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Abstract

This study analyzes 1,000 meta-analyses drawn from 10 disciplines—including medicine, psychology, education,

biology, and economics—to document and compare methodological practices across fields. We find large

differences in the size of meta-analyses, the number of effect sizes per study, and the types of effect sizes used.

Disciplines also vary in their use of unpublished studies, the frequency and type of tests for publication bias, and

whether they attempt to correct for it. Notably, many meta-analyses include multiple effect sizes from the same

study, yet fail to account for statistical dependence in their analyses. We document the limited use of advanced

methods—such as multilevel models and cluster-adjusted standard errors—that can accommodate dependent data

structures. Correlations are frequently used as effect sizes in some disciplines, yet researchers often fail to address

the methodological issues this introduces, including biased weighting and misleading tests for publication bias. We

also find that meta-regression is underutilized, even when sample sizes are large enough to support it. This work

serves as a resource for researchers conducting their first meta-analyses, as a benchmark for researchers designing

simulation experiments, and as a reference for applied meta-analysts aiming to improve their methodological

practices.

Highlights

What is already known?

• Meta-analysis is widely used across disciplines, but practices vary considerably.

• Prior reviews of meta-analytic methods have often focused on single disciplines or limited samples.

What is new?

• This study analyzes 1,000 meta-analyses from 10 disciplines in medicine, science, and the social sciences,

revealing differences in study size, effect sizes, estimators, heterogeneity, and publication bias practices.

• It highlights four key areas for improvement: addressing data dependence, correcting for publication bias,

using meta-regression, and properly handling correlation-based effect sizes.

This article was awarded Open Data and Open Materials badges for transparent practices. See the Data availability statement
for details.
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Potential impact for RSM readers

• Offers a rare, cross-disciplinary overview of meta-analytic practices.

• Serves as a guide for first-time meta-analysts, a benchmark for simulation design, and a reference for

improving applied practice.

1. Introduction

Meta-analysis has become an increasingly important tool for synthesizing empirical findings across a

wide spectrum of disciplines. This study contributes to the understanding of meta-analytic practices

by describing and analyzing 1,000 meta-analyses across 10 different disciplines spanning medicine,

science, and the social sciences. Our primary objective is to assess current meta-analytic practices

across these disciplines. Specifically, we examine the scope and types of meta-analyses conducted, as

well as the common methods used to analyze meta-analytic data. We code key aspects—such as the

number of studies, the number of estimates per study, and the degree of effect heterogeneity—and

compare these across disciplines. For example, we find that in medicine, meta-analyses are often small

(3–5 studies), while in the social sciences they are often large (> 50 studies). We expect this descriptive

information to be particularly useful to statistical and methodological researchers developing new

methods and conducting simulation studies.

A primary focus of this paper is to examine the methodological approaches used across different

fields and to assess their adequacy in light of established statistical and methodological guidelines. In

some instances, we find that current practices diverge from recommended guidelines, with analysts

employing methods that are inappropriate given the nature of the data and prevailing best practices. For

example, in some fields, dependent effect sizes are routinely analyzed as if they were independent.

By identifying such mismatches, we aim to highlight areas where methodological practice can be

strengthened and to encourage improvements across disciplines.

To achieve these objectives, we analyzed the first 100 meta-analyses published in November

2021 within each of the following 10 disciplines: Anatomy and Physiology; Biology; Business and

Economics; Education; Engineering; Environmental Sciences; Medicine; Pharmacy, Therapeutics and

Pharmacology; Psychology; and Public Health. While we aimed for a robust and representative sample

within the constraints of available resources, our selection of the first 100 meta-analyses within a

specific timeframe provides a snapshot of practices during that period. To prevent oversampling from

any single journal, we capped the number of meta-analyses drawn from each journal at 10.

Our study describes a range of key characteristics, such as how many studies and estimates

were included in meta-analyses and the average number of estimates per study. We record whether

unpublished studies were incorporated, the type(s) of effect sizes analyzed, the estimator(s) used (e.g.,

fixed effects, random effects), and how heterogeneity was reported and quantified. We investigate

whether publication bias was assessed, the specific methods employed for that purpose, and whether

publication bias was found. We also identify the types of software used to conduct the analyses (e.g.,

R, Stata, CMA). Based on this analysis, we call attention to four areas of practice that could benefit

from improvement.

This study proceeds as follows. Section 2 outlines the search process that selected the 1,000 meta-

analyses for our study. Section 3 presents descriptive statistics for the meta-analyses from the 10

disciplines in our study. Section 4 provides evidence and recommendations for improving four key

areas of meta-analytic practice. Section 5 concludes.

2. Meta-analysis search process

The initial research for this study originated from a blog project exploring disciplinary differences in

how meta-analyses are conducted.1 That preliminary effort sampled 20 meta-analyses from 18 different

1See https://replicationnetwork.com/2021/05/18/duan-reed-how-are-meta-analyses-different-across-disciplines/
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disciplines. Building on this work, we expanded the scope to include 100 meta-analyses from each of

10 disciplines. We selected this sample size to ensure a robust and representative set of studies within

each field, and chose 10 disciplines to enable meaningful cross-disciplinary comparisons. While a larger

sample—either in terms of disciplines or meta-analyses per discipline—would have been desirable,

practical constraints on time and resources limited the scope of data collection and analysis.

To identify relevant studies, we used the proprietary discovery service Summon2, available through

the university library of the first three authors. Summon is widely adopted by academic, research,

and public libraries worldwide. It enables unified searches across multiple databases (e.g., Scopus,

JSTOR, PubMed) through a single interface and is particularly valuable for our purposes because

it categorizes search results by research discipline. The version we used, Summon 2.0, includes 61

discipline categories spanning the natural sciences, social sciences, applied sciences, and more. For

each discipline, we searched using the keyword “meta-analysis,” filtering results to include only peer-

reviewed journal articles.

Our aim was to identify the 10 disciplines with the highest number of meta-analyses. Here, we

acknowledge a degree of disciplinary bias: the home discipline of three authors is Economics, which

ranked 13th among the 61 disciplines. To include Economics in our analysis, we combined it with

Business (ranked 17th), yielding a sufficiently large set of studies to place the combined category within

the top 10. The final list of disciplines in our sample was: Anatomy and Physiology; Biology; Business

and Economics; Education; Engineering; Environmental Sciences; Medicine; Pharmacy, Therapeutics

and Pharmacology; Psychology; and Public Health.

After selecting the 10 disciplines, we returned to Summon and collected the first 100 meta-analyses

published in November 2021 for each field, based on the order in which they appeared. If a discipline

did not yield 100 meta-analyses for that month, we extended the search to earlier periods. To avoid

overrepresentation from any single journal, we capped the number of meta-analyses per journal at

10. Duplicate entries were removed and replaced with studies published as close as possible to

November 2021. The final list of journals for each discipline is provided in an Excel spreadsheet at

https://osf.io/6dgpn. Coding was carried out by multiple teams, with each meta-analysis coded by at

least two researchers (and often more), and subsequently reviewed and recoded multiple times by the

authors over a multi-year period.

3. A description of 1,000 meta-analyses across 10 disciplines

3.1. Number of studies/number of estimates

Even a cursory inspection of meta-analyses reveals substantial variation in the number of included

estimates and studies. Complicating our task of recording this information was the fact that many

studies report multiple meta-analyses—typically for different subsamples—rather than a single,

combined meta-analysis. In such cases, we selected the largest meta-analysis for inclusion in our study.

Table 1 reports the median and mean values of number of studies and number of estimates for each

of the 10 disciplines. The disciplines are arranged in ascending order, with the disciplines having the

smallest median number of studies at the top of the table. Overall, the median (mean) number of studies

in a meta-analysis for the full sample is 21 (38.0), and the median (mean) number of estimates is 28

(175.7). However, there are substantial differences across disciplines.

Pharmacy, Therapeutics and Pharmacology is characterized by the smallest number of studies, with

a median (mean) number of studies of 11 (16.3), and a median (mean) number of estimates of 13 (23.0).

Meta-analyses in Business and Economics tend to be the largest, with median (mean) values of 53.5

(72.4) and 163.5 (536.7), respectively. There are also substantial differences within disciplines. For

example, the minimum and maximum number of studies for meta-analyses in Pharmacy, Therapeutics

and Pharmacology are 2 and 81. In Business and Economics, the minimum and maximum studies are

5 and 613.

2For more on Summon, see https://exlibrisgroup.com/products/summon-library-discovery/.
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Table 1. Number of studies and estimates in meta-analyses.

No. of studies No. of estimates

Discipline Median Mean Median Mean

Pharmacy, Therapeutics and Pharmacology 11 16.3 13 23.0

Anatomy and Physiology 14 21.8 19.5 31.2

Public Health 15 30.4 17.5 182.1

Engineering 15.5 33.3 20.5 134.0

Medicine 16 20.8 17.5 26.1

Biology 21 36.9 25.5 297.7

Environmental Sciences 22.5 39.6 63.5 184.0

Education 28.5 49.6 41.5 205.8

Psychology 32 58.7 62 136.7

Business and Economics 53.5 72.4 163.5 536.7

Overall 21 38.0 28 175.7

Note: The data in the table are based on 100 meta-analyses for each discipline. A more detailed summary is provided in

Figures 1 and 2.

Figure 1. Number of studies in a meta-analysis by discipline.

Note: Figure 1 reports boxplots (without outliers) for each of the 10 disciplines with respect to the number of studies. Superimposed on the boxplots

are the average number of studies per meta-analysis. The figure is arranged with the smallest median number of studies per meta-analysis at the top

of the figure to the largest median number of studies at the bottom of the figure.

This heterogeneity in number of studies and number of estimates is illustrated in Figures 1 and 2.

The first figure reports boxplots (without outliers) for each of the 10 disciplines with respect to the

number of studies. Superimposed on the boxplots are the average number of studies per meta-analysis.

The figure is arranged with the smallest median number of studies per meta-analysis at the top of the

figure to largest median number of studies at the bottom of the figure. The second figure does the exact

same thing, except for estimates per meta-analysis.
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Figure 2. Number of estimates in a meta-analysis by discipline.

Note: Figure 2 reports boxplots (without outliers) for each of the 10 disciplines with respect to the number of estimates. Superimposed on the

boxplots are the average number of studies per meta-analysis. The figure is arranged with the smallest median number of estimates per meta-

analysis at the top of the figure to the largest median number of estimates at the bottom of the figure.

