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Group Gradings on Matrix Algebras

Dedicated to the 60th birthday of Robert Moody

Yu. A. Bahturin and M. V. Zaicev

Abstract. LetΦ be an algebraically closed field of characteristic zero, G a finite, not necessarily abelian,

group. Given a G-grading on the full matrix algebra A = Mn(Φ), we decompose A as the tensor

product of graded subalgebras A = B ⊗ C , B ∼= Mp(Φ) being a graded division algebra, while the

grading of C ∼= Mq(Φ) is determined by that of the vector spaceΦn. Now the grading of A is recovered

from those of A and B using a canonical “induction” procedure.

1 Introduction

In various branches of algebra the researchers are interested in graded algebras and

the ways gradings can be given to algebras. Of special interest are gradings of simple
algebras. In the case of simple Lie algebras there are gradings by groups and semi-
groups arising from the root decomposition with respect to a Cartan subalgebra. But
there are other ways of grading simple Lie algebras, and in several papers authored by

J. Patera (see e.g. [5]) he and his co-authors produce, study and apply some gradings,
whose nature is rather different. In [8], [12], [4], [13], [6] the authors study gradings
in various classes of algebras both associative and non-associative.

In this paper we consider gradings of the full matrix algebra Mn(Φ) of order n

over a field Φ by an arbitrary finite group G. Our main Theorem 5.1 describes such
gradings in the case where Φ is algebraically closed of characteristic 0. Gradings on
algebras have been studied in a number of publications for many years. Among early
books on this topic one can specifically invoke [10] where the authors study various

instances of the theory of graded rings. In their study of primitive graded rings, that
is, rings possessing a faithful graded simple module, they introduce graded matrix
algebras over graded division algebras and endow them with certain gradings (in our
terminology “induced gradings”). There are two particular cases of induced grad-

ings: one where the graded division algebra in question has trivial grading. These
gradings of a matrix algebra of order n are completely determined by the gradings of
the canonical n-dimensional module; they are called “elementary”. The opposite case
is where the primitive algebra is a graded division algebra. Then all nonzero homo-

geneous elements are invertible. It turns out that in this case the grading is “fine” in
the sense that every nonzero homogeneous component is one-dimensional. In [3]
the authors show that the gradings of a matrix algebra over an algebraically closed

field by abelian torsion-free groups are always elementary. In [14] the authors extend
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the previous result to the case of Artinian simple rings. In [1] the authors completely
describe G-gradings in the case where G is a finite abelian group. Among other re-

sults is the description of graded simple algebras and graded division algebras. In
this paper we start with an arbitrary G-graded matrix algebra Mn(Φ) as above and
by direct argument decompose it as the tensor product Mp(Φ) ⊗ Mq(Φ) where the
grading on the first tensor factor is fine and on the second elementary. The way

we introduce gradings on tensor products makes the first factor into a graded divi-
sion algebra D and the whole of Mn(Φ) into a graded matrix algebra Mq(D) over D.
Thus the grading described in [10] becomes a general pattern for the matrix algebras
over algebraically closed fields of characteristic zero. With our theorem established,

one can now recover a G-graded irreducible simple module making Mn(Φ) into a
G-graded primitive algebra (see concluding remarks in Section 5).

2 Elementary and Fine Gradings

In this section we recall about two of the most important types of gradings on the

matrix algebra and give some auxiliary statements that will be used in what follows.
In the next section we will establish a connection between the “fine” gradings and
projective representations. Let Φ be an arbitrary field,

R = Mn(Φ) =
⊕

g∈G

Rg(1)

a G-grading on the algebra of n × n-matrices over Φ, and G a group. We denote by
Gn the n-th direct power of the G, and by Ei j the matrix units of R, i, j = 1, . . . , n.

Definition 2.1 The grading (1) is called elementary, if there exists an n-tuple g =

(g1, . . . , gn) ∈ Gn such that Ei j ∈ Rg−1
i g j

. The grading (1) is called fine if for any

g ∈ G we have dim Rg ≤ 1.

