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Abstract

Let A be a root system and let V be the Hahn group of real-valued functions on A. Then A can
be order-embedded into P(A), the root system of prime l-ideals of V. In this note we identify
P(A) in terms of A without explicit reference to ¥V, up to the convex subgroup structure of the
additive groups of real closed 7,-fields. In particular, we characterize the minimal prime /~ideals
of Vin terms of A by an ultrafilter construction which generalizes the well-known method when
A is trivially ordered.

1980 Mathematics subject classification (Amer. Math. Soc.): 06 F 20.

1. Introduction

Throughout this introduction let G be an abelian /-group. Let €(G) denote the set
of all convex l-subgroups of G (or l-ideals, since they are normal). If G is an /-sub-
group of an /-group H, and the map C— CnG is a lattice isomorphism of €(H)
onto %(G), then H is an a-extension of G. Those elements P of €(G) for which
G/P is totally ordered are called prime; equivalently, the set of elements of %(G)
larger than P is a chain. Thus, the set of primes forms a root system, that is, a
partially ordered set in which no two incomparable elements have a lower bound.
Each prime exceeds at least one minimal prime; a prime P is minimal if and only if
for each g€ P+ there exists A¢ Pt such that Aag = 0. If the intersection P * of all
elements of €(G) larger than a prime P covers P, then P is called a value; it is
maximal with respect to not containing each element g€ P*\ P. The root system of
all values of G is denoted by I'(G). If A is any root system, then

V = V(A,R) = {f: A—>R: the support of f has ACC}
17
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is an abelian /-group, called a Hahn group. Each abelian /-group G may be /-
embedded into V(I'(G),R) (Conrad, Harvey and Holland (1963)). For further
information about l-groups, the reader may consult Conrad (1970), or Bigard,
Keimel and Wolfenstein (1977).

If A is a trivially ordered set, then it is well known that the set of minimal primes
of V(A,R) are in a one-to-one correspondence with the ultrafilters on A (see Conrad
and McAlister (1969) and Gillman and Jerison (1960)). In the next section we
generalize this to the case where A is any root system. In the third section, we
identify the set P(A) of the prime lideals of V in two steps. First, we identify
S(A) = P(A)/~, where P~ Q if they contain the same set of minimal primes.
(For a discussion of this equivalence relation in a more general context, see Conrad
(1978).) Then, each =-equivalence class is described in terms of the convex sub-
group structure of the additive groups of certain real closed »,-fields.

2. The minimal prime /<ideals of V'

Throughout A will be a fixed root system and ¥V = V(A,R). Let U be the set of
all maximal trivially ordered subsets of A. We partially order U by declaring
A< Bif 84 implies that there exists y € B with 6 <y. This is a lattice order with

Av B = {maximal elements of 4u B}
and
A A B = {minimal elements of A u B}.

We will occasionally abuse this notation by speaking of 4 v B where at most one of
A and B is trivially ordered but not maximal. If 4, BeW and X< An(Ba A), let

B<(X) = {8 € B: there exists y€ X with y< 8}.

LEMMA 2.1. Let A,BeW with A<B and let U be an ultrafilter on A. Let
B(U) ={B(X): X€X}. Then B-(%) is an ultrafilter on B.

PRrOOF. Clearly B<(X)# @ for each Xe%. Suppose X, Ye% and let
U= U{Ws4d: B (W)= B(X)}
and
Z=U{WcAd: B-(W)=B(Y)}.

Then, U,Ze%, B-(U) = B<(X), B*(Z) = B*(Y), and B (U)nB“(Z) = B<(UnZ).
Since UnZe%, B(X)nB(Y)= B-(UnZ), which is an element of B“(%).
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Therefore, B-(%) has the finite intersection property. Similarly, if X< B, then
X e B(%) or B\ X< B-(%). Therefore B<(%) is an ultrafilter.

If A(%) and B(%) are ultrafilters on 4, BeW respectively, then A(%) and B(%)
are said to be compatible if

(4 v B)* (A(%)) = (Av B)" (B(%)).

If for each 4 €N, A(%) is an ultrafilter on A, and for each 4, Be U, A(%) and B(%)
are compatible, then {A(%): A €U} is called a compatible system of ultrafilters on W.
For each ve V, let S(v) = {a €A: v(x)#0} and let

M(v) = {maximal elements of S(v)}.

