |g()l || H(I

Hence (V) isanamartfor M,. Set Z, = X, — V;letf(x) = xf '(0) + xF(x),
g(x) = xg’ (0) + xG(x), with lim,oF(x) = lim,,G(x) = 0. Given ¢ 0 <
e < |¢'(0)], choose a such that |x| < « implies |F(x)| < e and |G(x)| < e.
Choose s such that forevery 4 € s, P(4) < aand |Q|(4) < a. Fort = s,

dL7O)] + O] [0)]
12 ?@ OO e Py

Hence if 7 € M, r = s, then

izl < L@+ 1O .
ElZ] = ooy Q100 11 + X101

3. Banach-valued case. We now assume that the random variables X, take
values in a Banach space ¢, are strongly measurable and Pettis integrable.
Other definitions remain the same. Amarts for M, are defined by the conver-
gence of (EX )¢y, in the norm topology.

The case J = N of the following result for amarts is due to [13]; see also [1].

THEOREM 3.1. Suppose that the Banach space & has the Radon-Nikodym
property. Let (X,) be an & -valued amart for M, such that lim inf E|X ,| < o0.
Then X, can be uniquely written as X, = YV, + Z,, where (V) is a martingale
and an amart for M,, and (Z,) is an amart for M, which converges to zero in
Pettis norm.
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Proof. Recall that the norm defined on the set of random variables mea-
surable with respect to # ; as || X[, = supacs |E(14X)], is equivalent with
the Pettis norm. The argument given in the proof of Theorem 1.3 above
extends to the Banach-valued case, showing that (E[1.X:]):cxn, converges
uniformly in 4 € # ; hence (X.),cu, is Cauchy in Pettis norm. In general
this does not imply convergence, but wu, defined by u,(4) = lim E(1,X,),
A € &, isof bounded variation because of the assumption lim inf £|X ,| < 0,
and is countably additive because E(1,X,) converges uniformly in 4 ¢ % |
(cf. the proof of Theorem 1.2). Since &  has the Radon-Nikodym property,
there exists a random variable ¥V, € L'(&") such that for every 4 ¢ %,
us(4) = E(1,Y,). (V,) is easily seen to be a martingale. Set Z, = X, — V;
the argument given above in the real-valued case shows that (V,) and hence
(Z,) are amarts for M,, and Z , converges to zero in Pettis norm.

We say that X, converges weakly essentially if there exists a random variable
X, such that elim f(X,) = f(X)for every f ¢ &. It should he pointed out
that in the case J = N this need not imply weak almost sure convergence,
which holds under more stringent assumptions (cf. [7], [5]).

THEOREM 3.2. Let (F ) satisfy V, and let & have the Radon-Nikodym
property. Then an L'-bounded amart for M, converges weakly essentially.

Proof. Applying Theorem 3.1, write X, = V,+ Z,. For each f ¢ &,
f(Z,) is a real-valued L'-bounded amart for A,, which converges essentially
by Theorem 2.1, necessarily to zero. Hence Z, converges weakly essentially
to zero. It remains to discuss the convergence of the martingale (V). For each
fe &, f(V,) is an L-bounded amart for M,, and hence converges essentially
to a random variable depending on f, say R, At the same time, for every
increasing sequence (7,) in 77, (Y,,) is an L'-bounded martingale which con-
verges by Chatterji’s theorem ([8]; see e.g. [27], p. 112) almost surely, hence
stochastically in the norm topology. Since the stochastic convergence is defined
by a complete metric, this implies that (V,),.r converges stochastically, say
to Y. Therefore for each f € &, f(V,) converges stochastically to f(V_) =
R;. Thus X, converges weakly essentially to V.

For L?%bounded martingales, a stronger result is obtained. We at first prove
the following maximal inequality:

LeEmMA 3.3. If X € L&) and if (F ) satisfies V,, then given any a > 0,
Plelim sup {|EZtX| > a}] = (1/a)E|X]|.

