ON THE FRACTIONAL PARTS OF A POLYNOMIAL

R. J. COOK

1. Introduction. Heilbronn [6] proved that for any $\epsilon > 0$ there exists $C(\epsilon)$ such that for any real θ and $N \ge 1$ there is an integer x satisfying

(1)
$$1 \le x \le N$$
 and $||\theta x^2|| < C(\epsilon)N^{-1/2+\epsilon}$,

where $||\alpha||$ denotes the difference between α and the nearest integer, taken positively. Danicic [2] obtained an analogous result for the fractional parts of θx^k and in 1967 Davenport [4] generalized Heilbronn's result to polynomials of degree k with no constant term. The last condition is essential, for if there is a constant term then no analogous result can hold (see Koksma [7, Kap. 6 Satz 10]).

More recently, Ming-Chit Liu [8] proved that for any real θ and any positive integer N there is an integer x satisfying

(2)
$$1 \le x \le N$$
 and $||\theta x^2|| < CN^{-1/2 + \epsilon(N)}$,

where C is an absolute constant and $\epsilon(N) = 1/\log \log N$. The purpose of this note is to prove that the results of Danicic and Davenport may be improved to give results analogous to Liu's.

THEOREM 1. Let k be an integer, $k \ge 2$, and put $K = 2^{k-1}$. For every real θ and every positive integer N, there is an integer x satisfying

(3)
$$1 \le x \le N$$
 and $||\theta x^k|| < C_1 N^{-1/K + \epsilon(N)}$,

where $C_1 = C_1(k)$ depends only on k and $\epsilon(N) = 1/\log \log N$.

THEOREM 2. Let k be an integer, $k \ge 2$, and put $R = 2^k - 1$. For every positive integer N and every real polynomial f(x), with no constant term, of degree k, there is an integer x satisfying

(4)
$$1 \le x \le N$$
 and $||f(x)|| < C_2 N^{-1/R + \epsilon(N)}$,

where $C_2 = C_2(k)$ depends only on k and $\epsilon(N) = 1/\log \log N$.

For large values of k these results can be improved by using Vinogradov's estimates for trigonometric sums, in place of Weyl's (see [1]).

2. Notation and preliminary lemmas. By $F \ll G$ we mean that |F| < CG where C depends at most on k. We write e(z) for exp $(2\pi iz)$, K for 2^{k-1} , R for $2^k - 1$ and $\epsilon(N)$ for $1/\log \log N$. We may suppose that $N > N_0(k)$.

Received April 9, 1975.

Lemma 1. Let Δ satisfy $0 < \Delta < \frac{1}{2}$ and let a be a positive integer. Then there exists a function $\psi(z)$, periodic with period 1, which satisfies

(5)
$$\psi(z) = 0$$
 for $||z|| \ge \Delta$,

and

(6)
$$\psi(z) = \sum_{v=-\infty}^{\infty} a_v e(vz)$$

where the coefficients a_v are real numbers, $a_0 = \Delta$, $a_{-v} = a_v$ and

(7)
$$|a_v| \ll \min\left(\Delta, \left(\frac{a}{\pi}\right)^a \Delta^{-a} |v|^{-a-1}\right).$$

This is a particular case of Lemma 12 of Chapter 1 of Vinogradov [9].

Lemma 2. Let d(n) denote the number of divisors of the positive integer n. For any $\epsilon > 0$ we have

(8)
$$d(n) \le 2^{(1+\epsilon)\log n/\log\log n}$$

for all $n > n_0(\epsilon)$.

This is Theorem 317 of Hardy and Wright [5].

We apply Lemma 2 with ϵ chosen so small that $2^{1+\epsilon} < e^{3/4}$. Then for some n_0 we have

(9)
$$d(n) < n^{(3/4)\epsilon(n)}$$

for all $n \geq n_0$.

Lemma 3 (Weyl). Let f(x) be a real polynomial of degree k with leading coefficient θ :

$$f(x) = \theta x^k + \theta_1 x^{k-1} + \dots$$

Let B be a real number and put

$$S = \sum_{R \le x \le R+N} e(f(x)).$$

Then

$$(10) |S|^{K} \ll N^{K-1} + N^{K-k+(3/4)(k-1)\epsilon(N)} \sum_{m=1}^{L} \min (N, ||m\theta||^{-1}),$$

where $L = k!N^{k-1}$.