Since ve ¥V, S(v) satisfies the ascending chain condition and so 3 € S(v) implies
that there exists a € M(v) such that a> 8. Clearly M(v) is a trivially ordered set.

THEOREM 2.2. There is a one-to-one correspondence between minimal prime l-ideals
of V and compatible systems of ultrafilters on W given as follows:

Let P be g minimal prime l-ideal of V. For each A€W, let A(%) = {A\ M(v): veP}.
Then €p = {A(%): A€W} is a compatible system of ultrafilters on A.

Let € = {A(%): AW} be a compatible system of ultrafilters on W and ler -

P, ={veV: A\ M(v)e A(%), for all AcN}.

Then Py is a minimal prime l-ideal of V.

PROOF. Let P be a minimal prime; we first show that each element A(%) of €»
is an ultrafilter on A. Suppose &€ A(%). Then there exists v P+ so that M(v)= A.
Since A is a maximal trivially ordered set, M(v) = A. But then wAv = 0 implies
that w = 0, which is impossible since v is an element of the minimal prime P.
Therefore, each element of A(%) is non-empty. Now let X, Y€ A(%) and choose
u,veP* such that A\M@u)=X and A\M(@) =Y. Let s=yx(4\X) and
t = x(A4\ Y) where x(T) is the characteristic function on T. Then x = sAu and
»y = t Av are both elements of P. Moreover, M(x) = An M(u) and M(y) = Ao M(v)
and so M(xvy)= M(x)u M(y). Therefore,

XY =(A\Mw)n(A\M©) = (A\Mx)n(4\M(»)
= A\(M(x)VM(y)) = A\ M(xVy).
Since xvyeP, Xn YeA(%) and so A(%) has the finite intersection property.

Finally, let X< 4, and suppose that # = y(X) and v = y(4\ X). Then uanv = 0; so
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ueP or veP. Therefore A\ X A(%) or X A(%) and so A(%) is an ultrafilter
on A.

Next, we show that €5 is a compatible system of ultrafilters on 2. Let 4, Be
with A< B. We need to show that B(%) = B*(A(%)). Suppose (by way of contra-
diction) that there is B\ X € B(%) with X € B-(A(%)). Letu = y(X)and v = y(B\ X).
Then uAv = 0 and so we may assume that u€P. Let

U= U{WeA¥): B<(W)=X)}.

Then Ue A(%) and if W = y(U), then 0<w<u and so weP. Since U € A(%), by
the argument above there exists x € P+ so that 4\ U = M(x). But then xvwe P and
M(xvw) = A, which is impossible, since P is a minimal prime. Therefore, €p is a
compatible system of ultrafilters on 9.

Now, let € = {4(%): AcW} be a compatible system of ultrafilters on U; we
shall show that Py is a minimal prime. Let

O ={veV: for all Ae W with M(v)< 4, A\ M(v) e A(%)}.

We will simplify the computations which follow by first showing that P = Q.
Clearly P< Q. Suppose by way of contradiction that ve Q+\ P. Then there is a
BeW with B\ M(v)¢ B(%). Since B(%) is an ultrafilter, BnM(v)e B(%). Let
A €U be such that M(v)< A. Therefore Bn M(v)< A and so Bn M(v)e(Av B)(%).
Since ve Q, X = A\ M(v)e A(%); so (A v B)Y(X)e(4 v B)(%). However,

BaM@)n({(4vB) (X)) =9,

which is impossible since (4 v B) (%) is an ultrafilter. Therefore, @ = P. Since % is
a compatible system of ultrafilters,

P = {veV: there exists AU with 42 M(v) and A\ M(v) € A(X)}.

With this simplification of the definition of P, we will proceed with the proof.

P is a subgroup. Let u,veP and let x =u+v. Let A,B,Ce% be such that
M(x)= A, M(u)< B and M(v)< C. Byreplacing A by A A(Bv C) we may assume that
A< BvC.Sinceu,veP,(BvC)\M@u)e(Bv C)(%)and (Bv C)\M(v)e(Bv C)(%).
Therefore,

(Bv O\ (M(u)v M(v))e(Bv C) (%).