Proof. Set A4, = {E74X| > a}, 4 = elimsup 4, and let ¢ > 0; there
exists 7 € IM, such that for every ¢, {r =t} C 4, P(A\D(r)) £ ¢, and
0,(r) = e. Then

a[P(A) — € £ 2 icrmEl -0 EZ {X|] < EIX| + 0,(n)| X,
< E|X| + €l X1,

which gives the maximal inequality when e approaches 0.
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THEOREM 3.4. Let (F ) satisfy the Vitali condition V,, let & be a Banach
space with the Radon-Nikodym property, and let (X,) be an L%bounded & -
valued martingale. Then X , converges essentially in the norm topology.

Proof. We prove that the net (X,),es, converges stochastically in the
norm topology of &, and then apply the implication (1) = (2) in Theorem 2.1,
which extends to Banach-valued X, without change of proof.

First in the case p = o one shows, as in the proof of Theorem 3.2, that
(X.)-er converges stochastically; it follows that X, converges essentially.
Assume now that 1 < p < o0 ; an L%bounded martingale is uniformly in-
tegrable, therefore it admits a representation X, = E7 X, with X € LU &%)
(cf. [18]; [27], p. 113). Let A be the vector space of functions X € L¢, mea-
surable with respect to some % ,, s € J. A is dense in L¢( \UZ,), and for
X ¢ A, EZ X obviously converges essentially to X. Let X be in L¢(\U% ),
Y € A; then for every ¢t € J,

|EZ X — X| S E74X — Y|+ |EZV - Y|+ |V — X]|.
Hence
elimsup |[EZtX — X| € elimsup EZ X — V| + |X — V.

Let « > 0; given € > 0, choose ¥ € A such that |[X — V]|, < e. Lemma 3.3
yields that under 1V,

Plelim sup {|ET X — X| > a}]
+PIX — V> a/2]

Since @ and e are arbitrary, it follows that ¢ lim EZ X = X.

Plelimsup {EZ X — Y| > a/2]

<
= 2/alEIX — Y[+ X — V][] = 4¢/a.

Our final result concerns the behavior of & -valued pramarts under the
condition V_. Pramarts, introduced in [24], are defined by the property

slime<,q e/ X, — ET°X | = 0.

Recall that M_ = T, and stopping times now considered are single-valued. If
(X)) is a real-valued amart, it is a pramart; however, this implication fails in
every infinite-dimensional Banach space [24], [25]. Banach-valued pramarts,
unlike amarts, converge strongly. Pramarts (or mils: cf. [24] and [26]) such
that sup|X,| € L' can be shown to be 4. Bellow’s uniform amarts (cf. [4],

[16]).

THEOREM 3.5. Let (%)) satisfy V., and let & have the Radon-Nikodym
property. A pramart (X ,) converges essentially in the norm topology if either (a)
or (b) holds:

(@) (|X.|) 1s uniformly integrable.

(b) (X)) is of class (B), i.e., sup-erE|X,| < .

Proof. (a) From the pramart property of (X,), the net (|EZ+X, — X|),<,of
real-valued random variables converges to 0 in probability. Since this net is
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uniformly integrable (because |X | is), it converges to 0 in L' If 5o < 5 < ¢,
E70X, — ETX | = |[ET0(ETX, — X);

hence for a fixed s, the net
(E™0X )

is Cauchy in L'(&"), and converges to a Bochner integrable random variable
YV, (Vy)ses is an L'-bounded martingale, and if we set Z, = X, — Y, (Z,) is
a pramart such that lim E|Z,| = 0 (a similar argument appears in [1]). Now
observe that if (Z,) is any pramart, then (|Z,|) is necessarily a real-valued
subpramart, i.e., satisfies

s lim sup [|Z,] — E”°|Z.]] < 0.

T205m

Indeed, if ¢ = 7, 0, 7 € T, then for every ¢ > 0

P({|Z,] — E”*|Z.| > e}]] > €] < Pl{|Z,| — |E”Z.| > €]
< P{|Z, — EZ°Z,| > €]].

