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The Secondary Chern–Euler Class for a
General Submanifold

Zhaohu Nie

Abstract. We define and study the secondary Chern–Euler class for a general submanifold of a Rie-

mannian manifold. Using this class, we define and study the index for a vector field with non-isolated

singularities on a submanifold. As an application, we give conceptual proofs of a result of Chern.

The objective of this paper is to define, study, and use the secondary Chern–Euler

class for a general submanifold of a Riemannian manifold. We give the definition

in Definition 1.1 in Section 1. In Section 2, we study cohomologically the class and

its relation with several other natural homology and cohomology classes. The cases

when the codimension of the submanifold is one or greater than one are different,

and we consider both cases. In Section 3, we use the secondary Chern–Euler class to

define the index for a vector field with non-isolated singularities on a submanifold

in Definition 3.1. To this end, we develop the notion of blow-up of the submanifold

along the vector field. We then obtain three formulas in Theorem 3.2 to compute the

index. Our studies, in particular, give three conceptual proofs of a classical result of

Chern [3, (20)] concerning the paring of the secondary Chern–Euler class with the

normal sphere bundle of the submanifold. Two of the proofs are given in Section 2

and the third in Section 3.

1 Secondary Chern–Euler Class for a General Submanifold

Let X be a connected oriented compact Riemannian manifold of dimension n.

(Throughout the paper, n = dim X.) The Gauss–Bonnet theorem (see [2, (9)]) as-

serts that

(1.1)

∫

X

Ω = χ(X),

where χ(X) is the Euler characteristic of X, and Ω is the Euler curvature form defined

as follows. Choose local positively oriented orthonormal frames {e1, . . . , en} of the

tangent bundle TX. Let (ωi j) and (Ωi j) be the so(n)-valued connection forms and

curvature forms for the Levi–Civita connection ∇ of the Riemannian metric on X
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defined by

∇ei =

n∑

j=1

ωi je j ,(1.2)

Ωi j = dωi j −
n∑

k=1

ωikωk j .(1.3)

Then [3, (10)] defines the degree n form

(1.4) Ω =





0 n odd,

(−1)m 1

22mπmm!

∑

i

ǫ(i)Ωi1i2
· · ·Ωin−1in

n = 2m even,

where the summation runs over all permutations i of {1, 2, . . . , n}, and ǫ(i) is the

sign of i. The form Ω does not depend on the choice of local frames. (In this paper,

we closely follow Chern’s notation and convention in [2, 3]. In particular we follow

his convention in choosing the row and column indices in (1.2), which may not be the

most standard. Also, products of differential forms always mean “exterior products”,

although we omit the notation ∧ for simplicity.)

Chern [3, (9)] defines a form Φ (called Π in Chern’s papers) of degree (n − 1)

on the unit sphere bundle STX, consisting of unit vectors in the tangent bundle TX,

as follows. To a unit tangent vector v ∈ STX, we attach a local positively oriented

orthonormal frame {e1, . . . , en−1, en} such that v = en. For k = 0, 1, . . . , [ n−1
2

]

define

(1.5) Φk =

∑

α

ǫ(α)Ωα1α2
· · ·Ωα2k−1α2k

ωα2k+1n · · ·ωαn−1n,

where the summation runs over all permutations α of {1, 2, . . . , n − 1}. Also, define

(1.6) Φ =
1

(n − 2)!!|Sn−1|

[ n−1
2

]∑

k=0

(−1)k 1

2kk!(n − 2k − 1)!!
Φk,

where

(1.7) |Sn−1| =





(2π)m

(n − 2)!!
n = 2m even,

2(2π)m

(n − 2)!!
n = 2m + 1 odd

is the surface area of the unit (n − 1) sphere. The Φk and hence Φ do not depend on

the choice of e1, . . . , en−1. Note in particular that the zeroth term

(1.8) Φ̃0 =
1

(n − 2)!!|Sn−1|

1

(n − 1)!!

∑

α

ǫ(α)ωα1n · · ·ωαn−1n = ˜d voln−1
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is the unit volume form when restricted to a fiber sphere STxX for x ∈ X.

Then [3, (11)] proves that

(1.9) dΦ = −Ω.

The form Φ, Stokes’ theorem, (1.8), and the Poincaré–Hopf theorem were then used

in [3, (18)] and [2, (25)] to give an intrinsic proof for the Gauss–Bonnet theorem

(1.1).