Within-discipline heterogeneity is generally increasing in median value. Pharmacy, Therapeutics and

Pharmacology; Anatomy and Physiology; Public Health; and Medicine have least heterogeneity in both

number of studies and number of estimates, and also have the lowest or among the lowest median values

of studies and estimates. On the other end, Business and Economics has the greatest heterogeneity in

numbers of studies and estimates, and largest median values as well.

One insight from this analysis is that it highlights the difficulty of identifying a “typical” meta-

analysis size within any given discipline. Fields such as Pharmacy, Therapeutics and Pharmacology;

Anatomy and Physiology; Public Health; and Medicine tend to exhibit greater consistency in the

number of included studies and estimates. In contrast, Psychology and Business and Economics show

much wider variability. For novice meta-analysts or manuscript reviewers working in these latter fields,

it can be difficult to judge what constitutes a normative meta-analysis size.

A further benefit of the information in Table 1 and Figures 1 and 2 is its value for informing the

design of simulation studies. Researchers conducting simulations to evaluate meta-analytic methods

often need to make assumptions about the size and structure of typical datasets. By documenting

how these characteristics vary across disciplines, our findings allow researchers to construct simulated

datasets that better reflect real-world meta-analytic conditions. This, in turn, enhances the realism,

relevance, and generalizability of simulation-based evaluations.

3.2. Number of estimates per study

A related characteristic is the number of estimates per study. While the total number of studies

and estimates captures overall meta-analysis size, estimates per study draw attention to depen-

dence among observations. For example, the two most common estimators in meta-analysis—fixed

effects and random effects—assume that estimated effects are independent, typically reflected in the

assumption that each study only has one estimate. If the assumption of independence is violated, it

undermines estimator efficiency and compromises the validity of statistical inference. In this section,
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Table 2. Number of estimates per study in meta-analyses.

Median

estimates/study

Mean

estimates/study

% MAs ≥ one

estimate/study

Discipline 1 2 3

Medicine 1.0 1.2 33%

Pharmacy, Therapeutics and Pharmacology 1.0 1.4 39%

Anatomy and Physiology 1.0 1.6 46%

Public Health 1.0 2.0 47%

Biology 1.0 2.9 48%

Engineering 1.0 3.0 50%

Psychology 1.2 2.1 77%

Education 1.3 2.3 69%

Environmental Sciences 2.0 6.1 78%

Business and Economics 3.1 8.1 84%

Overall 1.1 3.1 57%

Note: The data in the table are based on 100 meta-analyses for each discipline, so the percentages in Column 3 also provide the counts (e.g.,

33% = 33 meta-analyses in the given discipline). As noted, the numbers in the table report median values. A more detailed summary is provided

in Figure 3.

we investigate whether one estimate per study accurately represents the data structure of most

meta-analyses.

Table 2 reports the median and mean number of estimates per study for each discipline, sorted

in ascending order of the median. In disciplines such as Medicine; Pharmacy, Therapeutics and

Pharmacology; Anatomy and Physiology; Public Health; Biology; and Engineering, the median rounds

to 1.0 (to one decimal place).3 At the opposite end, disciplines like Environmental Sciences and

Business and Economics have median values above 2.

These values might suggest that most meta-analyses conform to the one-estimate-per-study assump-

tion. However, this conclusion would be reductive and not fully accurate. The third column of Table 2

shows the percentage of meta-analyses in each discipline that include more than one estimate per study.

This reveals a more nuanced picture.

For instance, although Engineering has a median of 1.0, approximately half of its meta-analyses

include more than one estimate per study. In Environmental Sciences, over 75% do so; in Business

and Economics, the figure exceeds 80%. Across the entire sample of 1,000 meta-analyses, 57% contain

more than one estimate per study.

Figure 3 presents boxplots showing within-discipline heterogeneity in estimates per study, again

sorted by median values. Mean values are superimposed for reference. As seen in earlier figures,

heterogeneity increases with the median, further highlighting the variability in practice. Clearly, the

one-estimate-per-study assumption may be valid for many meta-analyses, but is inappropriate for many

others. We discuss the implications of this for estimator efficiency and inference below.

3.3. Inclusion of unpublished studies

Including unpublished studies (a.k.a. “grey literature”) in meta-analyses is a topic of ongoing debate.

Proponents argue that its inclusion helps reduce publication bias, as unpublished studies are less likely

to report statistically significant or “positive” results. Excluding these sources can, therefore, lead to

inflated effect size estimates and distorted conclusions. Grey literature also increases the total number

3Note that the median does not have to be a whole number or integer. Say that 100 meta-analyses are rank ordered from
smallest to largest number of estimates per study. If the median meta-analysis had 11 estimates from 10 studies, the “median
number of estimates per study” would be 1.1.
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Figure 3. Number of estimates per study in a meta-analysis by discipline.

Note: Figure 3 reports boxplots (without outliers) for each of the 10 disciplines with respect to the number of estimates per study. Superimposed on

the boxplots are the average number of estimates per study. The figure is arranged with the smallest median number of estimates per study at the

top of the figure to the largest median number of estimates per study at the bottom of the figure.

of studies in a meta-analysis, improving statistical power and enabling more precise estimates. In some

cases, it may offer more up-to-date findings, particularly in rapidly evolving fields where peer-reviewed

publication lags behind current research. Moreover, by capturing a broader array of study designs and

contexts, grey literature can enhance the generalizability of results.

On the other hand, grey literature is often not peer-reviewed and may suffer from lower method-

ological rigor. These sources can be difficult to locate systematically, and the lack of standardization

complicates reproducibility. There is also the risk of double-counting results if preliminary findings

from grey literature are later published in journal articles. Additionally, identifying, screening, and

coding grey literature increases the time and resource demands of a meta-analysis. Prominent guidelines

recommend that meta-analyses include grey literature, provided that a careful assessment of research

quality is conducted.1–3An important topic for future discussion is how AI might influence the consen-

sus on including unpublished studies, given its potential to generate large numbers of fake studies.

Table 3 reports both relatively low inclusion rates of unpublished studies in meta-analyses and

notable differences across disciplines. In fields such as Environmental Sciences, Medicine, Anatomy

and Physiology, Pharmacy, Therapeutics and Pharmacology, and Biology, the inclusion of unpublished

studies is relatively uncommon—fewer than one in five meta-analyses incorporate them. In contrast,

approximately two-thirds of meta-analyses in Business and Economics and Psychology include unpub-

lished studies. Overall, only about one-third (31%) of the meta-analyses in our full sample included

unpublished studies. This highlights a gap between practice and guideline-based recommendations.

3.4. Effect sizes

Another dimension that varies widely across disciplines is effect sizes. These are the variables that

appear as dependent variables in meta-analyses. For the purposes of classification, we categorized effect

sizes into the following groups: Ratios, which include measures such as odds ratios, hazard ratios,

and risk ratios; Mean Differences (“Mean Diff”), of which the most common measures are Cohen’s d

and Hedges’ g; Prevalence, where the effect size is a percentage or frequency; Correlations (“Corr”),
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Table 3. Percent of meta-analyses including unpublished primary studies.

Discipline Percent using unpublished studies

Environmental Sciences 9%

Medicine 14%

Anatomy and Physiology 15%

Pharmacy, Therapeutics and Pharmacology 15%

Biology 18%

Engineering 21%

Public Health 29%

Education 56%

Business and Economics 64%

Psychology 68%

Overall 31%

Note: The data in the table are based on 100 meta-analyses for each discipline, so the percentages in the table also

provide the counts (e.g., 9% = 9 meta-analyses in the given discipline).

Figure 4. Usage rates of different effect sizes.

Note: Figure 4 reports aggregate usage rates of different effect sizes across all disciplines. “Ratio” includes odds ratios, hazard ratios, and risk ratios.

“Mean Diff” includes Cohen’s d and Hedge’s g. “Prevalence” uses a frequency or count to measure an outcome. “Corr” stands for correlation and

includes partial correlation coefficients.

representing correlations and partial correlation coefficients; Fisher’s z; and Other, the most common

of which are regression coefficients.4 We classified effect sizes based on the metric actually used in the

analysis. For example, if all primary studies in a meta-analysis reported correlations, but these were

transformed to Fisher’s z values for estimation (and then converted back to correlations for reporting),

the effect size was classified as Fisher’s z.

Figure 4 presents a bar chart that reports overall usage rates of the different types of effect sizes

across all disciplines. The most common are ratio measures, with a little over a third of all meta-analyses

using some form of a ratio variable to measure effect size. Closely following are the mean difference

measures. Beyond these two effect sizes, the other categories are roughly used in equal proportions.

4We separated Fisher’s z from correlations due to several important differences. Although conceptually related, correlations
are bounded between −1 and 1 and are directly interpretable, whereas Fisher’s z is unbounded and not intuitively interpretable in
the same way. Most importantly, their standard errors differ: the standard error of r depends on the correlation itself, while that
of Fisher’s z depends only on the degrees of freedom.
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Table 4. Prevalence of different effect sizes.

Discipline Ratio Mean diff. Prevalence Corr. Fishers z Other

Anatomy and Physiology 37% 51% 8% 2% 4% 2%

Biology 64% 25% 16% 1% 3% 5%

Business and Economics 8% 11% 0% 46% 21% 19%

Education 15% 56% 2% 13% 16% 4%

Engineering 44% 36% 11% 6% 3% 13%

Environmental Sciences 44% 23% 9% 5% 4% 24%

Medicine 56% 20% 34% 0% 3% 4%

Pharmacy, Therapeutics and

Pharmacology

54% 40% 18% 0% 2% 1%

Psychology 8% 43% 5% 23% 22% 5%

Public Health 47% 31% 21% 3% 2% 8%

Overall 38% 34% 12% 10% 8% 9%

Note: The data in the table are based on 100 meta-analyses for each discipline, so the percentages in the table also provide the counts (e.g.,

37% = 37 meta-analyses in the given discipline). Note that the sum of the percentages (counts) across each row are greater than 100% (100

meta-analyses) because studies can use more than one effect size.

Note that the sum of the usage rates exceeds 100% because some meta-analyses use more than one

effect size.

Table 4 provides further detail about effect size usage rates by discipline. Disciplines such as

Biology; Medicine; and Pharmacy, Therapeutics and Pharmacology most frequently use Ratio-based

effect sizes (e.g., odds ratios, hazard ratios, and risk ratios). This could be due to the nature of the

data analyzed in these fields, where outcomes are commonly binary. In contrast, fields like Anatomy

and Physiology, Education, and Psychology show a stronger preference for Mean Difference measures

such as Cohen’s d and Hedges’ g. In these disciplines, it is usual for the outcomes to be continuous

and the treatments/interventions to be binary. In Business and Economics, the most frequently used

effect size is a correlation. This stems from the fact that it is common in that discipline to combine

estimates from regression models that use different outcome and treatment variables. To make the

estimates comparable across studies, meta-analyses transform the regression coefficients to partial

correlation coefficients (PCCs). Lastly, we note that Fisher’s z finds it most frequent use in Business

and Economics, Education, and Psychology.