Let X = (Bv C)~(M(x)). Then X< M(u)u M(v) and so X¢(Bv C)(%). Therefore

M(x)¢ A(%) and thus xeP. Since M(x)= M(—x), xeP implies that —xeP.
Therefore P is a subgroup.
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P is convex. Suppose O<x<u and ueP. Let A,Be% be chosen so that
M(x)< A and M(u)< B. Without loss of generality, A4 < B. Since B (M (x))<= M(u),
B(M(x))¢ B(%) and thus M(x)¢ A(%). Therefore xeP.

P is a minimal prime. Since M(u) = M(|u|), u in P implies that {u| € P. Since P
is a convex subgroup, this means that P is an [-subgroup. Let u,v€ V be chosen so
that uanv=0. Pick A€W so that M(u)uM@)=A. Since Mu)nM(v) =0,
A\ M(u) or A\ M(v) is an element of A(%). Thus u or v is in P and so P is prime.
A similar argument will show that v € P+ implies the existence of u¢P such that
unv = 0; thus P is a minimal prime.

3. The structure of P(A)

Let P(A) be the set of prime /-ideals of ¥(A,R), and m(A) the set of minimal
primes of V. From Section 2, we know that m(A) is order-isomorphic to 7(A),
the set of compatible systems of ultrafilters on N, and so is completely determined
in terms of A. For each PeP(A) let m(P) = {Q em(A): Q< P} and for P, Q€ P(A),
let P = Q if and only if m(P) = m(Q). This is clearly an equivalence relation on
P(A). Let S(A) = P(A)/ ~; this root system is called the skeleton of P(A).

A branch point of a root system I' is an element % of I" so that 7 = « v 8 for some
pair of incomparable elements «, 8 of I'. Therefore, S(A) is obtained from P(A) by
identifying all elements of P(A) strictly between two adjacent branch points with
the smaller branch point. Consequently, each o in S(A) is a totally ordered set.
Welet P, = N {Q: Q €o}. This is the smaller branch point and hence is the minimal
element of . (Notice that |J{Q: Q €0} need not be an element of ¢.) Thus o> P,
is a natural embedding of S(A) into P(A) which takes P to P for each minimal
prime P, _

Our next step in the identification of P(A) in terms A is the identification of the
skeleton in those terms. To this end, we need a way to determine when a collection
of minimal primes is contained in a proper prime of V. The following theorem gives
the technique which we will use:

THEOREM 3.1. Let {P,: ¢ €D} be a collection of minimal prime l-ideals of V. For
each @, let €, be the compatible system of ultrafilters corresponding to P, and denote
the ultrafilters on A €W belonging to €, by A(%,). Then there exists a proper prime Q
containing |J{P,: ¢ € ®} if and only if there exists A€W so that A(€,) = A(€)) for
all p,ne®.

PROOF. First, suppose that Q= J{P,: pe®}. Choose xe ¥+\Q and A€ so

that M(x)c A. We claim that A(%,) = A(%,) for all p,ne . Suppose by way of
contradiction that there exist p,ne® so that A(%,)# A(%,). Then there exists
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X< 4 so that Xe A(%,), while A\ X € A(%)). Define u,ve V as follows:

0, ye(A\A)uX
u(y) ={2x(y), yeMX\X
L, yeA\(Xu M(x)),
0, yeA\X,
wy) ={2x(y), yeM(x)nX,
1, ye X\ M(x).

Since M(u) = X< A, A\M(u) = A\ X€ A(%,) and so ueP,. Similarly, veP,. But
then u,ve Q and so uvve Q. But uvv > x, which is not an element of Q, which is a
contradiction. Thus, A(%,) = A(%,) for all g,n€.
Conversely, suppose that there exists 4 with A(%,) = A(%)) for all p,ne®.
Let
S ={veV:ye M(v) implies that there exists & A with 6> v}.

Then S is a convex /-subgroup of V. Let ¢ e @ and let Q be the convex /~subgroup
of V generated by S and P,. Since Q> P,, Q is prime. Let ne® with 05 ¢, and
choose x eP;,* . Pick Be ¥ so that M(x)< B. Since %, and %, are compatible systems
of ultrafilters and A(%,) = A(%,), then (4v B)(%,) = (4 v B)(%,). Define veV as
follows:

x(y) if there exists §e(4v B)n M(x) with 6>y,

u(y) = )
0 otherwise.

Now
M@)=(AvB)nM(x) and (4AvB)\M@)=(4v B)\ M(x).