Let M ⊂ X be a connected oriented submanifold of dimension m. Then Φ in (1.6)

is a closed form when restricted to STX|M in view of (1.9) and (1.4), since even if n is

even, Ω|M = 0 for dimensional reasons.

Definition 1.1 We call the restriction of Φ to STX|M the secondary Chern–Euler

form of M in X, and its cohomology class [Φ] ∈ Hn−1(STX|M ,R) the secondary

Chern–Euler class.

2 Cohomological Studies

In this section, we first prove the following theorem.

Theorem 2.1 We consider three cases concerning the secondary Chern–Euler class

[Φ] ∈ Hn−1(STX|M ,R).

(i) When codim M ≥ 2, [Φ] ∈ Hn−1(STX|M ,Z) is integral and independent of the

choice of the connection and hence of the Riemannian metric on X.

(ii) When codim M = 1 and dim X is odd, [Φ] ∈ Hn−1(STX|M ,Z) ⊗ 1
2

is half-

integral and independent of the choice of the connection.

(iii) When codim M = 1 and dim X is even, [Φ] ∈ Hn−1(STX|M ,R) is only real and

depends on the connection.

Proof We prove the theorem by computing the integrals of Φ over generators of

Hn−1(STX|M ,Z). Consider the following cofibration sequence

(2.1) STX|M → DTX|M → Th(TX)|M ,

where DTX|M is the unit disk bundle over M, which is homotopic to M, and

Th(TX)|M is the Thom space of TX restricted to M. This gives rise to an exact se-

quence

0 → Hn(Th(TX)|M,Z) → Hn−1(STX|M ,Z) → Hn−1(M,Z) → 0,

when n ≥ 2, which is obviously the only interesting case. Therefore one has

(2.2) Hn−1(STX|M ,Z) ∼=

{
Z codim M ≥ 2,

Z ⊕ Z codim M = 1.

One generator of Hn−1(STX|M ,Z) is a fiber sphere STxX, for x ∈ M. (For sim-

plicity of notation, we do not distinguish cycles from the homology classes, although
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we do distinguish closed forms from the cohomology classes.) The pairing of the

secondary Chern–Euler class [Φ] ∈ Hn−1(STX|M) with STxX is

(2.3)

∫

STxX

Φ = 1,

by (1.8) since all curvature forms vanish when restricted to x.

Equations (2.2) and (2.3) imply case (i).

When codim M = 1, let ~n denote the unit normal vector field of M such that

for a positively oriented frame {e1, . . . , en−1} of TM, {e1, . . . , en−1,~n} is a positively

oriented frame of TX. Then the image~n(M), which we will call M+, defines the other

generator of Hn−1(STX|M ,Z) in (2.2).

Equations (2.2), (2.3) and Lemma 2.2 below imply case (ii).

A simple example like a general circle S1 on a sphere S2 shows case (iii). In this

example, the relative Gauss–Bonnet theorem [3, (19)] asserts

∫

(S1)+

Φ = χ(D) −

∫

D

Ω,

where D is the region of S2 bounded by S1 such that~n points outward to D. Therefore

χ(D) = 1, but
∫

D
Ω takes real values and depends on the metric.

Lemma 2.2 When codim M = 1 and dim X is odd,

(2.4)

∫

M+

Φ =
1

2
χ(M).

Proof This can be seen in two ways. A direct way using ideas from Chern [3] is by

showing

(2.5) Φ|M+ =
1

2
Ω̃,

where Ω̃ is the pullback of the Euler curvature form of M for the induced metric to

M+ ⊂ STX|M . Then the Gauss–Bonnet theorem (1.1) gives (2.4). (2.5) is proved as

follows.

Choose local frames {e1, . . . , en−1, en} for TX|M such that {e1, . . . , en−1} are local

frames for TM and en = ~n. Assume that dim X = n = 2m + 1. Then by (1.6), (1.5),

and (1.7) one has

Φ|M+ =
1

2m+1πm

m∑

k=0

(−1)k

2kk!(2m − 2k)!!

∑

α

ǫ(α)Ωα1α2
· · ·Ωα2k−1α2k

ωα2k+1n · · ·ωα2mn

=
1

22m+1πm

m∑

k=0

(−1)k

k!(m − k)!