This may be proved in the same way as the corresponding formula on p. 13 of Davenport [3] since for $m = 1, \ldots, L$ we have

$$d(m) \ll L^{(3/4)\epsilon(L)} \ll N^{(3/4)(k-1)\epsilon(N)}$$

170 R. J. COOK

LEMMA 4 (Dirichlet). Let θ be a real number and $Q \ge 1$. Then there exist integers a, q with

(11)
$$1 \le q \le Q$$
, $(a, q) = 1$ and $|\theta - a/q| \le q^{-1}Q^{-1}$.

See, for example, Theorem 185 of Hardy and Wright [5].

3. Preliminaries to Theorems 1 and 2. Let

$$(12) \quad f(x) = \theta x^{k} + \theta_{1} x^{k-1} + \ldots + \theta_{k-1} x,$$

which contains the possibility that $f(x) = \theta x^k$. Suppose that

(13)
$$||f(x)|| \ge M^{-1}$$
 for $1 \le x \le N$,

then we may also suppose that

$$(14) \quad M \leq N^{1/K - \epsilon(N)}$$

for otherwise there is nothing to prove. We take $\Delta = M^{-1}$ in Lemma 1, then

$$0 = \sum_{x=1}^{N} \psi(f(x)) = \sum_{x=1}^{N} \sum_{v=-\infty}^{\infty} a_{v}e(vf(x)) = \Delta N + \sum_{v \neq 0} a_{v}S(v)$$

where

(15)
$$S(v) = \sum_{x=1}^{N} e(vf(x)).$$

Then $S(-v) = \overline{S(v)}$ so taking $M_1 = MN^{\epsilon(N)/100}$ we have

$$\Delta N \ll \sum_{0 < |v| \le M_1} |a_v S(v)| + \sum_{|v| > M_1} |a_v S(v)| \ll \Delta \sum_{v=1}^{M_1} |S(v)| + N \sum_{|v| > M_1} |a_v|$$

and, from Lemma 1,

$$\sum_{|v| > M_1} |a_v| \ll \left(\frac{a}{\pi}\right)^a \Delta^{-a} \sum_{|v| > M_1} v^{-a-1} \ll a^a \Delta^{-a} M_1^{-a}.$$

Therefore

$$N(1 - a^a \Delta^{-a-1} M_1^{-a}) \ll \sum_{v=1}^{M_1} |S(v)|.$$

We take $a = [100/\epsilon(N)] = [100 \log \log N]$, then

$$a^a \Delta^{-a-1} M_1^{-a} \ll (100 \log \log N)^{100 \log \log N} M^{a+1} M^{-a} N^{-a} \epsilon^{(N)/100} = o(1)$$
as $N \to \infty$.

Therefore $N \ll \sum_{v=1}^{M_1} |S(v)|$ so, by Hölder's inequality,

(16)
$$M_1^{1-K} N^K \ll \sum_{v=1}^{M_1} |S(v)|^K$$
.

Applying Weyl's estimate we have

$$\begin{split} M_1^{1-K} N^K &\ll \sum_{v=1}^{M_1} \left(N^{K-1} + N^{K-k+(3/4)(k-1)\epsilon(N)} \sum_{m=1}^{L} \min \left(N, ||mv\theta||^{-1} \right) \right) \\ &\ll M_1 N^{K-1} + N^{K-k+(3/4)(k-1)\epsilon(N)} \sum_{v=1}^{M_1} \sum_{m=1}^{L} \min \left(N, ||mv\theta||^{-1} \right) \\ &\ll M_1 N^{K-1} + N^{K-k+(3/2)(k-1)\epsilon(N)+\epsilon(N)/K} \sum_{v=1}^{H} \min \left(N, ||h\theta||^{-1} \right) \end{split}$$

where $H = M_1L$ and we have put h = mv, since the number of representations of h in the form mv is

$$d(h) \ll H^{(3/4)\epsilon(H)} \ll (N^{k-1+1/K})^{(3/4)\epsilon(N)}$$
.