Since (AvB)\M(x)e(4v B)(%,), veP,. Clearly, x—veS. Thus xeQ and so
P, Q. Since x(A)¢Q, Q is a proper prime of ¥ which contains J{P,: p€P@}.

For A€, 4,,%,em(A), we define €, ~, %, if A(%)) = A(%,). This is an equi-
valence relation on #i(A). Notice that if B> 4, A, BeY, then €, ~, %, implies that
%, ~p%,. Given € em(A), let [¢], denote the equivalence class of € under ~.
Let

S(A) = {o= m(A): for all € em(A)\o,
there exists 4eW and @ em(A) so that [D] 20 and € ¢ [2] 4}.
Partially order S(A) by set inclusion. For [P]e S(Q), let
JUAP) = {€yem(d): Q € m(P)}
and if o€ S(A), let g(o) = [P,], where P, = N {PeP(A): P2 Py, for all ¥ €o}.
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THEOREM 3.2. f is an order isomorphism of S(A) onto S(A) with inverse g.

Proor. We first show that f([P])eS(A). Let € em(A)\f([P)). Since Py,EP,
there exists x € P} \ P. Choose 4 € U so that M(x)< A. By the proof of Theorem 3.1,
[€0)42f([P]), for each Q em(P). Let Q em(P). Since x ¢ Q, there exists BeU so
that B\ M(x)¢ B(%,). Therefore M(x) Be B(%). Since M(x)< A and

M(x)¢A(F), AE)+#A(Ey).

Thus, € ¢[%,],4 and so f([P]) e S(A).

Clearly gf({P]) = [P] and both f and g preserve order; it remains to show that
fg(0) = 0. We need only check that if o€S(A), then m(P,) = {Py: € €0}. One
containment is clear. Suppose (by way of contradiction) that P,= Q for some
Q em(A) with €, ¢ . Then there is an A€W and P em(A) so that [P] =20 but
%o ¢ [2] 4. By the proof of Theorem 3.1, there is a prime N> {J{Pg: € € o} with
Q¢ N. Therefore N< P, which contradicts the definition of

P,=N{P: P2P, ¥ca}.

We have now seen that the skeleton S(A) is describable entirely in terms of A.
It now remains to describe the primes in each [P]€ S(A).
Let [P]e S(A) and suppose o = f([P]) < 7(A). Define

B(o) ={AeWN: €, ~,%b,, for all €,,%,€0}.

Notice that if 4 € B(c) and B> A, then Be B(o). For notational convenience, for
each Be B(o), let B(%) = B(p ) where % is any element of o. (This is possible by
the definition of B(c).) For A4,BeB(o), let AF ={xeAd: a<BeB}, and let
Ap={xeA: a>fe B}. (Another description of A% is A% = ((4 A B)n A)\ (4 n B)).
Now, 4 = APuAxu(4Nn B) and precisely one of these sets is in A(%). Define
A~B if AnBeA(%) (4, Be B(s)). This is an equivalence relation on B(o). If
ABe A(%), then we write [4] < [B], where the brackets denote the equivalence
class under ~. A routine computation shows that this relation is well defined and
forms a total order on B(o)/~.

LeMMA 3.3. If A, Be B(o) with [A] = [B), then Av B~ A. Therefore, if [A] > [B],
we may assume that A> B.

ProOF. Suppose that [A] = [B]. Now, (AvB)nA=2Agu(4nB). If [A] > [B],

then Az A(%); if [A] = [B), then A n Be A(%). In cither case, (AvB)nAec A(%)
and so AVB~A.

For each 4 € B(o), let

Py ={veV:forall B= A, B\ M(v)eB(%)}.
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LemMaA 3.4. P, is a convex I-subgroup of V containing P,.

PRrOOF. Let S = {veV: ye M(v) = there exists €4 with §>v} and let €co.
A routine argument shows that P, is the convex /-subgroup generated by S and
Py, and the proof of Theorem 3.1 shows that P,2 |J{Py: € €o}. Since P, is the
intersection of all such Py, P,2P,.

ProrosITION 3.5. Let A, B€ B(g). Then
(i) Pg = P, if and only if [B] = [A4].
(ii) Pg<P, if and only if [B] < [A].