It is obvious that the tuple (g1, . . . , gn) for a given elementary grading is defined in
a non-unique way. For example the n-tuple (gg1, . . . , ggn) defines the same grading.

In particular one may always assume that g1 = e is the identity of G.

There is a strong relationship between elementary gradings and gradings induced
from vector spaces. Namely, any G-grading on a finite-dimensional vector space V

determines a G-grading on the algebra End V of all linear transformations of V .
Specifically, let V =

⊕

g∈G Vg . We call an operator ϕ ∈ End V homogeneous of
degree wt(ϕ) = h, if ϕ(Vg) ⊂ Vhg for all g ∈ G. We denote by πg the canonical
projection V → Vg . Then for any f ∈ End G and any g, h ∈ G the operator πg fπh is

homogeneous, with wt(πg fπh) = gh−1, and the decomposition

f =
∑

g,h∈G

πg f πh

defines a G-grading on End V .
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Proposition 2.2 The matrix algebra Mn(Φ) = R =
⊕

g∈G Rg with an elementary
grading is isomorphic as a G-graded algebra to the endomorphism algebra End V of

some G-graded vector space V .

Proof Let R = Mn(Φ) =
⊕

g∈G Rg be given an elementary grading by means of an
n-tuple (g1, . . . , gn) ∈ Gn, that is, Ei j ∈ Rg−1

i g j
. We denote by V = Φn a vector space

of dimension n, on which R acts canonically, V = Span{v1, . . . , vn}, Ei j(v j) = vi ,
i, j = 1, . . . , n, Ei j(vk) = 0 for k 6= j. If V =

⊕

g∈G Vg is given a G-grading such

that v j ∈ Vg−1
j

then wt(vi) = g−1
i = wt

(

Ei j(v j)
)

= g−1
i g jg

−1
j = wt(Ei j)wt(v j).

This means that the original elementary grading on Mn(Φ) is defined by a grading

on V = Φn and the proof is complete.

For proving our main results we need some technical remarks.

Lemma 2.3 ([14, Lemma 1]) Let R = Mn(D) be a matrix ring over a skew field D
with some G-grading, R =

⊕

g∈G Rg . If all scalar matrices in R are in the identity
component Re and all matrix units Eii , i = 1, . . . , n, are homogeneous then the grading

is elementary.

Lemma 2.4 ([14, Lemma 3]) Let R =
⊕

g∈G Rg be a ring with a finite G-grading, e
the identity element of G, and Re the identity component with respect to this grading. If
R has no nonzero nilpotent ideals then also Re has no nonzero nilpotent ideals. If R is a
ring with the identity E then E ∈ Re. If R Artinian then Re is Artinian as well.

The proof of the next statement for rings R and A can be found in [11,
Lemma 3.11] or in [7, Ch. 4, Sect. 4]. The same arguments can be applied also to
the case of algebras.

Lemma 2.5 Let R be an algebra over F with the identity element E and A a subalgebra
of R isomorphic to Mn(F). If Ei j , i, j = 1, . . . , n, are the matrix units from A and

E = E11 + · · · + Enn then R = AC ' A ⊗C ' Mn(C) where C is the centralizer of A
in R.

Lemma 2.6 Let Mn(Φ) = A =
⊕

g∈G Ag be a matrix algebra over a field Φ with a
“fine” G-grading. Then H = Supp A is a subgroup in G and all homogeneous nonzero
elements in A are invertible.

Proof By Lemma 2.4 the identity matrix is in the identity component Ae, therefore,
Ae consists of the scalar matrices. Let 0 6= a ∈ Ag be an arbitrary homogeneous

element. If a is a degenerate matrix then any matrix xay is also degenerate. Then
RaR∩Re = 0 and RaR is a proper ideal in R, a contradiction. Hence a is an invertible
matrix. It follows that if Rg ,Rh 6= 0 then also Rgh 6= 0, that is, H = Supp R is a
multiplicatively closed subset in G. Since |H| <∞, H is a subgroup in G.

