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ON NON-ANTICIPATIVE LINEAR TRANSFORMATIONS
OF GAUSSIAN PROCESSES WITH
EQUIVALENT DISTRIBUTIONS

YU. A. ROZANOV

Let &), te T, be a Gaussian process on a set T, and H = H(&¢) be
the closed linear manifold generated by all values &(f), te T, with the
inner product

{02 = B, 7€ H .
We suppose that the Hilbert space H is separable.

Let o be a linear operator on H; we call a random process of the
form

(b)) = LE@) , teT, (1)
a linear transformation of the process &(f), t e T. One says that a linear

transformation « is non-anticipative, if

S H(§) S H,(D, teT, (2)
where H,(§) denotes the subspace in H, which is generated by all values
&), s < t.

Let P be a probability distribution of the Gaussian process & = &(%),
teT, in some measurable space (X, %, P) of (trajectories) x = x(¢), t e T,
where c-algebra B is generated by all sets {z(¢) e B} (teT), B are Borel
sets on the real line, so P is determined by finite-dimensional distribu-
tions of the random process & = &(t), teT. Let Q@ be a probability dis-
tribution of the Gaussian process » = 5(f), te T, represented by the
formula (1). According to well known Feldman’s theorem (see, for
example, [1]), Q is equivalent to P (Q~P) if and only if the operator

B=A*A (3)

1s tnvertible and I — Be S,, where S, denotes the class of all Hilbert-
Schmidt operators in H.
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The operator B connects with the correlation function B(s,t) of the
Gaussian distribution @ as

B(s,t) = (B(s),E(t)> ,  s,teT; (4)

let us call B the correlation operator of @. Obviously, for any equivalent
distribution @ (i.e. @ has strictly positive correlation operator B, such
that I BeS,.) there is a linear transformation (1), which gives us a
Gaussian process %(t),t e T, with the distribution Q: the general operator
o/, which satisfies the condition (3), has the form

o = VB (5)

where V is an arbitrary unitary operator in H.
Let us consider a linear transformation (1) with & =1 — 4:

nt) = &@) — L&), teT. (6)

It is more convenient to reformulate Feldman’s theorem in the fol-
lowing way: Q~P if and only if I — B*c S, and 1 does not belong to
the spectrum of I — BY*., Indeed, I — Be S, if and only if

I—-B"”=U—-BU+ BH'eSl,.

It is easy to see that for any operator 4¢S,, which has no eigen-
value equal to 1, the random process 5(t), te T, of the form (6) has the
equivalent distribution @ with the correlation operator, because

I—B=4+ 4¥I — MDHeS,.

But the condition 4¢SS, is mot mnesessary for the equivalence Q~P.
Namely, by the formula (5) we have

A=1—VB”», (7)

where V is some unitary operator and (for the equivalent distribution
Q) I — B”e¢S,; obviously 4¢8, if and only if {4 — (I — B/)]IB* =
I1—-VeS,.

Then we shall be interested in the linear transformation (6) with
operators 4¢S,. As we have obtained, it holds true if and only if

I—-Ves, (8)

where V is an unitary operator connected with the operator 4 by the
formula (7): 4 =1 — VB":. According to Feldman’s theorem any trans-
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formation (6) such that 4¢SS, and 1 does not belong to the spectrum 4
gives a random process 7(t), te T, with an equivalent distribution Q.

We shall be interested also in a such property of the linear trans-
formation (6) as to be mon-anticipative that means

AdH(E) S H,(9, teT. (9)

In the resent time it was paid attention for non-anticipative trans-
formations in connection with Hitsuda’s result [2] for the Wiener
process &(t), 0 <t < 1: any Gaussian process 7(t), 0 <t <1, with an
equivalent probability distribution can be represent in the form

o) = &t) — H j 4w, S)df(u)] ds (10)

where 4(t¢,8); 0<¢t, s <1,
At ) =0, s<t, 11)
”A(t,sydtds < oo, (12)