Proor. We will first show that if [4] = [B] and B> 4, then P, = Pg. By the
definition of P4, P,< Pg. Let D> A and let xe ¥V be chosen so that

D M(x)e D)

(that is, x ¢ P,). Since [4] = [B], 4n Be A(%) and since D> A, D*(An B) e D(%).
But then D“(4n B)n M(x)e D(%). Since

D (A4nB)=sBvD, D“(AnB)nM(x)e(Bv D)(X).

Therefore x ¢ Pg, and so P, = Pp.

If [B] = [4], we may assume that B> A, by Lemma 3.3 and the above. Then
Pz P4, by definition. This shows that if Pp< P, then [B] < [4]. Now, suppose
that [B] < [4]. We may assume that B< A, and so A =Azu(4nB). Since
[B1<[A4], BAcB(%). Therefore, y(B4)¢Pg. Since C\M(x(B4))=C for all
Cz A, y(B4)eP,\ Pg. Because P, and Py are comparable, P2 Pg.

Finally, if [A]# [B], then without loss of generality [4] < [B]. Consequently, by
part (ii), P, Pg and so P, = Py implies that [4] = [B].

PROPOSITION 3.6. P, = [ {P4: A€ B(o)}.

PROOF. Let 0<ve{P,: A€ B(o)}. If M(v)< A€ B(o), then veP for all €eo.
Thus ve P,. If M(v)< A ¢ B(o), then there exist ;,%, € o such that €, ~,%,. Thus,
there exists X< A so that X € A(%)) and 4\ X € A(%,). Define w,, w,€ ¥V as follows:

uy) ifyeX,
0 if yeA\ X,
Wy) ifyed\X,
wyy) = .
0 if ye A\(4\ X).
Then A\M(w,)2A\XcA(%;) and so w,€P,; similarly w,eP,. Therefore

wy(y) = [
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w,+w,eP,. Since wy+wy,2v>0, veP,. Thus P,2 ({P,: A€ B(o)}. The other
containment follows from Lemma 3.4.

PROPOSITION 3.7. Suppose A, Be B(c) and A~ B. Let
04 = {fell R: A\S(f)eAW)
Op = {fellgR: B\S(f) e B(%)}.

(These are minimal primes of 11 /R and I1gR respectively.) Then 11 ;R/Q , and
Iz, R/Qp are isomorphic o-groups.

and

ProoF. We define p: I1 ,R/Q —~>IIzR/Q as follows: Given Q ,+vell ;,R/Q,,
define wellgR by

o) if f<acd, BeB4u(4AnB),

0 otherwise.

Then let u(Q4+v) = Qp+w.
First we show that u is well defined: If ve Q 4, then 4\ S(v) € A(%). Now,

B\S(w) = B\{BeB: B<aecS()}
={BeB: B>acA}u{BeB: B<acA\S(v)}
2 {BeB: B>acA\S@)}u{BeB: B<acA\S©®)}.
Since A(%) and B(%) are compatible ultrafilters and 4\ S(v) e A(%),
{BeB: B>aecA\S()}u{BeB: B<acA\S()}eB).

Hence we Qp and so p is well defined.

Wedefinev: Iz R/Qp— 1 ,R/Q , similarly, and claim that vu(Q 4 +v) = Q 4 +v.
By definition, vu(Q 4 +v) = Q 4+v| 4q5 Where v| 45(y) = v(y) if yeAnBand is 0
if y¢ AnB. Therefore, we need to show that A\S(v—v|4np)€E A(@). Since
S@—v|4ap)=A\(40 B),

A\S(w—v|4n5)24\(A\AnB) = AnBe A(%).

Thus vu(Q 4+v) = Q,+v. Similarly, pv is the identity on IIzR/Qp. Since u
clearly preserves order, p is an o-isomorphism.

This proposition enables us to define an o-group which we will use to analyze
the order structure of [P]€S(A). Let o = f([P]) € S(A). Then set G4 =11 R/Q 4,
for each [4] € B(o)/ ~. This is well defined by Proposition 3.7. Let

H, = V(B(0)/ ~, G4 = {kell{G4: A€ B(o)/~}: S(k) satisfies the ACC},
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where S(k) is given the total order < inherited from B(c)/ ~, and H has the obvious
o-group structure.

THEOREM 3.8. There exists an o-monomorphism
o VIP,—~H,

so that H, is an a-extension of «V/P,).