As we discuss below, some effect sizes, particularly correlations/PCCs, have the problem that the

standard error of the estimated effect size is a function of the effect size. When inverse-variance weights

are used, this introduces bias in estimating overall mean effects and testing for publication bias. The

two most common ways to remove this bias are to transform the effect size (e.g., transforming the

correlation into Fisher’s z), or to use weights other than inverse-variance (e.g., N-weights).

3.5. Estimators

Figure 5 reports the rates at which different meta-analytic estimators are used. We categorized

estimators into seven types: random effects, fixed effects, multivariate/multilevel models (“MVM”),

OLS, structural equation models (“SEM”), Bayesian estimators, and Other. While the category MVM

includes both multivariate and multilevel models, virtually all the multivariate/multilevel models in our

sample were multilevel (three-level) models, which is why we combined them.

Perhaps not surprisingly, random effects is far and away the most used meta-analytic estimator. Over

8 out of 10 meta-analyses in our sample used random effects. Fixed effects was a distant second in terms

of frequency of use with approximately 1 in 4 meta-analyses using this estimator. All other estimators

https://doi.org/10.1017/rsm.2025.10035 Published online by Cambridge University Press
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Figure 5. Usage rates of different meta-analytic estimators.

Note: Figure 5 reports aggregate usage rates of different meta-analytic estimators across all disciplines. RE, random effects; FE, fixed effects;

MVM, multi-level model; OLS, ordinary least squares; SEM, structural equation modelling; Bayes, Bayesian estimation.

Table 5. Prevalence of different estimators.

Discipline RE FE MVM OLS SEM Bayes Other

Anatomy and Physiology 91% 32% 5% 2% 0% 2% 1%

Biology 83% 22% 16% 5% 1% 2% 1%

Business and Economics 68% 26% 24% 21% 19% 12% 16%

Education 88% 11% 11% 2% 0% 0% 3%

Engineering 78% 30% 1% 13% 1% 1% 3%

Environmental Sciences 64% 23% 16% 15% 1% 1% 4%

Medicine 87% 34% 4% 4% 0% 1% 1%

Pharmacy, Therapeutics and

Pharmacology

96% 37% 1% 0% 0% 0% 3%

Psychology 83% 15% 20% 5% 5% 1% 0%

Public Health 92% 34% 4% 5% 0% 0% 2%

Overall 83% 26% 10% 7% 3% 2% 3%

Note: The data in the table are based on 100 meta-analyses for each discipline, so the percentages in the table also provide the counts (e.g., 92% = 92

meta-analyses in the given discipline). Note that the sum of the percentages (counts) across each row are greater than 100% (100 meta-analyses)

because studies can use more than one estimator. RE, random effects; FE, fixed effects; MVM, multivariate/multilevel models; OLS, ordinary least

squares; SEM, structural equation models; Bayes, Bayesian estimation.

were used relatively infrequently. As before, we note that the sum of the usage rates within disciplines

exceeds 100% because many meta-analyses employed more than one estimator.

Detailed usage rates by discipline are reported in Table 5. Noteworthy here is that in most disciplines,

the only two estimators that matter are random effects and fixed effects. For example, among meta-

analyses in Pharmacy, Therapeutics and Pharmacology, 96% used random effects, and 37% used fixed

effects. Outside of these, virtually no other estimators were used. Though not as extreme, a similar

practice was followed in Anatomy and Physiology, Medicine, and Public Health. In this respect,

Business and Economics stands out for its diverse usage of estimators. While random effects is the

most used estimator in that discipline, substantial percentages of meta-analyses also use MVM, OLS,

SEM, Bayesian methods (often Bayesian model averaging), and others.

Table 6 does a deeper dive into the use of random effects and fixed effects estimators. Specifically,

it tracks how often a meta-analysis uses only random effects or only fixed effects. We see that rarely

https://doi.org/10.1017/rsm.2025.10035 Published online by Cambridge University Press
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Table 6. Closer comparison of random effects and fixed effects.

Discipline Only RE Only FE

Anatomy and Physiology 60% 5%

Biology 57% 0%

Business and Economics 25% 1%

Education 74% 0%

Engineering 50% 4%

Environmental Sciences 42% 1%

Medicine 59% 6%

Pharmacy, Therapeutics and Pharmacology 60% 3%

Psychology 57% 0%

Public Health 56% 1%

Overall 54% 2%

Note: The data in the table are based on 100 meta-analyses for each discipline, so the percentages

in the table also provide the counts (e.g., 64% = 64 meta-analyses in the given discipline). Only RE

reports how many meta-analyses use only one estimator and that estimator is random effects. Only

FE reports how many meta-analyses use only one estimator and that estimator is fixed effects.

is fixed effects the only estimator used by meta-analyses. In contrast, random effects often are. This is

because fixed effects is frequently used to provide an initial analysis of the data before it is subsequently

rejected in favor of the random effects model. In other words, even though it is the second most widely

used estimator, this does not seem to reflect confidence that it is often viewed as best suited for analyzing

the data.

3.6. Heterogeneity

One reason for conducting meta-analyses is to combine studies that examine the effect of a common

treatment or intervention, with the goal of obtaining a more precise estimate of that effect. A meaningful

and more accurate estimate is most likely when the studies being pooled are relatively homogeneous.

Therefore, it is important to assess the degree to which this is the case.

One measure of effect heterogeneity across studies/estimates within a meta-analysis is tau-squared

(g2). g2
= 0 implies a single population effect, with all observed variability in estimated effects due to

sampling error. Nonzero values of g2 indicate heterogeneity in true effects. An advantage of g is that it

is in the same units as the estimated effect, allowing one to compare the extent of heterogeneity on the

same scale as the size of the effect. Table 7 indicates that only about a fourth (26%) of meta-analyses

in our sample report g or g2.

In contrast to g2, I-squared is a relative measure of heterogeneity. It takes values between 0 and

100%4 and measures the percent of total variation in estimated effects that is due to true effect

heterogeneity. High values of I-squared are indicative of a large degree of effect heterogeneity relative

to the total variation. It is important to emphasize that I-squared is a relative measure of effect

heterogeneity, not an absolute one. Two meta-analyses may exhibit the same absolute variation in true

effects, but if one includes studies with less precise estimates—leading to greater total variation in

observed effects—its I-squared value will be lower. Consequently, differences in I-squared can reflect

not only variations in heterogeneity but also differences in sample size and study design.

Column 2 of Table 7 shows that I-squared is reported far more frequently than g2. Almost three-

fourths (72%) of meta-analyses in our sample report an I-squared value, yet here again, there are

differences across disciplines. For example, only 30% of meta-analyses in Business and Economics

do so. However, for most disciplines, reporting I-squared is common practice. Column 3 of Table 7

displays median I-squared values, though obviously these median values only apply to the samples of

https://doi.org/10.1017/rsm.2025.10035 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.10035


12 Wu et al.

Table 7. Reporting of effect heterogeneity and median I-squared.

% reporting

tau-squared

% reporting

I-squared

Median

I-squared

Discipline 1 2 3

Pharmacy, Therapeutics and Pharmacology 43% 96% 67%

Anatomy and Physiology 40% 88% 69%

Medicine 23% 89% 75%

Biology 20% 66% 77%

Engineering 18% 72% 78%

Public Health 26% 86% 83%

Psychology 27% 71% 84%

Education 35% 76% 86%

Business and Economics 13% 30% 89%

Environmental Sciences 15% 50% 91%

Overall 26% 72% 80%

Note: The data in the table are based on 100 meta-analyses for each discipline, so the percentages in the table also provide the counts (e.g., 43% = 43

meta-analyses in the given discipline). The numbers in the second column report median values across the set of meta-analyses in that discipline

that report an I-squared value.

studies that report I-squared. The disciplines in Table 7 are sorted from lowest median I-squared value

(Pharmacy, Therapeutics and Pharmacology) to highest (Environmental Sciences).

As benchmarks for interpreting the I-squared values in Table 7, Higgins et al.’s (2003) seminal

article characterizes an I-squared value of 0.75 as indicating “high” heterogeneity, while the Cochrane

Handbook for Systematic Reviews of Interventions 5 classifies I-squared values above 0.75 as represent-

ing “considerable” heterogeneity. Nonetheless, Borenstein et al.4 caution against taking this threshold

as canonical. While there are notable differences across disciplines, the common finding is that all the

disciplines in our sample are characterized by substantial relative heterogeneity.

High levels of heterogeneity have several important consequences for the interpretation and

reliability of meta-analytic findings. They widen prediction intervals, making average effect sizes

less useful as indicators of treatment effects.4 They also impair the performance of meta-analytic

estimators.6 Relatedly, tests and corrections for publication bias become less reliable in the presence of

substantial effect heterogeneity.7,8

Figure 6 provides a more detailed look at the distribution of I-squared within disciplines. Not only

do the distributions differ in their central moments, but also in the range of their values. Meta-analyses

in Pharmacy, Therapeutics and Pharmacology; Anatomy and Physiology; Medicine; and Biology run

the full gamut of values with respect to relative heterogeneity. Other disciplines, especially Business

and Economics, are much more concentrated towards the upper half of the scale. Because heterogeneity

is a key determinant of estimator performance, capturing these differences is important for researchers

designing discipline-specific Monte Carlo simulation experiments.

3.7. How often researchers search for publication bias—and how often they find it

One of the most significant threats to the reliability of meta-analysis is publication bias. Publication

bias arises when the studies included in a meta-analysis are not representative of the broader

population of research on that subject. This can occur when findings with statistically significant

or positive results are more likely to be published, while studies with null or negative findings

remain unpublished. As a result, the sample of included studies may be systematically skewed,

leading the meta-analysis to produce a distorted and often overly optimistic summary of the empirical

literature.
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Figure 6. I-squared by discipline.

Note: Figure 6 reports boxplots (without outliers) for each of the 10 disciplines with respect to I-squared as a relative measure of effect heterogeneity.

Superimposed on the boxplots is the mean I-squared value for that discipline. The figure is arranged with the smallest median I-squared value at

the top of the figure to the largest median I-squared value at the bottom of the figure.

Table 8. Percent of meta-analyses testing and finding publication bias.