Recall that a unitary graded algebra R =
⊕

g∈G Rg is a graded division algebra if all
non-zero homogeneous elements of R are invertible. As a consequence of Lemma 2.6
we immediately get:
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Corollary 2.7 Let A = Mn(Φ) =
⊕

g∈G Ag be a matrix algebra over an algebraically
closed field Φ with some G-grading. Then A is a graded division algebra if and only if

the grading is “fine”.

Proof If the grading is “fine” then A is a graded division algebra by Lemma 2.6. As-
sume now that any non-zero homogeneous element of A is invertible. By Lemma 2.4
the identity component Ae is a semisimple subalgebra containing all scalar matrices.
By our hypothesis Ae is a division algebra over Φ. Since Φ is algebraically closed we

have dim Ae = 1. By Lemma 4 from [1] all non-zero subspaces Ag are of dimension 1
and the proof is complete.

3 “Fine” Gradings and Projective Representations

In the final section we will show that the problem of describing all gradings on a

matrix algebra can be reduced to describing the gradings of two special kinds: ele-
mentary and “fine”. In case of an abelian grading group a lucid construction of any
“fine” grading was presented earlier [1]. Here we will show that the classification
of all “fine” gradings in the non-abelian case is equivalent to a well-known group-

theoretical problem.

Definition 3.1 Let G be a finite group and V a vector space over Φ. Recall (see, for
example, [2]) that a mapping f : G → GL(V ) is called a projective representation of
G on V if f (e) = E, where e is the identity of G and E is the identity transformation

on V and f (g) f (h) = α(g, h) f (gh) for any g, h ∈ G where α(g, h) is some non-
zero scalar. A projective representation is called irreducible if V has no non-trivial
subspaces invariant under all f (g), g ∈ G.

It is not difficult to show that for a group of order n the dimensions of irreducible

projective representations are bounded by
√

n. Any Abelian group of the type Zn×Zn

has an irreducible n-dimensional representation. It is a hard problem to classify all
groups of order n2, which have irreducible n-dimensional projective representations
and to list these representations.

By Lemma 2.6 from Section 2 the support of any “fine” grading of a matrix algebra
is a finite subgroup H in G. The next theorem shows that the classification of all

“fine” gradings on matrix algebras is in some sense equivalent to description of all
finite groups with irreducible projective representations of maximal degree.

Theorem 3.2 Any “fine” grading on a matrix algebra R = Mn(Φ) over an arbitrary
field Φ determines an irreducible projective n-dimensional representation of the group

H = Supp R of order n2. If Φ is algebraically closed and G is a group of order n2 then
any irreducible n-dimensional projective representation of G determines a “fine” grading
on the matrix algebra Mn(Φ).

Proof Let Mn(Φ) = R =
⊕

g∈G Rg be a “fine” grading on a matrix algebra. Then
by Lemma 2.6 we have that H = Supp R is a subgroup in G and dim Rh = 1 for any
h ∈ H. Let us fix in each subspace Rh, h ∈ H, h 6= e, any nonzero matrix and denote
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it by f (h). For h = e we set f (e) = E. Then f (g) f (h) = α(g, h) f (gh) for some scalar
α(g, h), since all components are 1-dimensional. Since f (g) and f (h) are invertible

by Lemma 2.6, their product is nonzero, that is, α(g, h) 6= 0, and we have obtained
a projective representation of H. The irreducibility of f is obvious, and the proof of
this claim is complete. Now let G be a group of order n2 and f : G → GLn(Φ) an
irreducible projective representation of G of dimension n over an algebraically closed

field Φ. Then the linear span

A = Span{ f (g) | g ∈ G}

is a subalgebra in the matrix algebra Mn(Φ). Since the space Φn is a faithful simple

A-module over an algebraically closed field Φ it follows that k = n, A = Mn(Φ) and
all the elements f (g), g ∈ G, are linearly independent, that is

Mn(Φ) = A =
⊕

g∈G

Ag ,(2)

where Ag is a 1-dimensional subspace in Mn(Φ), generated by f (g). Now from Defi-

nition 3.1 of the projective representation we have that AgAh ⊆ Agh for any g, h ∈ G,
that is, the decomposition (2) is a G-grading on Mn(Φ), and the proof of Theorem 3.2
is complete.