Since under V_ an L!'-bounded subpramart converges essentially [24],
[25], lim E|Z,| = 0 implies that elim Z, = 0. Also Y, converges essentially
by Theorem 3.3 with p = co. Hence X, converges essentially.

(b) Consider at first a pramart of class (B) (X, ).en. Let A > 0 be given; set
A = U{|X,| > N}, and define ¢ (w) = inf {n| |X,| > N\ ifw€ 4,and s(w) = ©
ifw € A4° Then ¢ is a possibly infinite stopping time. Set X, = X,,. Theorem
2.4 [24], valid also in the Banach-valued case, shows that (X,’) is a pramart.
By Fatou's lemma,

E(14X,]) < liminf E(14]|Xa0]) £ sup,erE| X,

Thus E(sup|X,’|) < N 4 supserE|X,|. Furthermore,
P(A4) £ N lsuprerE| X,

(see [7]), and on A°, X, = X,/ for every n. Hence to prove that X, converges
a.s. in the norm topology, it suffices to show that X,” does. Since sup |X,|
is integrable, this follows from part (a).

Let (X,) be a pramart of class (B). Choose a sequence of indices (s,) such
that s, < ¢ = 7 implies

P({|X, — EZ°X.| > 1/n}) < 1/n,

and let (o,) be an increasing sequence of elements of 7, such that s, < o, for

all n. Set X,/ = X,,, and 9, =%,,; (X,/, 9,) is a pramart of class (B).
Hence X, converges a.s. and stochastically in the norm topology. Therefore
(X.)rer converges stochastically in the norm topology. If (& ,) satisfies V,
we deduce the strong essential convergence of X ,.
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Finally, we observe how our results extend to Orlicz spaces. Let us first
recall some properties of Orlicz spaces (see [27], Appendix).

Let ¢: RT — R* be an increasing left-continuous function which is zero at
the origin, such that lim,_¢(s) = 0. Let ¢ be the function inverse to ¢, i.e.,
defined by ¢ (1) = sup {s| ¢(s) < u} for every u > 0. Let & (resp. ¥) be the
indefinite integral of ¢ (resp. ¥), i.e.,

B(t) = ful o(s) ds.

® is said to be conjugate to ¥. Let L* be the set of random variables for which
there exists a number ¢ > 0 such that E[®(¢7!|X|)] £ 1, and set

IX]le = inf {a| @ > 0, E[®(c~YX])] £ 1}.

The normed vector space L* is a Banach space. There exists a constant
¢ > 0 such that ¢|X||; £ ||X|¢ for every random variable X of L®. Further-
more, if ® and ¥ are conjugate Young functions, for every pair X ¢ L%,
Y € LY, the product XV is integrable and satisfies the inequality |X V|, <
2[| X |l o] Y]|w. ® satisfies A, if sup ®(2¢)/®(t) < 0.

An integrable stochastic process (X,) is an amart for My if the net
(EX.)reay converges when 7 € M and Og(7) = |le;]ls — 0. A stochastic basis
(&) satisfies the Vitali condition Vy if for every adapted family of sets (4 ,)
and for every ¢ > 0, there exists 7 € IM such that Oy (r) <¢, P(elim sup 4,\
A,) < ¢ and forevery t € R(7), {r =t} C A.

It is easy to see that the statements and proofs of the theorems remain the
same if the real L” and L‘ spaces are replaced by Orlicz spaces L* and L?, and
& satisfies the condition As,.

REFERENCES

1. K. Astbury, On Amarts and other topics, Ph.D. Dissertation, Ohio State University, (1976).
Also Amarts indexed by directed sets, Ann. Prob., 6 (1978), 267-278.

2. D. G. Austin, G. A. Edgar and A. Ionescu Tulcea, Pointwise convergence in terms of expecta-
tions, Zeit. Wahrscheinlichkeitstheorie verw. Geb. 30 (1974), 17-26.