Testing for publication Finding

No. of estimates

bias publication bias Median Mean

Discipline 1 2 3 4

Business and Economics 74% 43% 163.5 536.7

Psychology 90% 39% 62 136.7

Anatomy and Physiology 81% 37% 19.5 31.2

Public Health 69% 35% 17.5 182.1

Biology 75% 35% 25.5 297.7

Medicine 61% 33% 17.5 26.1

Education 85% 29% 41.5 205.8

Environmental Sciences 58% 24% 63.5 184

Engineering 58% 17% 20.5 134

Pharmacy, Therapeutics and

Pharmacology

74% 16% 13 23

Overall 73% 31% —- —-

Note: The numbers in Column 1 of the table are based on 100 meta-analyses for each discipline, so the percentages in the table also provide the

counts (e.g., 74% = 74 meta-analyses in the given discipline). The numbers in Column 2 report conditional probabilities. For example, 43% in

the first row of the table means that 43% of the 74 meta-analyses in Business and Economics (i.e., 32 of the 74 meta-analyses) that tested for

publication bias concluded that there was publication bias. Columns 3 and 4 reproduce median and mean number of estimates from TABLE 1.

Researchers have developed various approaches to assess publication bias. In a later section, we

report which methods for assessing publication bias are most commonly used. In this section, we merely

record how often the different disciplines investigate publication bias and how often they conclude their

samples have it. The corresponding results are provided in Table 8.
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Column 1 of Table 8 reports the percent of meta-analyses in each discipline that test for publication

bias, where “test” includes qualitative tests such as the funnel plot. Overall, approximately three-fourths

(73%) of the meta-analyses assess publication bias. Column 2 shows how often they conclude that

publication bias is present. The disciplines in the table are ordered from those where evidence for

publication bias appears to be most prevalent (Business and Economics) to those where it is found least

often (Pharmacy, Therapeutics and Pharmacology).

Given the widespread concern with publication bias, it is notable that some disciplines do not

routinely evaluate it. While 9 out of 10 meta-analyses in Psychology investigate publication bias, the

rates in Medicine, Environmental Sciences, and Engineering are closer to 6 out of 10. One might think

the latter result is partly a function of the number of studies/estimates per meta-analysis, but Anatomy

and Physiology has relatively few studies/estimates per meta-analysis (see Table 1), and yet 81% of the

meta-analyses in that discipline assess publication bias.

It is notable that most assessments for publication bias do not conclude that it is present. Of the

725 meta-analyses that evaluated publication bias, only 31% found evidence of it. In no discipline was

the null hypothesis of no publication bias rejected more than 50% of the time. In Engineering and in

Pharmacy, Therapeutics and Pharmacology, rejection rates were below 20%. We note that experimental

and observational studies show little difference in either the frequency of testing for publication bias or

the likelihood of detecting it (cf. Appendix A).

Of course, the moderately low probabilities of detecting publication bias should be interpreted with

caution. It is well known that many tests for publication bias suffer from low power, especially when

sample sizes are small.9–11 Thus, failure to find evidence of publication bias does not necessarily mean

that publication bias is absent.

To investigate this further, Columns 3 and 4 reproduce the median and mean numbers of estimates

from Table 1. There is some evidence that the probability of finding evidence for publication bias

is increasing in sample size. We then examined this more formally by regressing the likelihood of

detecting publication bias on the number of estimates for the 731 meta-analyses that conducted such

tests. Although the relationship was positive, the estimated effect was small. The estimate from a

univariate, linear probability model indicated that an increase in sample size of 100 estimates was

associated with a 0.5 percentage point increase in the probability of detecting publication bias. Adding

discipline-specific fixed effects and estimating corresponding probit models produced estimates of

similar magnitude.

Ultimately, we cannot determine whether the relatively low probabilities of detecting publication

bias reflect limited statistical power or whether publication bias is genuinely less prevalent than

commonly asserted.12,13

3.8. Methods used to detect publication bias

In this section, we report the methods that researchers employ to detect publication bias. We categorize

these as follows:

• Funnel plots14

• Egger’s regression, including variants of FAT-PET PEESE9,15

• Trim and Fill16

• Begg and Mazumdar’s rank correlation test17

• Fail Safe N test18

• Selection model tests19

• p-uniform and p-curve tests20,21

• Other

Figure 7 shows the prevalence of different methods used to detect publication bias across disciplines.

By far the most commonly used approach is the funnel plot, employed in over 60% of all meta-analyses
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Figure 7. Prevalence of different types of tests for publication bias.

Note: Figure 7 reports aggregate usage rates of different types of publication bias tests. Funnel, Funnel plot; Eggers, Egger-type regression;

TrimFill, Trim and Fill; Beggs, Begg and Mazumdar’s rank correlation test; FailSafe, Fail Safe N; Selection, publication bias uses a selection

model; PUniCurv, either p-Uniform or p-Curve test for publication bias.

in our sample. The second most frequent method is Egger’s regression test and its variants, used in

approximately 46% of cases. Beyond these, the use of alternative methods drops off substantially.

Among the various approaches for assessing publication bias, the funnel plot is distinctive in being

a purely qualitative method. For this reason, Table 9 separates meta-analyses, by discipline, into three

categories: those that rely solely on funnel plots, those that rely solely on other quantitative methods,

and those that use both (Columns 1–3, respectively). Each cell in these columns reports two numbers.

The top number indicates the unconditional probability that a meta-analysis from a given discipline uses

the corresponding category of publication bias assessment. For example, 11% of all meta-analyses in

Anatomy and Physiology rely solely on funnel plots. Ten percent rely solely on alternative quantitative

methods, while 59% combine one or more quantitative tests with a funnel plot.

The italicized number below the top number represents the conditional probability—that is,

conditional on testing for publication bias, it indicates the percentage of meta-analyses that use each of

the three approaches. For example, among the 81 meta-analyses in Anatomy and Physiology that assess

publication bias, 14% rely solely on funnel plots, 13% use only quantitative methods other than funnel

plots, and 74% combine both approaches.

The table shows that 68% of meta-analyses that assess publication bias use a combination of funnel

plots and quantitative tests. A few disciplines stand out for their exclusive reliance on funnel plots.

In Pharmacy, Therapeutics and Pharmacology, over a third (36%) of meta-analyses that investigate

publication bias rely solely on a funnel plot. Similarly, approximately a quarter of meta-analyses

in Engineering and Medicine also only use funnel plots to determine whether their samples exhibit

publication bias.

Table 10 explores in greater detail the different methods used by meta-analyses to detect publication

bias. It breaks down the aggregate prevalence rates from Figure 7 into discipline-specific numbers. The

discipline numbers mostly follow the aggregate rates. Funnel plots and Egger regression tests dominate

the other types of assessment methods.

A few disciplines are noteworthy for their disproportionate use of particular methods. For example,

almost half of all meta-analyses in Psychology (45%) use Trim and Fill. Fail Safe N is mostly used

in Business and Economics, Education, Environmental Sciences, and Psychology. And Business and
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Table 9. Assessing publication bias: Funnel plots and other approaches.

Only funnel

Other than

funnel Funnel + other

Discipline 1 2 3

Anatomy and Physiology 11%(14%) 10%(13%) 59%(74%)

Biology 12%(16%) 9%(12%) 55%(72%)

Business and Economics 4%(5%) 25%(34%) 45%(61%)

Education 5%(6%) 14%(17%) 64%(77%)

Engineering 14%(24%) 5%(9%) 39%(67%)

Environmental Sciences 10%(17%) 15%(25%) 34%(58%)

Medicine 15%(23%) 11%(17%) 38%(59%)

Pharmacy, Therapeutics and Pharmacology 26%(36%) 4%(5%) 43%(59%)

Psychology 5%(6%) 16%(18%) 69%(77%)

Public Health 14%(20%) 9%(13%) 46%(67%)

Overall 12%(16%) 12%(16%) 49%(68%)

Note: The top numbers in the first three columns of the table are based on 100 meta-analyses for each discipline, so the percentages in the table

also provide the counts. Thus, 11% = 11 meta-analyses in Anatomy and Physiology use only a funnel plot to assess publication bias; 10% = 10

meta-analyses use something besides a funnel plot; and 59% = 59 meta-analyses use a combination of both. Thus, 80 meta-analyses in Anatomy

and Physiology assess publication bias in some way. The italicized number below the top number is the conditional probability. Conditional on

assessing publication bias, it shows what percent of meta-analyses use each of the three approaches. Thus, among all meta-analyses in Anatomy

and Physiology that assess publication bias, 14% solely use funnel plots, 13% only use quantitative tests other than funnel plots, and 74% use a

combination of both. The last column reports the discipline mean number of tests employed by meta-analyses that assess publication bias. This

number includes funnel plots. For example, meta-analyses in Anatomy and Physiology that test for publication bias use an average of 2.4 tests.

Economics, Education, and Psychology are noteworthy for using a wider variety of methods not

employed by other disciplines (e.g., testing for differences between published and unpublished studies;

using year of publication to test for time-lag bias).22 The last column reports the average number of

methods to test for publication bias, where we count Funnel. Eggers and Beggs as the same method

since they all use the relationship between the effect size and its standard error as a measure of

publication bias.

On average, meta-analyses employ 1.5 distinct methods to test for publication bias. However, the

distribution of methods used is positively skewed, with only about one-third of studies applying two or

more distinct approaches.

3.9. Types of statistical software packages

One other dimension on which meta-analyses differ is the statistical software packages they use. We

tracked usage of the following packages:

• R, especially the packages “meta,” “metafor,” “robumeta,” and “dmetar”: free, open-source software

environment produced by the R Foundation for Statistical Computing

• Stata, especially the “meta” suite of commands: proprietary software produced by StataCorp

• RevMan (“Review Manager”): free software developed by the Cochrane Collaboration

• CMA (“Comprehensive Meta-Analysis”): proprietary software produced by Biostat

• SPSS: proprietary software produced by IBM

• JASP: free, open-source software produced by researchers at the University of Amsterdam

• Other

Figure 8 reports the aggregate usage rate of the different statistical software packages across all

disciplines. A wide variety of packages are used. The most common is R, used by over a third of all

meta-analyses. The next most common is Stata, used by approximately a quarter of the meta-analyses

in our sample. The next most common, in order, are RevMan, CMA, SPSS, and JASP.
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Table 10. Prevalence of methods to assess publication bias.