4 Induced Gradings on Tensor Products

Let A =
⊕

g∈G Ag be any G-graded algebra, B = Mn(Φ) =
⊕

g∈G Bg be a matrix
algebra over Φ with an elementary grading given by an n-tuple (g1, . . . , gn) ∈ Gn,

that is, Ei j ∈ Bg−1
i g j

. Then the direct computations show that R = A⊗B will be given

a G-grading if one sets

Rg = Span{a⊗ Ei j | a ∈ Ah, g
−1
i hg j = g}.

Definition 4.1 The grading just defined will be called induced.

It is obvious that A = A ⊗ E is embedded in R as a G-graded algebra. Similarly,
if A is an algebra with identity then also B = 1 ⊗ B is a graded subalgebra in R. We
notice that if S = Supp A and T = Supp B are two commuting subsets in G then the

induced grading assumes a more habitual form of

(A⊗ B)g =

⊕

st=g

As ⊗ Bt .

In particular, if S and T are arbitrary groups and G = S × T, then A ⊗ B will be
naturally endowed with a G-grading for any S-graded algebra A and T-graded algebra
B. Thus the induced grading is a natural generalization of the tensor product of

graded algebras to the case of noncommuting supports, but under the restriction
that B is a matrix algebra with an elementary grading.

Note that gradings on A⊗B ∼= Mn(A) of similar type were considered also in [10]
in case where A is a graded division algebra.
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5 Noncommutative Gradings on the Matrix Algebra

The main result of this paper is as follows.

Theorem 5.1 Let Mn(Φ) = R =
⊕

g∈G Rg be a matrix algebra over an algebraically

closed field Φ graded by a group G. Then there exists a decomposition n = pq, a sub-
group H ⊆ G of order p2 and a q-tuple g = (g1, . . . , gq) ∈ Gq such that Mn(Φ) is iso-
morphic as a G-graded algebra to the tensor product Mp(Φ)⊗Mq(Φ) with an induced
G-grading where Mp(Φ) is an H-graded algebra with “fine” H-grading and Mq(Φ) is

endowed with an elementary G-grading, determined by g.

Proof Let us set A = Re where e is the identity element of G. By Lemma 2.4 A is
semisimple and contains the identity of R. We decompose A into the sum of simple
components, A = A(1) ⊕ · · · ⊕ A(k). Since Φ is algebraically closed, all A(i) ∼= Mqi

(Φ)
are matrix algebras, i = 1, . . . , k. Denote by e1, . . . , ek the identity elements of the

algebras A(1), . . . ,A(k), respectively. Then R(i)
= eiRei is a simple subalgebra in R,

which is homogeneous in the G-grading. By Lemma 2.5, R(i)
= A(i)C(i) ∼= A(i)⊗C(i)

where C(i) is the centralizer of A(i) in R(i). Here C(i) is simple and homogeneous in the

G-grading and C (i) ∩ A(i) is of dimension 1. Then by Lemma 2.6 from [1], C (i) is an
algebra with a “fine” grading and Supp C (i)

= H(i) is a subgroup in G by Lemma 2.6.
We now decompose the identity elements of the algebras A(1), . . . ,A(k) into the sum
of minimal idempotents, that is, the diagonal matrix units. For this we denote by ei

αβ ,

1 ≤ α, β ≤ qi the matrix units of A(i), i = 1, . . . , k. Then ei = ei
11 + · · · + ei

qi qi
. Since

ekR · · ·Re2Re1Re2R · · ·Rek = ekRek 6= 0,

in R one can find homogeneous elements x12, x23, . . . , xk−1,k, xk,k−1, . . . , x32, x21 such
that xi j ∈ eiRe j and

ekxk,k−1ek−1 · · · e2x21e1x12e2x23 · · · xk−1,kek 6= 0.