∑

α

ǫ(α)Ωα1α2
· · ·Ωα2k−1α2k

ωα2k+1n · · ·ωα2mn,

where one uses (2m − 2k)!! = 2m−k(m − k)!.
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Using (1.3), one has

Ω̃αβ = Ωαβ − ωαnωβn

for 1 ≤ α, β ≤ n − 1 = 2m, where the Ωαβ and Ω̃αβ are the curvature forms of X

and M. Therefore by (1.4) and multinomial theorem, one has

Ω̃ =
(−1)m

22mπmm!

∑

α

ǫ(α)(Ωα1α2
− ωα1nωα2n) · · · (Ωα2m−1α2m

− ωα2m−1nωα2mn)

=
(−1)m

22mπmm!

m∑

k=0

m!

k!(m − k)!
(−1)m−k

∑

α

ǫ(α)Ωα1α2
· · ·Ωα2k−1α2k

ωα2k+1n · · ·ωα2mn

=
1

22mπm

m∑

k=0

(−1)k

k!(m − k)!

∑

α

ǫ(α)Ωα1α2
· · ·Ωα2k−1α2k

ωα2k+1n · · ·ωα2mn.

Direct comparison gives (2.5).

Another way follows from Remark 2.7, which says that in this case (2.4) is equiv-

alent to (2.12), and our Proofs 1 and 3 of Theorem 2.6, which work in all codimen-

sions.

Remark 2.3 Case (i) is actually a manifestation of a general phenomenon for

Chern–Simons forms as stated in [4, Theorem 3.9, Corallary 3.17].

Remark 2.4 In general, when codim M = 1 and dim X is even,
∫

M+ Φ stands for

the geodesic curvature of M. It vanishes for a totally geodesic submanifold M, since

then all the ωαn = 0 by (1.2) and the total geodesicity of M (recall that we choose

en = ~n), but each summand of all the Φk in (1.5) contains at least one ωαn, since it is

of an odd degree n − 1.

Remark 2.5 The cohomology Hn−1(STX|M ,Z) and the class [Φ] ∈ Hn−1(STX|M)

have already been studied in [8] for M = ∂X, under the condition that the metric

on X is locally product near M. This in particular means that M is a totally geodesic

submanifold of X. Therefore [8, pp 1156 Special Cases] are special cases of our cases

(ii) and (iii), in view of Remark 2.4.

We now study the relation of [Φ] with some other natural homology and coho-

mology classes. From (2.1), one has the following dual homomorphisms:

δ : Hn−1(STX|M ,R)→Hn(Th(TX)|M ,R),(2.6)

δ ′ : Hn(Th(TX)|M ,R)→Hn−1(STX|M ,R).(2.7)

Then

(2.8) δ[Φ] = γTX,

where γTX ∈ Hn(Th(TX)|M ,Z) ∼= Z is the Thom class of TX|M . To see this, note that

in (2.7) by definition

(2.9) δ ′(DTxX/STxX) = STxX,
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where DTxX/STxX ∈ Hn(Th(TX)|M,Z) ∼= Z is a generator dual to the Thom class.

Then (2.8) follows from
∫

DTxX/STxX

δ[Φ] =

∫

δ ′(DTxX/STxX)

[Φ] =

∫

STxX

[Φ] = 1

by (2.3), where we denote the pairing of cohomology and homology by integration.

Let V be a generic vector field on X, and consider its restriction V |M on M. Gener-

ically, V |M has no singularities. Let αV : M → STX|M be defined by rescaling

V |M , i.e., αV (x) =
V (x)
|V (x)| , ∀x ∈ M. Then αV (M) is a dimension m cycle in STX|M ,

and hence defines a homology class in Hm(STX|M ,Z). For x ∈ M, the intersection

αV (M) · STxX = αV (x) is one point. Therefore when codim M ≥ 2,

(2.10) αV (M) = P.D.([Φ])

is the Poincaré dual of [Φ], in view of (2.3) and (2.2).

One has the decomposition

(2.11) TX|M = TM ⊕ NM,

where NM is the normal bundle of M in X. The normal sphere bundle SNM, con-

sisting of unit normal vectors, defines another homology class in Hn−1(STX|M ,Z).

As application of our cohomological studies, we get two conceptual proofs of the

following result about the pairing between [Φ] and SNM, which was first proved in

[3] in a computational way.