Funnel Eggers TrimFill Beggs FailSafe PUniCurv Selection Other No. of methods

Discipline 1 2 3 4 5 6 7 8 9

Anatomy and Physiology 70% 56% 28% 26% 8% 0% 0% 2% 1.4

Biology 67% 51% 15% 17% 8% 1% 0% 4% 1.3

Business and Economics 49% 42% 15% 7% 22% 3% 5% 20% 1.7

Education 69% 52% 29% 17% 20% 2% 0% 15% 1.7

Engineering 53% 36% 13% 13% 5% 0% 0% 0% 1.3

Environmental Sciences 44% 36% 11% 13% 17% 0% 0% 5% 1.4

Medicine 53% 36% 15% 13% 2% 0% 0% 2% 1.3

Pharmacy, Therapeutics and

Pharmacology

69% 45% 4% 20% 1% 0% 0% 0% 1.1

Psychology 74% 58% 45% 8% 21% 4% 2% 13% 1.8

Public Health 60% 47% 18% 20% 4% 0% 0% 1% 1.3

Overall 61% 46% 19% 15% 11% 1% 1% 6% 1.5

Note: Columns 1–8 in the table are based on 100 meta-analyses for each discipline, so the percentages also provide the counts (e.g., 70% = 70 meta-analyses in the given discipline). Note that the sum

of the percentages (counts) across each row are greater than 100% (100 meta-analyses) because studies can use more than one method to detect publication bias. Funnel, Funnel plot; Eggers, Egger-

type regression; TrimFill, Trim and Fill; Beggs, Begg and Mazumdar’s rank correlation test; FailSafe, Fail Safe N; Selection, publication bias uses a selection model; PUniCurv, either p-Uniform or

p-Curve test for publication bias. Column 9 reports the average number of different methods for testing publication bias, where Funnel, Eggers, and Beggs are counted as one method since they all

use the relationship between the effect size and its standard error as a measure of publication bias.

https://doi.org/10.1017/rsm
.2025.10035 Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/rsm.2025.10035


18 Wu et al.

Figure 8. Usage rates of different statistical packages.

Note: Figure 8 reports aggregate usage rates of different statistical software packages.

Table 11. Prevalence of different statistical packages.

Discipline R Stata RevMan CMA SPSS JASP Other

Anatomy and Physiology 28% 26% 28% 16% 0% 1% 11%

Biology 55% 28% 15% 6% 3% 0% 8%

Business and Economics 33% 12% 2% 9% 2% 0% 12%

Education 38% 19% 11% 26% 1% 1% 6%

Engineering 26% 28% 26% 10% 5% 0% 14%

Environmental Sciences 48% 27% 4% 4% 4% 0% 13%

Medicine 29% 38% 12% 17% 2% 0% 11%

Pharmacy, Therapeutics and

Pharmacology

26% 36% 42% 6% 2% 1% 8%

Psychology 54% 5% 1% 29% 5% 1% 4%

Public Health 32% 43% 14% 5% 2% 0% 7%

Overall 37% 26% 16% 13% 3% 0% 9%

Note: The data in the table are based on 100 meta-analyses for each discipline, so the percentages in the table also provide the counts

(e.g., 28% = 28 meta-analyses in the given discipline). Note that the sum of the percentages (counts) across each row can be greater than

100% (100 meta-analyses) because studies sometimes use more than one statistical package.

Table 11 breaks down the overall usage rates by discipline. There are clear differences across the

disciplines. While R is the most used statistical package for most disciplines, Stata is preferred in

Medicine and Public Health, and RevMan is the most employed package in Pharmacy, Therapeutics,

and Pharmacology. R, Stata, and RevMan are approximately evenly used in Astronomy and Physiology

and Engineering. We note that researchers wishing to have their systematic reviews included in the

Cochrane Database of Systematic Reviews are strongly encouraged to use RevMan.
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The choice of statistical package is consequential. For example, the use of point-and-click packages

such as CMA, RevMan, and JASP can be restrictive because users are limited by the built-in

functionality of those packages. Furthermore, proprietary packages such as CMA and Stata may be

problematic for environments that encourage the sharing of data and code, as researchers interested in

reproducing results from these meta-analyses may not have access to those packages.

4. Improving core practices in meta-analysis: Evidence and recommendations

In this section, we draw observations from the preceding sections and offer a set of recommendations to

improve meta-analytic practice. These recommendations are not intended to be exhaustive. Numerous

existing guidelines and best practice articles already support researchers conducting meta-analyses.23–26

Many are tailored to specific disciplines, such as psychology,27–29 health,30,31 economics,32,33 educa-

tion,34,35 and medicine.36,37

We note that several of our recommendations echo points already raised in earlier work. Still, they

warrant restating, as it is clear that in several important respects, current practice falls short of what

established guidelines and best practices recommend. That said, we acknowledge that meta-analyses

differ in their goals, and while our recommendations are broadly applicable, they may not be suitable

for every case.

4.1. Underutilization of meta-regression to investigate heterogeneity

Numerous guidelines and best practice articles recommend the use of meta-regression to investigate

effect heterogeneity.33,34,38 Table 7 shows that all disciplines in our sample exhibit “high” median

heterogeneity according to Higgins et al.,39 and “considerable” median heterogeneity based on the

criteria of Deeks et al.5 While both subsample analysis and meta-regression are valuable tools for

investigating heterogeneity, we focus on meta-regression because—unlike subsample analysis—it

allows for the estimation of the unique contribution of each characteristic while controlling for the

influence of others.

In meta-analyses, a common goal is to estimate the overall mean of the effect of a treatment or

intervention. Meta-regression expands this analysis by adding explanatory variables to the equation. It

enables an analysis of how factors related to study design, data characteristics, and estimation methods

influence the magnitude of estimated effects, thereby identifying which characteristics contribute most

to heterogeneity among these estimates.

Column 1 of Table 12 reports the percent of meta-analyses that estimate meta-regressions for each

discipline in our sample. In this analysis, to be counted as a meta-regression, the estimated effect size

needed to be regressed on some sample, study, or estimation characteristics other than the standard error

variable. We did not count univariate, Egger-type regressions as “meta-regressions” because we wanted

to focus on the use of meta-regression as a tool for explaining heterogeneity in effect sizes, rather than

as a tool to test for publication bias.

The disciplines in Table 12 are ordered from the least frequent use of meta-regression (Medicine) to

the most frequent use (Education). The prevalence of meta-regression varies widely across disciplines.

Outside the disciplines of Business and Economics, Psychology, and Education, half or less of all meta-

analyses make use of meta-regression to investigate the sources of heterogeneity in estimated effects.

Of these, most are univariate regressions where the estimated effect is regressed on a single

sample, study, or estimation characteristic (cf. Column 2). For example, only 21% of meta-analyses

in Medicine estimated a meta-regression. Of these, only 29% used more than one variable to explain

the heterogeneity in estimated effects; that is, a total of six meta-analyses (= 21 × 0.29). In fact, other

than Business and Economics, univariate meta-regressions comprised the overwhelming majority of

meta-regressions across disciplines.

One possible reason for this is that different disciplines may face different benefits and costs in

conducting meta-regressions. Column 3 of Table 12 reproduces the median I-squared values from
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Table 12. Use of meta-regression in meta-analyses.

% estimating

meta-

regressions

% MRs

with > 1

regressor

Median

I-squared

Median no.

of studies

Median no.

of estimates

Discipline 1 2 3 4 5

Medicine 21% 29% 75% 16 17.5

Pharmacy, Therapeutics

and Pharmacology

31% 32% 67% 11 13

Public Health 31% 29% 83% 15 17.5

Engineering 35% 31% 78% 15.5 20.5

Environmental Sciences 42% 24% 91% 22.5 63.5

Anatomy and

Physiology

47% 21% 69% 14 19.5

Biology 49% 27% 77% 21 25.5

Business and Economics 76% 79% 89% 53.5 163.5

Psychology 77% 14% 84% 32 62

Education 81% 40% 86% 28.5 41.5

Overall 49% 35% 80% 21 28

Note: The data in the first column of the table are based on 100 meta-analyses for each discipline, so the percentages also provide the counts (e.g.,

21% = 21 meta-analyses in the given discipline). The values in the Column 2 report the percentage of meta-regressions that have more than one

regressor. The median I-squared values in Column 3 are reproduced from, and explained in, Table 7. The median numbers of studies and estimates

in Columns 4 and 5 are reproduced from, and explained in, Table 1.

Table 7. One might think that the disciplines with the most heterogeneity would also have the greatest

incentive to conduct meta-analyses. However, the use of meta-regression does not appear to be related

to the discipline levels of heterogeneity.

Columns 4 and 5 of Table 12 report the median number of primary studies and estimates by discipline

(reproduced from Table 1). A clear positive relationship emerges between the use of meta-regression

and the size of the meta-analytic sample. This is consistent with the explanation that the limited use

of meta-regression in some disciplines is due to their meta-analyses including too few estimates.

Appendix B investigates this possibility and finds that even in disciplines with relatively small-sized

meta-analyses, there is scope for greater use of meta-regression.

An additional advantage of estimating meta-regressions is their ability to predict effect sizes

conditional on specific treatment and outcome characteristics. This allows researchers to estimate how

effective a treatment would be under “preferred” or “best-practice” conditions. Meta-regression can

also be used in conjunction with risk of bias tools such as RoB 240 and ROBINS-I,41 which assesses

the quality and credibility of primary studies. When risk of bias is coded as a study-level moderator

and incorporated into the meta-regression, researchers can explore whether and how effect sizes vary

systematically with study quality. This can support the identification of treatment effects that are less

likely to be inflated by methodological shortcomings—providing a more credible basis for estimating

what might happen under optimal conditions.

Despite its potential, the calculation of such “preferred” or “best-practice” estimates from meta-

regressions remains significantly underutilized. Among the 1,000 meta-analyses in our sample, only

eight reported estimates explicitly derived under best-practice assumptions—seven in Business and

Economics and one in Psychology.

In summary, despite substantial heterogeneity being a pervasive characteristic of meta-analyses,

the use of meta-regression is relatively limited. In only three disciplines—Business and Economics,

Psychology, and Education—did more than 50% of meta-analyses use this tool. Furthermore, the

great majority of meta-regressions consist of univariate regressions where the estimated effect sizes

https://doi.org/10.1017/rsm.2025.10035 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.10035


Research Synthesis Methods 21

are regressed on a single sample, study, or estimation characteristic. This leads to the following

recommendations.

Recommendation #1a: Meta-analysts should increase their use of meta-regression to explore

sources of effect heterogeneity and develop “best-practice” estimates whenever sample size and data

conditions allow.

Recommendation #1b: Analysts should go beyond the use of single variable meta-regression and

include multiple covariates where possible.

