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ON THE FRACTIONAL PARTS OF A POLYNOMIAL
R. J. COOK

1. Introduction. Heilbronn [6] proved that for any € > 0 there exists C(e)
such that for any real § and N = 1 there is an integer x satisfying

(1) 1=x=N and ||6x2|| < C(e)N-1/2te,

where ||a|| denotes the difference between a and the nearest integer, taken
positively. Danicic [2] obtained an analogous result for the fractional parts of
6x* and in 1967 Davenport [4] generalized Heilbronn's result to polynomials
of degree k£ with no constant term. The last condition is essential, for if there

is a constant term then no analogous result can hold (see Koksma (7, Kap. 6
Satz 10]).

More recently, Ming-Chit Liu [8] proved that for any real § and any positive
integer N there is an integer x satisfying

(2) 1<x<N and |[6x2|| < CN-1/2+e™),

where C is an absolute constant and ¢(IV) = 1/log log N. The purpose of this
note is to prove that the results of Danicic and Davenport may be improved
to give results analogous to Liu's.

THEOREM 1. Let k be an integer, k = 2, and put K = 281, For every real 0
and every positive integer N, there is an integer x satisfying

(3) 1=x=N and |[|ox¥]] < CN-1VE+e),
where C1 = C,(k) depends only on k and ¢(N) = 1/log log N.

THEOREM 2. Let k be an integer, k = 2, and put R = 2¥ — 1. For every
positive integer N and every real polynomial f(x), with no constant term, of degree
k, there 1is an integer x satisfying

(4) 1=2x=N and |[|f(x)]] < CoN-V/E+e
where Cy = Cy(k) depends only on k and ¢(N) = 1/log log N.

For large values of k these results can be improved by using Vinogradov's
estimates for trigonometric sums, in place of Weyl’s (see [1]).

2. Notation and preliminary lemmas. By F < G we mean that |F| < CG

where C depends at most on k. We write e(z) for exp (2wz), K for 21, R for
28 — 1 and e(N) for 1/log log N. We may suppose that N > Ny(k).
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LEMMA 1. Let A satisfy 0 < A < 3 and let a be a positive integer. Then there
exists a function ¥(2), pertodic with period 1, which satisfies

(5) ¢() =0 for |z]| = 4,

and

0

®) ¥@E) = 2 aes)

V=—00

where the coefficients a, are real numbers, ay = A, a_, = a, and

(1)  la,| < min (A, (%) A““]vi"’"‘) .
This is a particular case of Lemma 12 of Chapter 1 of Vinogradov [9].

LEMMA 2. Let d(n) denote the number of divisors of the positive integer n. For
any ¢ > 0 we have

(8) d(n) < 201+ logn/loglogn
Sor all n > ny(e).

This is Theorem 317 of Hardy and Wright [5].
We apply Lemma 2 with e chosen so small that 2+¢ < ¢%/4. Then for some
no we have

9)  d(n) < nGH
for all n = n,.

LEmma 3 (Weyl). Let f(x) be a real polynomial of degree k with leading
coefficient 6:

flx) = 0% + 01 4+ . ...
Let B be a real number and put

S= 2, e(f@).

B<z<B+N

Then

L
(10) IS]K & NK—I + NK—k+(3/4)(k—l)e(N) Z min (N, Hm0H~1)’
m=1
where L = RIN*1,

This may be proved in the same way as the corresponding formula on p. 13
of Davenport (3] since for m = 1, ..., L we have

d(m) K LBMeD & NG/DE=D )
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Lemma 4 (Dirichlet). Let 6 be a real number and Q = 1. Then there exist
integers a, q with

(11) 1£¢=0Q,@q =1 and [§—a/q =qg'Q"
See, for example, Theorem 185 of Hardy and Wright [5].

3. Preliminaries to Theorems 1 and 2. Let
(12) flx) = 0x* + 6.1 4+ . .. + G_1x,
which contains the possibility that f(x) = 6x*. Suppose that
13) [If)]] =2 M~ for 1<x <N,
then we may also suppose that
(14) M < NUE=e)

for otherwise there is nothing to prove. We take A = M~!in Lemma 1, then

N

Y ae@) = AN+ T 0,56

0= ; Y(fx)) = 2 2
where

15) S@) = 2, e@E)).

T=

Then S(—v) = S() so taking M; = MN<«M/100 we have

AN T [0S0+ T jase)] <A ; SOI+N Tl

0<{o| <M1

and, from Lemma 1,

> el < ( % ) AT i > T K e AT M

lo|>M1 |>M1

Therefore
M1
NQA —a"A™ 7'My K Y |SE)).
=1

We take a = [100/¢(V)] = [100 log log N], then

a"A==1 M= K (100 log log N)100108108N [fat1}f~aN-ae¥) /100 — o (1)
) as N — 0.
Therefore N << 3324|S ()| so, by Hélder’s inequality,

(16) M, *N® < f‘_jl |S@) [~
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Applying Weyl's estimate we have