From (14) we have $M_1N^{K-1} = o(M_1^{1-K}N^K)$ so, putting

$$\eta(N) = (3/2)(k-1)\epsilon(N) + \epsilon(N)/K,$$

we have

(17)
$$M_1^{1-K} N^{k-\eta(N)} \ll \sum_{h=1}^{H} \min (N, ||h\theta||^{-1}).$$

Let a/q be any rational number, in its lowest terms, for which

(18)
$$|\theta - a/q| \leq q^{-2}$$
.

We divide the sum on the right-hand side of (17) into blocks of q terms and estimate the sum of each block in the usual way (see Lemma 1 of Davenport [3]) to give

(19)
$$M_1^{1-K}N^{k-\eta(N)} \ll (q^{-1}H+1)(N+q\log q).$$

4. Proof of Theorem 1. Now $f(x) = \theta x^k$ and we may suppose $k \ge 3$, since Liu [8] has proved the result in the case k = 2. We take

$$M = N^{1/K - \epsilon(N)}$$
 so that $M_1 = N^{1/K - (99/100) \epsilon(N)}$.

We choose

(20)
$$q \leq M_1^{1-K} N^{k-\tau(N)},$$

where $\tau(N) = \eta(N) + (1/K)\epsilon(N).$ Then $q \log q \ll M_1^{1-K} N^{k-\tau(N)} \log N$
 $= o(M_1^{1-K} N^{k-\eta(N)})$
 $N = o(M_1^{1-K} N^{k-\eta(N)})$

and

$$H \log q \ll M_1 N^{k-1} \log N$$

$$\ll M_1^{1-K} N^{1-K(99/100) \epsilon(N)} N^{k-1} \log N$$

$$= o(M_1^{1-K} N^{k-\eta(N)})$$

since

(21)
$$(99/100)K_{\epsilon}(N) > \eta(N) + \epsilon(N)/4$$
 for $k \ge 3$.

It now follows from (19) that

$$M_1^{1-K}N^{k-\eta(N)} \ll q^{-1}HN \ll q^{-1}M_1N^k$$

so that

$$q \ll M_1^K N^{\eta(N)} = N^{1-(99/100)K_{\epsilon}(N)+\eta(N)} = o(N).$$

By Lemma 4, there exists a rational number a/q such that

(23)
$$q \leq M_1^{1-K} N^{k-\tau(N)}$$

and

$$(24) \quad |\theta - a/q| \le q^{-1} M_1^{K-1} N^{\tau(N)-k}.$$

This q must also satisfy (22) and

$$\begin{aligned} (25) \quad ||\theta q^k|| &\leq |q^k \theta - aq^{k-1}| \leq q^{k-1} M_1^{K-1} N^{\tau(N)-k} \\ &\leq N^{k-1} N^{1-1/K - (K-1)(99/100)} \epsilon^{(N)} N^{\tau(N)-k} \leq N^{-1/K + \epsilon(N) + \tau(N) - (99/100)K} \epsilon^{(N)} \\ &\leq N^{-1/K + \epsilon(N)} \end{aligned}$$

since for $k \ge 3$, $(99/100)K_{\epsilon}(N) \ge \tau(N) = \eta(N) + (1/K)_{\epsilon}(N)$, and this completes the proof of Theorem 1 since x = q satisfies the theorem.

5. Proof of Theorem 2. This is proved by induction on k, we begin with the case k=2. Let

(26)
$$f(x) = \theta x^2 + \theta_1 x$$
 and $M = N^{1/3 - \epsilon(N)}$.

We choose an integer q satisfying

$$(27) \quad 1 \leq q \leq M_1^{-1} N^{2-(5/2)\epsilon(N)}, ||q\theta|| \leq M_1 N^{-2+(5/2)\epsilon(N)}.$$

Then the terms N, $q \log q$ and $H \log q$ in (19) are negligible, so that

$$M_1^{-1}N^{2-\eta(N)} \ll q^{-1}HN \ll q^{-1}M_1N^2.$$

Hence

$$(28) \quad q \ll M_1^2 N^{\eta(N)} = N^{2/3 + (1/50) \epsilon(N)}.$$

For any positive integer T we can choose an integer t satisfying

(29)
$$1 \le t \le T$$
 and $||\theta_1 qt|| \le T^{-1}$.