Theorem 2.6 ([3, (20)]) We have

(2.12)

∫

SNM

Φ = χ(M).

Proof 1 of Theorem 2.6. We use the notation as before. Note that Th(NM) defines a

homology class in Hn(Th(TX)|M ,Z). Similar to (2.9), we have δ ′(Th(NM)) = SNM

in (2.7). Therefore,
∫

SNM

Φ =

∫

δ ′(Th(NM))

Φ =

∫

Th(NM)

δ[Φ] =

∫

Th(NM)

γTX = χ(M),

by (2.8). Here the last equality follows from some basic knowledge about Thom

classes. In more detail, we have the following commutative diagrams in view of (2.11)

H0(M)

⋃
γTM

∼=

��

Hm(Th(TM))
i∗

//

⋃
γNM

∼=

��

Hm(M)

⋃
γNM

∼=

��

Hn(Th(TX)|M)
i∗

// Hn(Th(NM));

1
_

⋃
γTM

��

γTM
�

i∗

//

_

⋃
γNM

��

eTM
_

⋃
γNM

��

γTX
�

i∗

// i∗γTX,
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where the i∗ are induced by i : M → Th(TM) and i : Th(NM) → Th(TX)|M defined

by the zero section of TM, and eTM ∈ Hm(M,Z) is the Euler class of M. Therefore,

∫

Th(NM)

γTX =

∫

Th(NM)

i∗γTX =

∫

M

eTM = χ(M).

Remark 2.7 When codim M = 1, SNM = M+ − M− as a homology class in

Hn−1(STX|M ,Z), where M−
= (−~n)(M). One has

∫
M−

Φ = (−1)n
∫

M+ Φ by an

analysis of (1.5) and how one chooses local frames. Therefore when n = dim X is

even, both sides of (2.12) are zero, and when n is odd, (2.12) is just a doubling of

(2.4). This was also asserted in [3, p. 682]. Therefore when codim M = 1 and dim X

is even, the two statements (2.4) and (2.12) are equivalent. Hence Lemma 2.2 implies

this case of Theorem 2.6 and vice versa. So our Proofs 1 and 3 of Theorem 2.6, which

work in all codimensions, also imply Lemma 2.2. However, the following Proof 2

only works when codim M ≥ 2.

Proof 2 of Theorem 2.6 when codim M ≥ 2. We continue to work with the generic

vector field V introduced above. Consider the projection ∂V of V |M to TM. Gener-

ically, ∂V has only isolated singularities with indices ±1, and the sum of its indices

is χ(M) by the Poincaré–Hopf theorem. Suppose p is a singular point of ∂V . Then

V is perpendicular to M at p, and hence αV (p) ∈ SNM. Since Indp ∂V = ±1, it

can be seen that one has transversal intersection αV (M) ⋔αV (p) SNM. Furthermore,

the intersection index ιαV (p)(αV (M), SNM) = (−1)m Indp ∂V , where m = dim M,

for suitable orientations. Therefore the intersection number #(αV (M), SNM) =

(−1)mχ(M), which implies by (2.10)

∫

SNM

Φ = #(αV (M), SNM) = (−1)mχ(M) = χ(M),

where the last equality holds by the obvious reason thatχ(M) = 0 when m is odd.

3 Index of Vector Field with Non-Isolated Singularities

In this section, we first use the secondary Chern–Euler class to define the index for a

vector field with non-isolated singularities. This also involves the notion of blow-up

of a submanifold along a vector field V which vanishes on it.

Let V be a vector field on X with non-isolated singularities on a submanifold M.

Let U be a closed neighborhood of M in X, and suppose its boundary ∂U is smooth.

Assume that V has no singularities on U − M. Consider αV : U − M → STX by

rescaling V .

Definition 3.1 The closure of the image αV (U − M) defines a homology class in

Hn(STX|U , STX|∂U ∪ STX|M ,Z). Under the connecting homomorphism for relative

homology

∂ : Hn(STX|U , STX|∂U ∪ STX|M ,Z) −→ Hn−1(STX|∂U ∪ STX|M ,Z),
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one has

(3.1) ∂(αV (U − M)) = αV (∂U ) − BlV (M),

where BlV (M) ∈ Hn−1(STX|M ,Z) is defined by the above. We call it the blow-up of

M along V as a homology class. The index of V at M is defined by

(3.2) IndM V =

∫

BlV (M)

Φ,

where [Φ] ∈ Hn−1(STX|M) is the secondary Chern–Euler class .