M1 L
MENE « Z ( NE1 4 R =D ) Z min (N, Hmwll_l))
=1 m=1
M L
& MANF™ o NEHGDA=De@ 57 5" in (N, |mo] 7Y
=1 m=1

<< MlNK—l + NK—k+(3/2)(k—1)e(N)+6(N)/K i min (N thll—l)
=1
where H = ML and we have put # = my, since the number of representations
of & in the form mv is
d(k) < H(3/4)e(H) << (Nk—l+l/K)(3/4)e(N)'
From (14) we have M,NX-1 = o(M,""¥NX) so, putting
1(N) = 3/2)(k — 1)e(N) + «(N)/K,

we have
H

A7) MITENM &Y min OV, [[60])7Y).
=1

Let a/q be any rational number, in its lowest terms, for which
(18) |0 —a/ql = g~

We divide the sum on the right-hand side of (17) into blocks of ¢ terms and
estimate the sum of each block in the usual way (see Lemma 1 of Davenport
[3]) to give

(19) M=ENF=1 < (¢7'H + 1) (N + g log q).

4. Proof of Theorem 1. Now f(x) = 6x* and we may suppose k£ = 3, since
Liu [8] has proved the result in the case & = 2. We take

M = NVE—e@) g0 that M, = N1/E—(99/100) (V)
We choose
(20) q § Mll"KNk“'(N),
where 7(N) = n(N) + (1/K)e(N). Then
glog g K M,'""EN¥®) log N
- O(MII—KNk—y,(N))
N = o(M,'~ENF—1)
and
H log ¢ K M N*!log N
<< Mll—KNl—K(QQ/l()O) e(N)Nk—-l log N
= o(M‘=ENE-7M)
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since
(21) (99/100)Ke(N) > n(N) + e(N)/4 for k = 3.
It now follows from (19) that
M ‘TENEN) & g-1HN L g~ 1M N*
so that
g <K M{EN™) = N1=09/100KeM+2(M) = o(N).
By Lemma 4, there exists a rational number ¢/q such that
(23) g = My SN
and
(24) |0 — a/q| £ ¢ 1M KN,
This ¢ must also satisfy (22) and
(25) [l6g"]] < | — ag-1| £ gIM RN
< NF—1N1-1/E—(K—1)(99/100) e(N) N'7(N)—k < N-1/E+e(N)+1(N)—(99/100) K ¢(N)
< N-UE+m)

since for k£ 2 3, (99/100)Ke(N) = r(N) = 9(N) + (1/K)e(N), and this com-
pletes the proof of Theorem 1 since x = ¢ satisfies the theorem.

5. Proof of Theorem 2. This is proved by induction on k, we begin with
the case & = 2. Let

(26) f(x) = 6x®+ 6ix and M = N1/3—e),
We choose an integer ¢ satisfying
(27) 1 £ g £ M{TINZGD@ lgf|| £ M NG,
Then the terms N, ¢ log ¢ and H log ¢ in (19) are negligible, so that
MmN L g7 UHN < g~ 1M N2,
Hence
(28) ¢ <K MAN™) = N2/3+A/50)e(NV),
For any positive integer 7" we can choose an integer ¢ satisfying
(29) 1 =¢t=7 and |lowgtl| = TN
Taking x = gt we have
[16x* + 61| = [16g%* + 61qt]| < q22|16g]] + [|6:q¢l]
& T2N2/3+Q/50 V) Jf N—=24+(5/2 e¥) 4 71
&K TAN-H153/100) (N) . T—1,

Taking 7" = N/3—«M/3 we have

(30) “0.%'2 + 01x|| < N—1/3+(259/300)5(N) + N—1/3+€(N)/3 K N—l/3+e(N)
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and
(31) 1 é x = qt << N(2/3)+€(N)/50N1/3—€(N)/3 o O(N),

which completes the proof in the case & = 2.
For k> 2 let

B2) flx) =6xF 4+ 61x* 1+ ...+ 6_1x and M = NVE-«W),

We choose an integer ¢ satisfying

(33) 1 =g = M ENY=™_||gb|| < M, K-INTN—k

where 7(N) = 9(N) + ¢(N)/K. As before, it follows from (19) that
(34) ¢ <K MEN™) = NE/B=@/100KeM+1(N) = o(NK/B) for k = 3.
By the inductive hypothesis, there exists an integer T satisfying

(35) 1 =t=T and ||Gug" 1+ ... 4 6_1gt|]| K T-VE=D+eD)
since 2¢-1 — 1 = K — 1. Taking x = ¢t we have

(36) IS < loge] + loag=10= + . + s
< Hjqal| + T,

We take T = [NE-D/E] then 1 < ¢t £ N, for N = Ny(k), and

B7) || f)] K (M EN1 e NRE=D IR [ E-1 N~k 4 P=L/K=D+eT)
< MleNk(K—l)/R—le——lN(k—l)n(N)+f(N) + N-1/BR+(E-1)e(T) /R
< Ml—l + N—1/B+eN) < N—l/R‘F!(N)’

which completes the proof of Theorem 2.
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