4.2. The use of weights that are dependent on effect size estimates

A central assumption of meta-analytic models is that the weights and effect size estimates are

independent. However, in some cases, the variance (i.e., the inverse of the weights) is a function of

the effect size parameter, creating dependence between them. This functional dependence occurs for

several types of effect sizes, such as Cohen’s d, but is generally considered most problematic for

correlations.33,42 This is evident from the standard error formulas below. The standard error of r is

given by43

(� (A) = 1 − A2

√
# − 2

, (1.a)

and the standard error for PCC is similar44:

(� (%��) = 1 − %��2

√

35
, (1.b)

where df equals the degrees of freedom from the respective regression equation. These formulas make

explicit that the correlation standard error is mathematically dependent on the effect size estimate.

At least two problems stem from the fact that the standard error is a mathematical function of

the estimated effect size. The first concerns the calculation of the overall mean effect. Meta-analyses

that employ inverse-variance weighting use the standard error to determine how much weight each

estimate receives in the computation of the mean effect. As shown in Equations (1.a) and (1.b), larger

estimates yield smaller standard errors. Consequently, larger estimates receive greater weight in the

meta-analysis, which leads to upwardly biased estimates of the overall mean.45,46

A second problem arises when tests for publication bias depend on the standard error, as in Egger-

type regressions, Begg and Mazumdar’s rank correlation tests, and funnel plots. Equations (1.a) and

(1.b) highlight that these tests may detect a spurious relationship between the estimated correlation and

its standard error even when no publication bias is actually present. This can lead to incorrect inferences

about the existence of publication bias. One solution to this problem is to transform correlations

to Fisher’s z values.47 Another is to weight observations using a sample size-based weight that is

independent of the observation’s correlation value.23 We denote this approach as “N-weights.”

As previously shown (cf. Figure 4), correlations, including Pearson’s product–moment correlation

(r) and partial correlation (PCC), are used in approximately 10% of the meta-analyses in our sample.

Columns 1–3 of Table 13 focus on estimates of the overall mean effect size. Column 1 reports how

often a meta-analysis uses a correlation for an effect size. Column 2 shows that Fisher’s z estimates

are rarely employed for robustness checking. Only 4% of the meta-analyses that use correlations for

estimation also report Fisher’s z estimates.

An alternative to Fisher’s z is to use N-weights. Column 3 reports that this is a more common strategy

than transforming correlations into Fisher’s z. In Business and Economics and Psychology, where the

use of correlations is most prevalent, approximately half of all meta-analyses use “N-weights” rather

than inverse variance weights. Overall, 56% of meta-analyses that use correlations as the main effect
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Table 13. Correlations, Fisher’s z, and alternative weights.

Effect sizes Weights Testing for publication BIAS

Correlation and Fisher’s z Egger’s (E), Begg’s (B), Funnel plot (F)

Count Fisher’s z N-weights Count E/B/F E/B

Discipline 1 2 3 4 5 6

Anatomy and Physiology 2 0% 0% 0 – –

Biology 1 0% 100% 1 0% 0%

Business and Economics 46 9% 50% 36 81% 58%

Education 13 0% 23% 10 70% 60%

Engineering 6 0% 17% 2 100% 0%

Environmental Sciences 5 0% 0% 3 33% 33%

Medicine 0 – – 0 – –

Pharmacy, Therapeutics and Pharmacology 0 – – 0 – –

Psychology 23 0% 48% 21 62% 38%

Public Health 3 0% 33% 3 100% 67%

Overall 99 4% 40% 76 72% 50%

Note: Columns 1 reports how many meta-analyses in the respective disciplines have an effect size that is a correlation. Column 2 reports how often the respective meta-analyses also use

a Fisher’s z effect size as a robustness check. Column 3 reports how often meta-analyses that use correlations use sample size-based weights that are independent of observation-level

variation in correlations. Column 4 reports how many meta-analyses have an effect size that is a correlation and also test for publication bias. Column 5 reports how often these meta-

analyses used an Egger’s type test (E), a Begg’s rank correlation test (B), or a funnel plot (F) to test for publication bias. Column 6 does the same as Column 5 but only reports if the

meta-analyses used an Egger’s type test (E) or Begg’s rank correlation test (B).
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size do not use N-weights or attempt a robustness check by transforming correlations to Fisher’s z. This

leads to the following recommendation.

Recommendation #2a: Meta-analyses need to ensure that weights are not a function of the

effect size estimates (e.g., the correlation coefficient r). To mitigate this, either a variance-stabilizing

transformation should be used (e.g., Fisher’s z47,48) that ensures the variance (and thus weights) are

independent of the effect size estimates, or alternative weights should be chosen that are not a function

of the effect size (e.g., N-weights23).

The last three columns of Table 13 highlight concerns with using the standard error of the correlation

in Egger regressions, Begg and Mazumdar’s rank correlations, and funnel plots. In these cases, the

functional dependence between correlations and their standard errors can lead to misleading evidence

of publication bias, even when no such bias exists.

Column 4 reports the number of meta-analyses that use correlation-based effect sizes and also

conduct a publication bias test. Column 5 shows the percentage of those studies that rely on standard

error–based methods—namely, Egger’s test, Begg’s test, or funnel plots. Column 6 narrows the focus

further by reporting the percentage that use formal quantitative tests, specifically Egger’s or Begg’s.

For example, in Business and Economics, 36 meta-analyses used correlations as effect sizes and

also tested for publication bias. Of these, 81% relied on standard error–based methods, where the

standard error was functionally related to the magnitude of the correlation. 58% of the formal tests

(Egger’s or Begg’s, excluding funnel plots) used the correlation standard error to indicate the presence

of publication bias.

While these patterns vary across disciplines, the overall conclusion is clear: meta-analyses that use

correlations as effect sizes frequently rely on publication bias tests that depend on the standard error of

the correlation—even though the standard error is functionally linked to the effect size itself, regardless

of whether publication bias is present. This motivates the following recommendation:

Recommendation #2b: Researchers using correlations as effect sizes and testing for publication

bias should avoid relying on the correlation’s standard error. Instead, they should either (i) transform

correlations to Fisher’s z scale and use its corresponding standard error, (ii) replace the standard error

with a measure of sample size,49 or (iii) apply instrumental variable estimation with sample size as an

instrument for the endogenous standard error.50

4.3. Limited correction for publication bias

Best practice guidelines recommend that researchers adjust their estimates when publication bias is

present.29,50,51 In this section, we assess the extent to which meta-analyses follow this guidance.

Columns 1 and 2 of Table 14 reproduce the discipline-level results from Table 8, showing how often

meta-analyses tested for and found evidence of publication bias. Column 3 indicates whether those

meta-analyses subsequently attempted to adjust their estimates after detecting bias.

In most disciplines, the majority of meta-analyses that identified publication bias did not proceed

to adjust their estimates. For example, in Anatomy and Physiology, 81% of meta-analyses tested

for publication bias, and 37% of those detected it. However, only 40% of the meta-analyses that

found publication bias subsequently corrected their original estimates (“Percent Correcting(1)”). Only

Business and Economics (75%) and Psychology (63%) adjusted for publication bias in more than half

of the cases where it was detected.

Overall, less than half (47%) of meta-analyses that found evidence of publication bias adjusted

their estimates of the overall mean effect (see Column 3). Among meta-analyses that did not reject the

null hypothesis of no publication bias, only 14% made any correction—effectively accepting the null

hypothesis without further adjustment.

Recommendation #3a: Meta-analyses should correct for publication bias when tests indicate its

presence. As a robustness check, they should also correct for publication bias even when they fail to

confirm its presence because power is typically low52 and tests may not signal it even when it is there.

Bias-corrected estimates should be prominently highlighted when reporting results.
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Table 14. Correcting for publication bias.

Percent

testing

Percent

finding

Percent

correcting(1)

Percent

correcting(0)

Discipline 1 2 3 4

Anatomy and Physiology 81% 37% 40% 19%

Biology 75% 35% 42% 8%

Business and Economics 74% 43% 75% 18%

Education 85% 29% 52% 27%

Engineering 58% 17% 50% 9%

Environmental Sciences 58% 24% 29% 6%

Medicine 61% 33% 35% 11%

Pharmacy, Therapeutics and

Pharmacology

74% 16% 0% 6%

Psychology 90% 39% 63% 37%

Public Health 69% 35% 42% 12%

Overall 72% 31% 47% 14%

Note: Columns 1 and 2 of the table reproduce Columns 1 and 2 from Table 8. Column 3 reports the percent of meta-analyses finding

publication bias that then went on to correct for it. Column 4 reports the percent of meta-analyses that did not find publication bias that

still went on to correct for it.

When applying regression-based methods to correct estimates of the overall mean effect—such

as the PET-PEESE approach advocated by Stanley and Doucouliagos53—the meta-analyses in our

sample relied almost exclusively on univariate regression models, using the standard error as the

sole explanatory variable. Potentially relevant sample, study, or estimation characteristics that might

be correlated with the standard error were rarely included. Incorporating these characteristics in

multivariate regression models may better isolate the influence of publication selection, leading to more

accurate and reliable corrections of the overall mean effect.54.

Another important factor in both assessing and correcting publication bias is heterogeneity. As noted

earlier, high levels of effect heterogeneity are pervasive across all disciplines in our sample (Table 7).

Under such conditions, regression-based corrections for publication bias become less reliable.8 There

is evidence that selection models may outperform regression methods in these settings.6,7 Specifically,

in the presence of heterogeneity, methods other than selection models can signal publication bias even

when no such bias exists. Despite this, selection models remain relatively underused (cf. Table 10). In

light of the above, we offer the following recommendations.

Recommendation #3b: Given concerns about omitted variable bias and high heterogeneity,

selection models and multivariate regression models should be considered as robustness checks when

correcting publication selection.

Research has shown that no single method is universally optimal for correcting publication bias.6,55

Thus, it is important that researchers employ a variety of approaches when testing and correcting for

it. Column 9 of Table 10 reports the average number of different approaches used by each discipline to

test for publication bias. Funnel plots, Egger’s test, and Begg’s test are counted as variants of the same

approach, since all three rely on the relationship between the effect size and its standard error to detect

publication bias.

On average, disciplines employed 1.5 methods for testing publication bias, with no discipline

exceeding an average of two. However, the average gives a misleading impression of how common

multiple testing actually is, as the right-skewed distribution is driven by a minority of meta-analyses

using several methods. Among all meta-analyses that tested for publication bias, just over one-third

(37%) employed two or more methods. Of the 10 disciplines, only Education and Psychology used

https://doi.org/10.1017/rsm.2025.10035 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.10035


Research Synthesis Methods 25

multiple methods in more than half of their meta-analyses (59% and 62%, respectively). The next

recommendation follows accordingly.