Proor. We define «(P,+v)([4]) = Q4+ 4.
We first show ¢ is well defined into I1G 4. Suppose ve P, and 4 € B(s). Choose

B> A so that
X={BeM@): B>aeM(@| )}<B.

If M(v|,)eA(%), then X € B(%) since the A(%) and B(%) are compatible and
B<(M(v],)) = X. However, Xn(B\M(v)) = @ and since veP,, B\ M(v)e B(%).
Consequently, X'¢ B(%) and so M(v|,) ¢ A(%). Therefore, v|,€Q 4 and « is well
defined into I1G 4.

We claim that ¢ is one-to-one into H. Suppose P,+v>0 and choose B2 M(v).
Since v ¢ P,, there exists A € B(o) so that M(v)n A € A(%). Clearly An M(v)< Bv A
and since A(%) and (Bv A)(%) are compatible, M(v)n A€ A(%) implies that
AnM@)e(4v B)(%). Therefore,

(4vB)\ M| 4y5)¢(4 v B) (%),

and so v| 45 ¢ O 45 Therefore (P, +v)([4 v B]) is not zero and so « is one-to-one.
We now claim that [4v B} is the maximum element of S(«(P,+v)) and so
P,+v)e H. Suppose [C] >[4V B] where (without loss of generality) C>Av B.
Since M(v)< B, S(v|c)= Cn(Av B). Because [C] >[4V B],

X={yeC:y>acAvB}eC(%),
and because C\ S(v|c)> X, C\ S(v|c) € C(%). Therefore v|;€Q; and so

UP,+)([C]) = Q¢ +0.
Thus [C] ¢ S((P, +v)).
Finally, since «(V/P,)2 XG4, H, is an g-extension of «(V/P,).
REMARK. The map : is independent of which representative of [4] we choose to
define the component maps, because of the nature of the isomorphisms
,4R/Q,~TzR/Qp.
Now suppose that o€ S5(A). Let
A(o) = B(o)\ U {B(r): 7€ S(A) and > o}
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and let _
M, = N{P4: A€B(0)\ A(0)} = N{P,: 7€ 5(A), 72 a).

If there exists a smallest = so that 7> ¢, then M, = P, and M, ¢[P,]. If no such
exists, then M, is the largest element of the chain [P,]. In particular, if A(c)=0,
then M, = P, and so [P,] is a singleton.

Thus, the elements of [P,] are in a one-to-one correspondence with €(M,/P,),
the convex subgroups of M_/P,, except possibly for the existence of a largest
element as specified above. However, M, /P, is the convex subgroup of V/P, which
corresponds to V(A(o)/ ~, G 4) under the a-extension of Theorem 3.8.

Thus, we now need a way of describing the convex subgroup structure of the
Hahn group ¥(I', G,) where I' is a totally ordered set and each G, is an o-group
with €(G,) its set of convex subgroups. Let

g =U{yx%(G): yeT}.

If o, B I" with o covering B, we will identify («, 0) with (8, G,). Call ¢ modulo this
equivalence relation # and order it lexicographically with the first component
dominating. Clearly €(¥(I', G,)) is order isomorphic to 5#.

Thus, we have described P(A) up to the convex subgroup structure of the
o-groups G4 But G4 =11 4R/Q,. Now, Q, is a maximal ring ideal of Il 4R,
considered as the ring of continuous functions on the discrete space A (see Bigard,
Keimel and Wolfenstein (1977), p. 179), and so G is a real-closed 7,-field (see
Gillman and Jerison (1960)). Now, we claim that I'(G ) (the values of Gi,) is an
7,-set. For, if

P CPCP;.. .05 0,0,

are all values, choose g;, h; € G’y such that P; is the value of g; and Q; is the value
of h;. Then {g;} <{h;} and so there exists k € G, with {g;} <k <{h;}. Thus, the value
of k lies between the P;’s and Q;’s. But €(G ) is just the Dedekind-MacNeille
completion of I'(G|4), considered as a totally ordered set. Consequently, we have
concluded that €(Gy is in each case the Dedekind—-MacNeille completion of an
T)I-Set.

Norte. Portions of this paper first appeared in the second author’s Ph.D. dis-
sertation ‘Lattice-ordered groups’, written at the University of Kansas in 1976
under the direction of Dr. Paul F. Conrad.
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