Now let us notice that Supp R(i)
= Supp C(i)

= H(i), i = 1, . . . , k. We set

wt(x12) = a2, . . . ,wt(xk−1,k) = ak, wt(x21) = b2, . . . ,wt(xk,k−1) = bk. Since
x21x12 ∈ e2Re2 = R(2) then t2 = b2a2 ∈ H(2). Let 0 6= z2 ∈ C(2), with wt(z2) = t−1

2 .
Then z2 is invertible by Lemma 2.6 and commutes with e2. We replace now x21 by
x ′21 = z2x21 and x32 by x ′32 = x32z−1

2 . Then again

ekxk,k−1ek−1 · · · e3x ′32e2x ′21e1x12e2x23 · · · xk−1,kek 6= 0

and x ′21x12 ∈ R(2) where wt(x ′21) = wt(x12)−1 in G. Similarly we may replace x ′32 by
x ′ ′32 = z3x ′32 and x43 by x ′43 = x43z−1

3 (where z3 ∈ C(3)) in such a way that wt(x ′ ′32) =

wt(x23)−1. As a final result of the procedure described we obtain x̄k,k−1, . . . , x̄21, for
which

ekx̄k,k−1ek−1 · · · e2x̄21e1x12e2 · · · ek 6= 0(3)
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and x̄i+1,ixi,i+1 ∈ Re∩R(i+1). Then, obviously, xi,i+1x̄i+1,i ∈ Re ∩R(i), i = 1, . . . , k− 1.
By (3) there exist α1, . . . , αk, β1, . . . , βk such that

ek
βkβk

x̄k,k−1ek−1
βk−1βk−1

· · · e2
β2β2

x̄21e1
β1β1

e1
α1α1

x12e2
α2α2

x23 · · · xk−1,kek
αkαk
6= 0.(4)

We set

yi,i+1 = ei
1αi

ei
αiαi

xi,i+1ei+1
αi+1αi+1

ei+1
αi+11, yi+1,i = ei+1

1βi+1
ei+1
βi+1βi+1

x̄i+1,ie
i
βiβi

ei
βi 1
,

in which case the elements y12, . . . , yk−1,k, y21, . . . , yk,k−1 are homogeneous,

ei
11 yi,i+1ei+1

11 = yi,i+1, ei+1
11 yi+1,ie

i
11 = yi+1,i(5)

and by (3)

yk,k−1 · · · y21 y12 y23 · · · yk−1,k 6= 0.(6)

It follows from (6) that

yi j = yi,i+1 yi+1,i+2 · · · y j−1, j 6= 0, y ji = y j, j−1 · · · yi+1,i 6= 0

for all 1 ≤ i < j ≤ k and it easily follows from (5) that yi j are linearly independent.

We notice now, that y22 = y21 y12 6= 0, y22 ∈ A(2) and e2
11 y22e2

11 = y22. This means
that y22 coincides with e2

11 up to a scalar factor. If we divide y21 by this factor we
may assume that y22 = e2

11, while the relations (5), (6) remain valid. Similarly, y11 =

y12 y21 = αe1
11. But since y22 is an idempotent also y2

11 = y11, that is, y11 = e1
11. If we

multiply the remaining yi+1,i by respective scalars, if necessary, we obtain

yi,i+1 yi+1,i = ei
11, yi+1,i yi,i+1 = ei+1

11 .