Recommendation #3c: Recognizing that no single method for correcting publication bias is

universally optimal,6,55 researchers should draw on recent research and select two or more different

approaches. Given the current lack of consensus in this area, we call for more research that can guide

meta-analysts in selecting the most appropriate methods for addressing publication bias.

4.4. Insufficient accommodation for dependency among estimates

Best-practice guidelines recommend that meta-analyses address statistical dependency among effect

sizes, particularly when multiple estimates are derived from a single primary study.30,33,42 As shown

in Table 2, many meta-analyses include more than one estimate per study. There are two general types

of dependence: (1) measured on the same people (“correlated effects”) and (2) nested in the same

study. The first has to do with estimation error while the second has to do with random effects. When

dependence is not accounted for properly in a meta-analysis—for example, by using methods that

require independence—estimates are inefficient and the Type I error of the hypothesis tests is incorrect.

In general, this results in tests that reject null hypotheses more often than they should.

With respect to estimator efficiency, there are various approaches to addressing this dependence,

depending upon its type. When effect sizes are measured on different people but are nested in the same

study, then a Multilevel Model (MLM) is an appropriate approach. The most common of which is

three-level meta-analysis.56 A difficulty with this approach is that it requires a large number of studies.

Importantly, the MLM approach is only valid when there is no dependence induced from estimation,

that is, from effect sizes measured on the same individuals (cf. (1) above). When this type of dependence

arises, a different approach is needed. One approach is multivariate meta-analysis (MVMA57). In this

approach, the dependence structure is modelled directly in terms of a variance–covariance matrix.

While this approach has been available for a long time, a difficulty with implementation is that it

requires estimates of the correlation between effect sizes. These correlations, however, are often not

provided in primary studies. When this is the case, this model-based approach can be incorrect, again

leading to inflated Type I errors.

An alternative approach to dependency is to prioritize the accuracy of standard error estimation

over the efficiency of coefficient estimates and use clustered standard errors. Cluster-Robust Standard

Errors (CRSE) can be applied in any regression framework. In the context of meta-analysis, Robust

Variance Estimation (RVE) offers a specialized form of CRSE that accounts for the weighting schemes

and sample size structures typical of meta-analytic data.58,59 The theoretical foundation for both CRSE

and RVE is asymptotic, where it can be demonstrated that estimators converge to the correct standard

errors as the number of studies becomes large.

Various adjustments have been developed to improve the performance of CRSE estimators when

there are small to moderate numbers of studies. The oldest adjustment—called CR1—involves a simple

multiplicative adjustment to the standard errors (e.g., m/(m-p)); this is the default correction included in

regression package implementations of CRSE in software, including Stata. An alternative correction—

called CR2—is known as the bias-adjusted, cluster–robust variance estimator or small-sample corrected

cluster-robust variance estimator.59–62 This CR2 correction is the default in meta-analysis software with

RVE implementations in both R and Stata.

The CR2 adjustment has been shown to have better inference properties when the number of clusters

(e.g., studies) is small, while the CR1 estimator has been shown to have inflated Type I errors, even

with as many as 50 or 70 studies. Since the CR2 adjustment also performs well when the number of

clusters is large, it should generally be preferred to the CR1 estimator.63

Both the CR1 and CR2 adjustments result in the use of a t-distribution for hypothesis testing. For the

CR1 approach, however, these degrees of freedom are based entirely on the number of clusters/studies

and are the same for all regression coefficients. The CR2 degrees of freedom, however, are estimated

using a Satterthwaite approximation.64 Tipton9 shows that, in general, CR2 has a valid Type I error
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when the Satterthwaite degrees of freedom are greater than 4. When they are smaller than 4, the

approximation can lead to inflated Type I errors. In this case, it is suggested to use a higher standard of

evidence (e.g., p < .01 instead of p < .05).

Importantly, Satterthwaite degrees of freedom are a complex function of the number of studies, the

variation in the number of estimates per study, and the distribution of the covariate being tested. As

a result, in meta-regression, different coefficients can have different associated degrees of freedom.

Because of the complexity of the calculation, even when the number of studies is large (e.g., 70), it

is possible for these degrees of freedom to be very small, and it is not possible to know—without

calculating them—when such small degrees of freedom might occur. It is for this reason that Tipton,

Pustejovsky, and Ahmadi38 propose that the CR2 method should be the default when estimating cluster

robust standard errors.

Our study analyzed how meta-analyses addressed dependence when it arose. To do so, we first

recorded if there were dependent effect sizes by noting when the number of effect sizes was larger

than the number of studies. If there was dependence (number of effect sizes > number of studies), we

then coded how it was addressed. We coded several common approaches: (1) dependence (incorrectly)

ignored; (2) a single effect size selected for analysis in each study to induce independence; (3) effect

sizes averaged to the study level to remove dependence; (4) use of multilevel modelling (MLM); (5)

use of multivariate meta-analysis (MVMA); (6) use of CR1; and (7) use of CR2.

Note that meta-analysts could use a combination of these methods (e.g., MLM and CRSE).

Importantly, while we code the methods used in these meta-analyses, we did not assess if these

methods fully accounted for dependence. For example, a study with correlated effects might have

handled this appropriately through the use of (2) selection, (3) averaging, or (7) CRSE, but might

have inappropriately handled this through (4) use of an MLM model (which adjusts for a different

type of dependence). However, regardless of approach, we consider any of these methods better than

(1) incorrectly ignoring the dependence and proceeding as if the data were independent (e.g., using a

conventional random effects model).

Table 15 presents the results. Overall, 57% (571/1000) of the meta-analyses included dependent

effect sizes (i.e., number of effect sizes > number of studies). Dependent effects were most common

in Business and Economics (84%), Environmental Science (78%), Psychology (77%), and Education

(69%). However, of the 571 meta-analyses that had dependent effects, fewer than half (47%) adjusted

for this dependence in their analysis. In other words, 53% of meta-analyses with dependent effects

treated the data as independent.

Some fields are adjusted for dependence more often than others. For example, Psychology (77%)

and Business and Economics (73%) were more likely to adjust for dependence, while Pharmacy,

Therapeutics, and Pharmacology (10%) and Medicine (15%) were least likely.

Table 15 also summarizes the methods most commonly used to adjust for dependence. Across fields,

effect selection (21%) and effect averaging (30%) were the most frequent approaches. Multilevel

models dominated in Biology (76%) and Medicine (80%), while multivariate models were rare,

with an overall usage rate of 3%. CRSE methods were most common in Business and Economics

and Education, though with markedly different usage patterns for CR1 and CR2. In Business and

Economics, CR1 and CR2 accounted for 39% and 7% of cases, respectively; in Education, the

corresponding rates were 2% and 48%.

One possible reason dependency is often unaddressed is that, even when studies report multiple

estimates, the number of estimates per study may be relatively small (cf. Table 2). However,

this can only be a partial explanation. As shown in Appendix C, the proportion of meta-analyses

addressing dependency generally stabilized between 60% and 70% once the number of estimates per

study exceeded three. Notably, even among meta-analyses with more than 11 estimates per study,

approximately one-third still treated the estimates as independent. While the number of estimates per

study is an imperfect proxy for dependency, the evidence suggests that many meta-analyses could be

improved by explicitly modeling the underlying dependence structure. In light of these observations,

we provide the following recommendations:
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Table 15. Meta-analyses that account for dependencies.

No. with

dependencies

% (no.)

addressing

Of (2), %

select

Of (2), %

avg.

Of (2), %

MLM

Of (2), %

MVMA

Of (2, %

CR1

Of (2), %

CR2

Discipline 1 2 3 4 5 6 7 8

Anatomy and Physiology 46 43%(20) 20% 35% 25% 0% 5% 25%

Biology 48 44%(21) 19% 14% 76% 10% 5% 0%

Business and Economics 84 73%(61) 7% 21% 39% 7% 39% 7%

Education 69 67%(46) 7% 35% 24% 2% 2% 48%

Engineering 50 22%(11) 36% 45% 9% 9% 0% 18%

Environmental Sciences 78 40%(31) 42% 23% 52% 0% 0% 0%

Medicine 33 15%(5) 20% 0% 80% 0% 0% 0%

Pharmacy, Therapeutics and

Pharmacology

39 10%(4) 50% 25% 25% 0% 0% 0%

Psychology 77 77%(59) 31% 42% 34% 0% 2% 15%

Public Health 47 23%(11) 27% 36% 36% 0% 9% 0%

Overall 571 47%(269) 21% 30% 38% 3% 11% 16%

Note: Column 1 reports the number of meta-analyses in each discipline that have more estimates than studies, generating a dependency between estimates. The top number in Column 2 reports the percent of

meta-analyses that have a dependency that address it using one or more of the following approaches: (i) selecting a subset of estimates from the primary studies, (ii) averaging estimates from the primary studies,

(iii) using a multilevel estimator (MLM), (iv) using a multivariate estimator (MVMA), (v) using a CR1 clustered robust estimator of the standard error, and (vi) using a CR2 estimator. The italicized number below

the top number in Column 2 is the number of meta-analyses that addressed dependency. Columns 3 through 8 report conditional probabilities. That is, conditional on addressing dependency, what percent of meta-

analyses used that particular approach (e.g., selection, averaging, etc.). For example, 46 meta-analyses in Anatomy and Physiology have more estimates than studies. Forty-three percent of these (or 20 of the 46

meta-analyses), address this in some way. Of those 20 meta-analyses, 20% selected a subset of the estimates from the primary studies, 35% averaged some estimates from the primary studies, 25% used a multilevel

estimator such as the three-level estimator to estimate the model, no studies used a multivariate estimator, 5% adjusted standard errors using the CR1 estimator, and 25% used the CR2 estimator. Notice that the sum

of individual percentages is greater than 100% because some meta-analyses used more than one of these methods to address dependency in their datasets.
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Table 16. Evaluation of disciplines against recommendations.

Recommendationa

R1a R1b R2a R2b R3a R3b R3c R4a R4b

Discipline 1 2 3 4 5 6 7 8 9

Education 81% 40% 60% 0% 39% 0% 15% 67% 96%

Business and Economics 76% 79% 58% 6% 49% 5% 20% 73% 14%

Psychology 77% 14% 38% 0% 51% 2% 13% 77% 90%

Anatomy and Physiology 47% 21% NA NA 31% 0% 2% 43% 83%

Engineering 35% 31% 0% 0% 22% 0% 0% 22% 100%

Public Health 31% 29% 67% 0% 26% 0% 1% 23% 0%

Biology 49% 27% 0% 0% 23% 0% 4% 44% 0%

Environmental Sciences 42% 24% 33% 0% 16% 0% 5% 40% NA

Medicine 21% 29% NA NA 26% 0% 2% 15% NA

Pharmacy, Therapeutics and

Pharmacology

31% 32% NA NA 7% 0% 0% 10% NA

Color categories: Cells are color-shaded to indicate how frequently the disciplines meet the respective recommendations.