Taking x = qt we have

$$\begin{aligned} ||\theta x^2 + \theta_1 x|| &= ||\theta q^2 t^2 + \theta_1 q t|| \leq q t^2 ||\theta q|| + ||\theta_1 q t|| \\ &\ll T^2 N^{2/3 + (1/50)} \epsilon^{(N)} M_1 N^{-2 + (5/2)} \epsilon^{(N)} + T^{-1} \\ &\ll T^2 N^{-1 + (153/100)} \epsilon^{(N)} + T^{-1}. \end{aligned}$$

Taking $T = N^{1/3 - \epsilon(N)/3}$ we have

$$(30) \quad ||\theta x^2 + \theta_1 x|| \ll N^{-1/3 + (259/300) \epsilon(N)} + N^{-1/3 + \epsilon(N)/3} \ll N^{-1/3 + \epsilon(N)}$$

and

$$(31) \quad 1 \le x = qt \ll N^{(2/3) + \epsilon(N)/50} N^{1/3 - \epsilon(N)/3} = o(N),$$

which completes the proof in the case k = 2.

For k > 2 let

(32)
$$f(x) = \theta x^k + \theta_1 x^{k-1} + \ldots + \theta_{k-1} x$$
 and $M = N^{1/R - \epsilon(N)}$.

We choose an integer q satisfying

$$(33) \quad 1 \leq q \leq M_1^{1-K} N^{k-\tau(N)}, ||q\theta|| < M_1^{K-1} N^{\tau(N)-k},$$

where $\tau(N) = \eta(N) + \epsilon(N)/K$. As before, it follows from (19) that

(34)
$$q \ll M_1^K N^{\eta(N)} = N^{(K/R) - (99/100)K_{\epsilon}(N) + \eta(N)} = o(N^{K/R})$$
 for $k \ge 3$.

By the inductive hypothesis, there exists an integer T satisfying

(35)
$$1 \le t \le T$$
 and $||\theta_1 q^{k-1} t^{k-1} + \ldots + \theta_{k-1} q t|| \ll T^{-1/(K-1) + \epsilon(T)}$,

since $2^{k-1} - 1 = K - 1$. Taking x = qt we have

(36)
$$||f(x)|| \ll ||\theta q^k t^k|| + ||\theta_1 q^{k-1} t^{k-1} + \dots + \theta_{k-1} q t||$$

 $\ll q^{k-1} t^k ||q\theta|| + T^{-1/(K-1) + \epsilon(T)}.$

We take $T = [N^{(K-1)/R}]$, then $1 \le qt \le N$, for $N \ge N_0(k)$, and

$$(37) \quad ||f(x)|| \ll \{M_1^K N^{\eta(N)}\}^{k-1} N^{k(K-1)/R} M_1^{K-1} N^{\tau(N)-k} + T^{-1/(K-1)+\epsilon(T)} \\ \ll M_1^{kK} N^{k(K-1)/R-k} M_1^{-1} N^{(k-1)\eta(N)+\tau(N)} + N^{-1/R+(K-1)\epsilon(T)/R} \\ \ll M_1^{-1} + N^{-1/R+\epsilon(N)} \ll N^{-1/R+\epsilon(N)},$$

which completes the proof of Theorem 2.

REFERENCES

- 1. R. J. Cook, On the fractional parts of a set of points, Mathematika 19 (1972), 63-68.
- 2. I. Danicic, Ph.D. Thesis, University of London, 1957.
- 3. H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities (Campus Publishers, Ann Arbor, Michigan, 1962).
- 4. On a theorem of Heilbronn, Quart. J. Math. Oxford 18 (1967), 339-344.
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed. (Oxford, 1965).
- H. Heilbronn, On the distribution of the sequence n²θ (mod 1), Quart. J. Math. Oxford 19 (1948), 249–256.
- 7. J. F. Koksma, Diophantische Approximationen (Berlin, 1936).
- M.-C. Liu, On a theorem of Heilbronn concerning the fractional part of θn², Can. J. Math. 22 (1970), 784–788.
- I. M. Vinogradov, The method of trigonometric sums in the theory of numbers (Interscience, New York, 1954).

The University of Sheffield,

Sheffield, England