We obtain linearly independent elements yi j , 1 ≤ i, j ≤ k, with multiplica-

tion table yi j yrs = δ jr yis, such that yi j ∈ eiRe j and ei
11 yi je

j
11 = yi j . The sub-

space Span{yi j , 1 ≤ i, j ≤ k} is a graded subalgebra in R, isomorphic to Mk(Φ),
such that the matrix units yi j are homogeneous in the G-grading. Therefore by
Lemma 2.3 there exist g1 = e, g2, . . . , gk ∈ G such that wt(yi j ) = g−1

i g j . We recall

that R(i)
= A(i)C(i), the simple subalgebras A(i) and C(i) are pairwise commutative,

A(i) ∼= Mqi
(Φ) is in the identity component Re, C(i) ∼= Mpi

(Φ) with a “fine” grading
and e1 +· · ·+ek the identity matrix of R = Mn(Φ). It follows that p1q1 +· · ·+ pkqk = n
and the matrix rank in R of ei

11 ∈ A(i) is pi , i = 1, . . . , k. Therefore

dim ei
11Re

j
11 = pi p j .

In particular, the dimension of the (C (i), C( j))-bimodule C (i) yi jC
( j) is at most pi p j ,

since yi j ∈ ei
11Re

j
11 and C(i)ei

11Re
j
11C( j)

= ei
11C(i)RC( j)e

j
11. On the other hand since all

homogeneous elements in C (i) and C( j) are invertible by Lemma 2.6 we have

dim C(i) yi jC
( j) ≥ p2

i , p
2
j .
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Hence pi = p j = p for any i, j and all C (1), . . . ,C(k) have the same dimension.
Besides,

dimC(i) yi jC
( j)
= p2,

that is, C(i) yi jC
( j) is irreducible as a left graded C (i)-module and as right graded C ( j)-

module. Hence

C(i) yi j = yi jC
( j).(7)

Considering the fact that the homogeneous components in C (i) and C( j) are 1-
dimensional, one can use (7) to construct a well-defined mapping C (i) → C( j), which
is an isomorphism of graded algebras. Let us denote now for j = i + 1 each such iso-
morphism by ϕi,i+1 and we set ϕ1 = 1, ϕ2 = ϕ12, ϕ3 = ϕ23ϕ12 = ϕ23ϕ2, . . . , ϕk =

ϕk−1,kϕk−1. Then for any x ∈ C (1) and for i < j one has

ϕi(x)yi j = yi jϕ j(x).(8)

We can construct similar isomorphisms ϕi+1,i : C(i+1) → C(i), i = 1, . . . , k − 1,
and consider an arbitrary a ∈ C (i). Then

ayii = ayi,i+1 yi+1,i = yi,i+1ϕi,i+1(a)yi+1,i = yii

(

ϕi+1,iϕi,i+1(a)
)

.(9)

Since a and ϕi+1,i

(

ϕi,i+1(a)
)

are in C(i), yii ∈ A(i) and A(i)C(i) ∼= A(i)⊗C(i), it follows

from (9) that ϕi+1,i

(

ϕi,i+1(a)
)

= a. In its turn this implies that

ϕi(x)yi,i−1 = yi,i−1ϕi,i−1

(

ϕi(x)
)

= yi,i−1ϕi,i−1ϕi−1,iϕi−1(x) = yi,i−1ϕi−1(x),

so that (8) holds for all i, j = 1, . . . , k. Let us consider in R a non-graded subalgebra
C ∼= Mp(Φ), whose elements have the form

x̄ = x + ϕ2(x) + · · · + ϕk(x),

where x runs through the whole of C (1). Since yi j ∈ eiRe j , ϕi(x) ∈ eiRei and the
idempotents e1, . . . , ek are orthogonal, it follows from (8) that

x̄yi j = yi j x̄(10)

for any 1 ≤ i, j ≤ k, x̄ ∈ C . It is easy to observe that the elements of the form

ei
α1 yi je

j
1β , 1 ≤ α ≤ qi , 1 ≤ β ≤ q j ,

are linearly independent in R and homogeneous in the G-grading. Besides, their

linear span D is an algebra isomorphic to Mq(Φ) where q = q1 + · · · + qk. Indeed

the isomorphism will be defined if we map ei
α1 yi je

j
1β to matrix unit Eµν ∈ Mq(Φ)

where µ = q1 + · · · + qi−1 + α, ν = q1 + · · · + q j−1 + β. Since x̄ei
α1 = ϕi(x)ei