3. J. R. Baxter, Pointwise in terms of weak convergence, Proc. Amer. Math. Soc. 46, (1974),
395-398.

4. A. Bellow, Les amarts uniformes, C. R. Acad. Sci. Paris, 28/ Série A, 1295-1298.

5. A. Brunel and L. Sucheston, Sur les amarts @ valeurs vectorielles, C. R. Acad. Sci. Paris, 283
Série A, 1037-1040.

6. R. V. Chacon, 4 stopped proof of convergence, Adv. in Math. 14 (1974), 365-368.

7. R. V. Chacon and L. Sucheston, On convergence of vector-valued asymptotic martingales,
Zeit. Wahrscheinlichkeitstheorie verw. Geb. 33 (1975), 55-59.

8. S. D. Chatterji, Martingale convergence and the Radon- Nikodym theorem, Math. Scand. 22
(1968), 21-41.

9. J. Dieudonné, Sur un théoréme de Jessen, Fund. Math. 37 (1950), 242-248.

10. J. L. Doob, Stochastic processes (Wiley, New York, 1953).

11. A. Dvoretzky, On stopping times directed convergence, Bull. Amer. Math. Soc. 82, No. 2
(1976), 347-349.

https://doi.org/10.4153/CJM-1979-095-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-095-2

1046 A. MILLET AND L. SUCHESTON

12

. G. A. Edgar, and L. Sucheston, Amarts: A class of asymptotic martingales, J. Multivariate
Anal. 6 (1976), 193-221; 572-591.

13. — The Riesz decomposition for vector-valued amarts, Zeit. Wahrscheinlichkeitstheorie
verw. Geb. 36 (1976), 85-92.

14. ——— On vector-valued amarts and dimension of Banach spaces, Zeit. Wahrscheinlichkeits-
theorie verw. Gebiete 39 (1977), 213-216.

15. ——— Martingales in the limit and amarts, Proc. Amer. Math. Soc. 67 (1977), 315-320.

16. N. Ghoussoub and L. Sucheston, A Refinement of the Riesz decomposition for Amarts and

17.

18.
19.

20.

semiamarts, J. Multivariate Analysis, 8 (1978), 146-150.

C. A. Hayes and C. Y. Pauc, Derivations and martingales (Springer-Verlag, New York,
1970).

I.. L. Helms, Mean convergence of martingales, Trans. Amer. Math. Soc. 87 (1958), 439-446.

U. Krengel and L. Sucheston, Semiamarts and finite values, Bull. Amer. Math. Soc. 83,
745-747. See also Advances Prob. 4 (1978), 197-265.

K. Krickeberg, Convergence of martingales with a directed index set, Trans. Amer. Math. Soc.

83 (1956), 313-337.

21. Stochastische Konvergenz von Semimartingalen, Math. Z. 66 (1957), 470-486.

22. Notwendige Konvergenzbedingungen bei Martingalen und verwandten Prozessen, Trans-
actions of the Second Prague conference on information theory, statistical decision func-
tions, random processes [Prague, 1959], (1960) 279-305, Prague, Publishing House of
the Czechoslovak Academy of Sciences.

23. K. Krickeberg and C. Pauc, Martingales et dérivation, Bull. Soc. Math. France 91 (1963),

24

25.

26
27

455-544.
. A. Millet and L.. Sucheston, Classes d’amarts filtrants et conditions de Vitali, C. R. Acad. Sci.
Paris, 286 Série A, 835-837.
Convergence of classes of amarts indexed by directed sets, Can. J. Math., to appear.
. A. G. Mucci, Another Martingale convergence theorem, Pacific J. Math. 64 (1976), 539-541.
. J. Neveu, Discrete parameter martingales (North Holland, Amsterdam, 1975).

Ohio State University,
Columbus, Ohio

https://doi.org/10.4153/CJM-1979-095-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-095-2