The following theorem gives three ways of evaluating the index IndM V . In partic-

ular, it shows that IndM V is always an integer independent of the metric.

Theorem 3.2 (i) In terms of the Euler curvature form and the secondary Chern–

Euler class, one has

(3.3) IndM V =

∫

αV (∂U )

Φ +

∫

U

Ω.

(ii) Extend V |∂U to a vector field Ṽ on U with isolated singularities. Then

(3.4) IndM V = Ind Ṽ ,

where Ind Ṽ denotes the sum of local indices of Ṽ at its isolated singularities.

(iii) Let ∂V denote the tangential projection of V to the tangent space of the boundary

∂U , and ∂−V the restriction of ∂V to the parts where V points inward to U . Then

generically one has

(3.5) IndM V = χ(U ) − Ind ∂−V.

Proof Following [2, (25)], and using (1.9), Stokes’ theorem, and (3.1), one has

(3.6)

∫

U

−Ω =

∫

αV (U−M)

−Ω =

∫

αV (U−M)

dΦ =

∫

αV (∂U )

Φ−

∫

BlV (M)

Φ,

which then gives (3.3) in view of (3.2). Note that from (3.3), one immediately gets

IndM V = lim
U→M

∫

αV (∂U )

Φ.

Applying the standard procedure, as in [2, (25)] and (3.6), and using (1.8), one

gets

(3.7) Ind Ṽ =

∫

αV (∂U )

Φ +

∫

U

Ω.
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The index Ind Ṽ clearly does not depend on the extension Ṽ from this formula, once

one fixes the metric. Therefore comparison of (3.3) with (3.7) gives (3.4). This also

implies that IndM V in Definition 3.1 is an integer independent of the metric, since it

is equal to Ind Ṽ .

From [7], one knows that the right-hand side of (3.3)

∫

αV (∂U )

Φ +

∫

U

Ω = χ(U ) − Ind(∂−V ),

which proves (3.5). Note that in the topology literature, (3.5) is called the law of

vector fields, and was first proved in [6].

As an application, we give a third proof of Theorem 2.6.

Proof 3 of Theorem 2.6 We will apply (3.4) to the radial vector field around M.

For r > 0 small, let U = Br(M) = {x ∈ X | d(x,M) ≤ r} be a tubular neigh-

borhood of M in X. Then its boundary is ∂U = Sr(M) = {x ∈ X | d(x,M) = r}.

For x ∈ Br(M), let p(x) be the point on M such that d(x, p(x)) = d(x,M). Choose r

sufficiently small so that p(x) is unique and there is a unique shortest geodesic con-

necting p(x) and x. Denote s(x) = d(x,M) and treat s as a coordinate on Br(M).

Let ~n := ∂
∂s

. Note that ~n(x) =
∂
∂s

(x) is the unit tangent vector at x of the unique

shortest geodesic starting from p(x) and passing x. Now consider the vector field

V =
s
r
~n =

s
r
∂
∂s

. Then V has singularities on M corresponding to s = 0, and on

Sr(M) corresponding to s = r, V = ~n is the outward normal vector field. After

rescaling, αV = ~n : Br(M) − M → STX.

Consider the closure of the image~n(Br(M) − M) in STX. Its boundary is

∂(~n(Br(M) − M)) = ~n(Sr(M)) − SNM.

Therefore BlV (M) = SNM, and

∫

SNM

Φ = IndM V = Ind Ṽ ,

by Definition 3.1 and (3.4). Here Ṽ is a generic extension with isolated singularities

to Br(M) of the vector field~n on Sr(M). By definition, Ind Ṽ = χ(Br(M)). Therefore

one is done by the homotopy invariance of Euler characteristic.

Remark 3.3 Chern’s computation [3] proves that
∫

SNM
Φ =

∫
M
ΩM . This and The-

orem 2.6, with our conceptual proofs, would prove the Gauss–Bonnet theorem (1.1)

for M,
∫

M
ΩM = χ(M), if one did not know it. Such a route was taken historically by

[1, 5] to prove the Gauss-Bonnet theorem for a submanifold of higher codimension

in a Euclidean space from the known result of a hypersurface.
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