Blue = High compliance (67% and up).

Yellow = Medium compliance (34–66%).

Rose/light red = Low compliance (33% and below).

Gray = Not applicable (NA).

Note: The disciplines are arranged in lexicographic order of compliance, beginning with those that meet the largest number of recommendations

at the highest threshold (blue cells), followed next by the number of medium-compliance instances (yellow cells), and finally by the number of

low-compliance instances (rose cells).
a The recommendations are summarized below with sources for the numbers in the table. Full text of the recommendations is available in Section 4.

R1a: Meta-analysts should increase their use of meta-regression to explore sources of effect heterogeneity (Source: Column 1 of Table 12).

R1b: Analysts should go beyond the use of single variable meta-regression and include multiple covariates where possible (Source: Column 2 of

Table 12).

R2a: Meta-analyses need to ensure that weights are not a function of the effect size estimates (Source: Calculated from Columns 2 and 3, Table 13).

R2b: Researchers using correlations as effect sizes and testing for publication bias should avoid relying on the correlation’s standard error

(COURSE: Calculated from Columns 4–6 of Table 13).

R3a: Meta-analyses should correct for publication bias whether or not tests indicate its presence (Source: Calculated from Columns 3 and 4 of

Table 14).

R3b: Selection models and multivariate regression models should be used as robustness checks when correcting publication selection (Source:

Column 7 of Table 10).

R3c: Researchers should select two or more different approaches when correcting for publication bias (Source: Calculated from Column 9 of

Table 10).

R4a: Meta-analyses should not ignore dependent effects (Source: Column 2 of Table 15).

R4b: Meta-analysts using cluster robust standard errors should use CR2 standard errors and Satterthwaite degrees of freedom rather than CR1

standard errors. (Source: Calculated from Columns 7 and 8 of Table 15).

NA: Indicates that there were no observations that met the condition(s) of the recommendation.

Recommendation #4a: Meta-analyses should not ignore dependent effects. The nature of depen-

dencies should be explicitly identified and appropriately addressed. Methods should be chosen that are

appropriate for the type of dependence, available information, and number of studies.

Recommendation #4b: Meta-analysts using cluster robust standard errors should estimate CR2

standard errors and degrees of freedom. When Satterthwaite degrees of freedom are smaller than 4,

higher standards of evidence should be implemented (e.g., considering a Type I error of 0.01 instead

of 0.05 for null hypothesis rejection). CR1 should rarely, if ever, be used because the CR2 estimator

generally produces results as good or better.

4.5. Evaluation of disciplines against recommendations

Table 16 concludes this study by evaluating each of the 10 disciplines against our nine recommendations

(1a, 1b, 2a, 2b, 3a, 3b, 3c, 4a, and 4b). We classify disciplines into three groups according to their
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adherence to these recommendations. A discipline is considered to show high compliance when 67%

or more of its meta-analyses conform to the recommendation, medium compliance when 34–66%

conform, and low compliance when 33% or fewer conform. Blue, yellow, and rose/light red indicate

high, medium, and low compliance, respectively. The sources for the compliance rates corresponding

to each recommendation are provided in the notes below the table.

Disciplines are arranged in the table in lexicographic order of compliance, beginning with those

that satisfy the largest number of recommendations at the highest threshold (blue cells), followed by

the number of medium-compliance instances (yellow cells), and finally the number of low-compliance

instances (rose cells). Individual compliance rates can be misleading. For example, the table reports that

0% of Biology meta-analyses complied with Recommendations #2a and #2b, but this is based on only

a single meta-analysis in that discipline (cf. Column 1, Table 13). Nevertheless, while no single figure

should be overinterpreted, the overall pattern is clear: despite widespread availability of guidelines and

best-practice publications, most disciplines fall short in following them.

5. Conclusion

This study provides the most comprehensive cross-disciplinary snapshot to date of meta-analytic

practice, drawing on evidence from 1,000 studies across 10 diverse fields. The findings reveal

substantial variation in study size, types of effect sizes, statistical methods, and the handling of key

methodological issues such as publication bias, heterogeneity, and statistical dependence. Beyond

documenting differences across disciplines, we identify notable gaps between current practice and

established best-practice guidelines.

To address these gaps, we recommend: (1) wider and more sophisticated use of meta-regression

to explain heterogeneity; (2) better handling of correlations as effect sizes, including transformations

or alternative weighting, and avoiding bias-prone tests; (3) routine correction for publication bias,

using multiple complementary methods; and (4) explicit treatment of dependent effect sizes through

multilevel, multivariate, or CR2-based robust variance estimation.

We hope this study will serve as a resource for researchers conducting their first meta-analyses, a

benchmark for simulation study design, and a reference for applied meta-analysts seeking to align their

methods more closely with best-practice standards.
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Appendix A. Percent of meta-analyses testing and finding publication bias: Comparison of experi-

mental and observational meta-analyses.

Testing for PB Finding PB

Pct. experimental Exp. Observ. Exp. Observ.

Discipline 1 2 3 4 5

Education 48% 87.5% 82.7% 33.3% 25.6%

Pharmacy, Therapeutics and

Pharmacology

41% 73.2% 74.6% 16.7% 15.9%

Engineering 35% 48.6% 63.1% 29.4% 12.2%

Anatomy and Physiology 31% 83.9% 79.7% 38.5% 36.4%

Environmental Sciences 30% 46.7% 62.9% 14.3% 27.3%

Psychology 29% 93.1% 88.7% 59.3% 28.6%

Biology 26% 80.8% 73.0% 33.3% 35.2%

Public Health 24% 54.2% 73.7% 30.8% 35.7%

Medicine 18% 33.3% 67.1% 0.0% 34.5%

Business and Economics 8% 50.0% 76.1% 75.0% 41.4%

Overall 29% 69.0% 73.9% 33.0% 30.5%

Note: The values in Column 1 of the table are based on 100 meta-analyses for each discipline, so the percentages in that column also provide the

counts (e.g., 48% = 48 meta-analyses in Education synthesize results from experimental studies). The values in Columns 2 and 3 report conditional

probabilities. For example, 87.5% of the 48 experimental meta-analyses in Education test for publication bias. 82.7% of the 52 observational

meta-analyses in Education test for publication bias. The values in Columns 4 and 5 are interpreted similarly. 33.3% of the experimental meta-

analyses in Education that tested for publication bias (25.6% of the observational meta-analyses that tested for publication bias) concluded there

was publication bias.
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Appendix B. Assessing the scope for meta-regression in studies that currently do not conduct a

meta-regression or only use a single predictor.

No meta-regression Single-covariate meta-regression

% ≥ 40 % ≥ 50 % ≥ 40 % ≥ 50

Count estimates estimates Count estimates estimates

Discipline 1 2 3 4 5 6

Anatomy and

Physiology

53 8% 6% 37 27% 24%

Biology 51 18% 12% 36 64% 56%

Business and Economics 24 54% 46% 16 69% 63%

Education 19 16% 11% 49 47% 43%

Engineering 65 22% 22% 24 42% 33%

Environmental Sciences 58 38% 33% 32 84% 81%

Medicine 79 9% 6% 15 33% 13%

Pharmacy, Therapeutics

and Pharmacology

69 10% 4% 21 24% 10%

Psychology 23 35% 30% 66 59% 56%

Public Health 69 16% 12% 22 32% 23%

Overall 510 19% 15% 318 50% 44%

Note: This table examines two subsets of meta-analyses: (i) those that did not conduct a meta-regression, and (ii) those that conducted

a meta-regression using only one explanatory variable. For each subset, the table reports the number of meta-analyses, along with the

percentage that included 40 or more estimates and 50 or more estimates. For example, among the 100 meta-analyses in Anatomy and

Physiology, 53 did not conduct a meta-regression. Of these, 8% had 40 or more estimates, and 6% had 50 or more, suggesting that these

studies may have had sufficient data to explore heterogeneity through meta-regression. Conversely, 37 of the 100 studies conducted a

meta-regression with only one explanatory variable. Among them, 27% had 40 or more estimates, and 24% had 50 or more, indicating

that some may have had enough data to support a more complex analysis with multiple explanatory variables.
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Appendix C. Relationship between estimates/study and the percent of meta-analyses addressing

dependency.

Estimates/

study

No. with

dependen-

cies

No.

address-

ing

%

address-

ing

Of (2),

% select

Of (2),

% avg.

Of (2),

%

MLM

Of (2),

%

MVMA

Of (2),

% CR1

Of (2),

% CR2

1 2 3 4 5 6 7 8 9

1 429 0 – – – – – –

> 1 to 2 308 113 37% 32% 51% 19% 1% 2% 12%

> 2 to 3 70 38 54% 21% 29% 42% 5% 3% 21%

> 3 to 4 39 25 64% 16% 16% 52% 4% 4% 28%

> 4 to 5 29 14 48% 21% 7% 64% 0% 0% 21%

> 5 to 6 20 12 60% 8% 17% 67% 0% 17% 8%

> 6 to 7 21 13 62% 15% 15% 62% 0% 8% 31%

> 7 to 9 20 12 60% 8% 17% 67% 8% 8% 8%

> 9 to 11 15 9 60% 0% 0% 67% 11% 33% 11%

> 11 49 33 67% 3% 3% 36% 6% 55% 12%

Overall 1,000 269 47% 21% 30% 38% 3% 11% 16%

Note: This table is similar to Table 15 except that it groups meta-analyses by the number of estimates per study rather than by discipline. Column 1

reports the number of meta-analyses in each category. Column 2 reports the number of meta-analyses that in some way address the dependency that

arises from having more than one estimate per study. There are a total of 571 meta-analyses with estimates/study >1 (571 = 1,000–429). Column 3

reports the percent of these that address dependency, both by category and overall. So, for example, the overall “% Addressing” is 269/571 = 47%.

Columns 4–9 report the percent of meta-analyses that have a dependency and address it using one or more of the following approaches: (i) selecting

a subset of estimates from the primary studies, (ii) averaging estimates from the primary studies, (iii) using a multilevel estimator (MLM), (iv)

using a multivariate estimator (MVMA), (v) using a CR1 clustered robust estimator of the standard error, and (vi) using a CR2 estimator. Columns

4–9 report conditional probabilities. That is, conditional on addressing dependency, what percent of meta-analyses used the given approach.
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