α1,

e
j
1β x̄ = e

j
1βϕ j(x) and ei

α1 is in the centralizer of C (i) it follows from (10) that

x̄ei
α1 yi je

j
1β = ei

α1 yi je
j
1β x̄,
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that is, D is in the centralizer of C in R. Since dim D = q2, dim C = p2, dim R = p2q2,
R = CD is isomorphic to C (1) ⊗ D. Let ϕ : C (1) ⊗ D → R be the isomorphism,

ϕ(x ⊗ Eµν) = x̄Eµν where

Eµν = ei
α1 yi je

j
1β µ = q1 + · · · + qi−1 + α, ν = q1 + · · · + q j−1 + β,(11)

a matrix unit in D. Since all Eµν are homogeneous, the grading on D is elementary,

wt(Eµν) = g−1
µ gν for the element (11). Besides one may assume that gµ = gi , gν = g j ,

since ei
α1 ∈ A(i), e

j
1β ∈ A( j) and

wt(Eµν) = wt(yi j ) = g−1
i g j .

Let us set H = H(1)
= Supp C(1) and compute the weight of the element x̄Eµν =

ϕ(x ⊗ Eµν), if x ∈ C(1), wt(x) = h ∈ H:

wt(x̄Eµν) = wt(x̄ei
α1 yi je

j
1β) = wt

(

ϕi(x)ei
α1 yi je

j
1β

)

= wt
(

ϕi(x)yi j

)

.

Let us set wt
(

ϕi(x)
)

= h ′. Then xy1i = ϕ1(x)y1i = y1iϕi(x) by (8), whence

hg−1
1 gi = g−1

1 gih
′, that is, h ′ = g−1

i hg j since g1 = e. Thus wt
(

ϕi(x)yi j

)

=

g−1
i hgig

−1
i g j = g−1

i hg j = g−1
µ hgν . We remark now that if we consider on C (1) ⊗ D

the induced grading (see Section 3) then

wt(x ⊗ Eµν) = g−1
µ hgν

for x ∈ C(1)
h . This means that ϕ is an isomorphism of graded algebras, and the proof

of Theorem 5.1 is complete.

By Theorem 5.1 any graded matrix algebra A = Mn(Φ) is a tensor product of a
matrix algebra B = Mq(Φ) with an elementary gradings and a matrix algebra D =
Mp(Φ) with a “fine” grading. On the other hand, by Corollary 2.7 D is a graded
division algebra and B⊗ D ∼= Mq(D) can be considered as the algebra of all Φ-linear

transformations of the free left D-module of rank q. We can generalize the notion of
elementary grading in the following way.

Definition 5.2 Let R =
⊕

g∈G Rg be a G-graded algebra over Φ, and g =

(g1, . . . , gq) ∈ Gq. The grading on the matrix algebra A = Mq(R) is called elementary
defined by the tuple g if

At = Span{rEi j | r ∈ Rh, g
−1
i hg j = t}

where Ei j are the matrix units, 1 ≤ i, j ≤ q.

Using this generalization, Theorem 5.1 and Definition 4.1 of induced grading we
can say that any grading on a matrix algebra is elementary.
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Corollary 5.3 Let A = Mn(Φ) =
⊕

g∈G Ag be a G-graded matrix algebra over an
algebraically closed field Φ. Then A ∼= Mq(D) with an elementary G-grading in the

sense of Definition 5.2, where n = pq and D is the p× p-matrix algebra equipped with
the structure of a G-graded division algebra.

Corollary 5.4 Let Mn(Φ) be graded by a finite group G whose order is not divisible by

a square. Then any grading of Mn(Φ) by G is elementary in the sense of Definition 2.1.
That is, any such grading is induced by a G-grading of Φn.

Finally, we note that A = Mn(Φ), as in Corollary 5.3, is a G-graded primitive
algebra and it has a faithful graded irreducible module V = D⊗Fq ∼= Dq. The action
of A on V is natural and the grading is given by x ⊗ ei ∈ Ag−1

i h if x ∈ Dh.
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