Though in the paper [2] it was used some theorems on the martin-
gales, it was clear that the representation (10) can be obtained as a
result of the theory of operators in a Hilbert space: the formula (10)
is given by a non-anticipative transformation (6) with 4¢ S, in the case of
Wiener process &(t), 0 <t < 1. The existense of such transformation in
the general case follows from non-trivial Gohberg-Krein’s theorems on
so-called special factorization; namely, any positive operator B of the
type

B=(U—-F)=U—-GG)"
(FF and G = —FB™! belong S,

can be represented in the form
B =+ X)9( + X*) 13)

where (I + X) is invertible, X ¢S, and 2 > 0; besides the operators X
and 2 satisfy the condition

XH,cH,, 9H,C H, (teD)

for a given monotone family of subspaces H,, teT (H,C H, if s<t)
(see the theorems 6.2 Ch. IV and 10.1 Ch. I in the book [3]). It is clear
that for H, = H,(§), tc T, the operator
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oA =1+ X)) 149

satisfies the conditions (2) and (8), so the corresponding linear trans-
formation (6) with 4 =1 — o/ will be non-anticipative. This proof of
the existense of non-anticipative representations (6) for Gaussian processes
7(t), teT, with equivalent distributions was suggested resently by
Kallianpur and Oodaira [4] (in the case of Wiener process &(t), 0 <t <1,
it was done ealier by Kailath [56]). We should like to do the following
essential note: for the operator «/, which was mentioned above (see (14))
it holds true that

d=1—d4¢S,, (15)

so for any Gaussian process &(t), te T, there is a non-anticipative Gaus-
siam process n(t) = &) — 46(t), te T (where de S, satisfies the condition
(9)) with o given equivalent probability distribution.

Indeed, in the representation (13) we have (I + X)'=1 4+ 97, I =
—X{I + X)*eS,, and the operator 2 has a form

2=+ -FI+IT*=1I+V
where
V=9U-FI+I*—-FI+I*+IT*e8S,.
From relations

@1/2=(I+V)1/2=I+W,
I+ V=U+Wr=I1+WQI+W)=I1+WI+ 2",

we obtain that
W=V{ + 2¥)1'ecS,,
S0

Ad=1—oA =1—-1U+ X)P
=I—-J+X){T+W)=-XT+W)-WeS,.

It is worth to pay attention for the following fact: the linear trans-
formation (6) with the operator & =1 — 4 of the form (14) is such that

H,(& =H(, teTl. (16)
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Indeed, for the invertible positive operator 2vY*: 2V*H,(§) < H,(9),
we have

P'*H () = H,(8)

because in a contrary case there is an element % e H,(§), such that
h | 2""H, (%) and 2Y°h = 0. Remind that a Volterra operator X has only
one point of a spectra equal to 0, so for the operator (I + X) in the
formula (14), (I + X)H,(&) C H,(&), we have

I + X)H(E) = H(9) .

Now it is obvious that the operator & = (I + X)2'? satisfies the
condition (16).

Let us consider a few examples of non-anticipative representations
(6) with 4¢ S,.

ExaMPLE 1. Let &(%), 0 <t <1, be a Gaussian process with station-
ary increments:

= TR
e = = Lowan,
—oo 22
which has a spectral density f(2) of the type:
0 < lim f(2) < lim f(2) < o
A—c0 A—oc0

Gf F(A) = 1/2z, we deal with Wiener process &(t), 0 <t < 1).
The corresponding space H consists of all random variables

= J oo = j:c(t)é(t)dt
18
(SD(Z) = j:e“‘c(t)dt) (18)

where functions e(t), 0 <t <1, belonging to L*0,1] and &(t) is the
generalized delivative of process &(t); besides®

ol = [~ Jeraz § [ ecwrat (19)

D The relation « J 8 between variables «, f means that

/4
0<L‘1SFS82<00-
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(see, for example, [1] or [6]), and the formula (18) gives us the isomorph-
ism between H and L?[0,1] such that

H,(® < L70,t], 0<t<L1, (20)

where L*[0,t] denotes the subspace of all functions e(s), 0 < s < 1:¢(s)
=0 for s >t. As it follows from the conditions (19) and (20), the
formula

dy = j;[zic(t)]é(wdt

gives us the isomorphism 4« 4 between Hilbert-Schmidt operators in H
and L?’[0,1], and an operator 4 satisfies the condition (9) if and only if

aro,t1 < L40,t1, o0<t<1,

that is equivalent to the condition (11) for a corresponding kernel
A, s):

de(t) = 'f:A(t, de(s)ds, O0<t<1,

(remind de S, if and only if 4(t,s); 0 < t, s <1, satisfies the condition
(12)). Thus any non-anticipative operator 4e S, can be discribed by the
formula

dy = I :[ j:A(t,s)c(s)ds]é(t)dt @1)

with a Volterra, Hilbert-Schmidt kernel 4(¢,s); 0 < ¢t < 1. For variables
&), 0 <t <1, which correspond to the functions

1, 0<s<t,

c(8)={0, s> ¢,

we obtained from the formula (21) a general non-anticipative transforma-
tion (6) with 4e S, as

70 =& + [[[ A(u,s)é(u)du] ds, 0<t<1, @22)

that gives us Hitsuda’s representation (10) in the case of Wiener process
@), 0<t< 1.

EXAMPLE 2. Let &(t), 0 <t <1, be a Gaussian stationary process:
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&(t) = j " ()

with a. spectral density (1) of the type
0 <limA™fQ2) < hm A fA) < oo (23)

}-—~oo

It will be convenient to introduce the process

) = z WCanlED () — EP(O0)] + j%(sms
24)
—j =1 a g aredy, 0<t<l.

Obviously, the spectral density of this process ¢(t) with stationary in-
crements satisfies the condition (17) and we can use results of our
example 1 for the process {(¢), 0 < ¢t < 1.

As is known (see, for example, [1] or [6]) the Hilbert space H = H(%)
consists of all variables

7= pwown
(go(l) =5 e + (L + i ﬁe“‘c(t)dt)
where ¢,, - -+, ¢,_, are arbitrary constants and e(¢), € L*[0,1] or
7= 3000 + [ it (25)

where ¢(t) denotes the generalized derivative of the process £(¢) determined
by the transformation (24).

If we consider in the general formula (25) only functions e(s),
e L*[0,t], we obtain the corresponding subspace H,(§), 0 <t <1, and it
shows that H,(§) is a direct sum of the subspace

Hy. (5 = QOH;(S) ,

which consists of all variables 7 = nZ_]I ¢,£%(0), and the subspace H,(&) of
k=0

all variables 7 = j e(5)i(s)ds :
0

H, =H, (& +H®, 0<t<K1;
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in particular
HE) = H,.(5) + HO .

Let P be a projector on the subspace H({) parallel to the subspace
H, (8. If de S, then PAP¢e S,; obviously, if 4 satisfies the condition
(9) then PAP satisfies to the similar condition with respect to H,(0),
0 <t<1. As it has been shown (see (21)), the non-anticipative operator
PAP in H({) can be discribed by a Volterra, Hilbert-Schmidt kernel
A, 8); 0<t, s<1:

P4Py — L U:A(t, s)c(s)ds] bt (26)
where ye H is given by the formula (25) and
Py = f :c(t)c'(t)dt :
For any non-anticipative operator 4 in H(&) we have

AH(H. = A(zg H,) < O (4H,) < O H, = H0+

that is equivalent to the condition
(I—PAI - P)=41 - P).
Then
4=U— P)AP + A — P) + PAP = (I — P)4 + P4P

where the finite-dimensional operator (I — P)4, mapping H(¢) on the sub-
space H,, (&), has the form

(I—PMW=Z¥mme®) @0

(os iy + + +» Ju_y are some fixed elements in H,,). Combining formulas (26)
and (27), we obtain a general non-anticipative operator 4e S as

4y = :g: (9 7epE*(0) + I:[j:d(t, S)c(s)ds]é(t)dt; (28)
in particular, for 5e H,(§)

ty =5 r,ude®O) + [ ][ a0, 9taddu]eds . (29)
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