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Abstract

In this paper, we study the mean square asymptotic stability of a generalized half-linear neutral stochastic
differential equation with variable delays applying fixed point theory. An asymptotic mean square stability
theorem with a necessary and sufficient condition is proved, which improves and generalizes some results
due to Burton, Zhang and Luo. Two examples are given to illustrate our results.
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1. Introduction

It is well known that stochastic delay differential equations, also known as stochastic
functional differential equations, are a natural generalization of stochastic ordinary
differential equations by allowing the coefficients to depend on values in the past. As
a simple example let us mention the differential equation

dN(t) =aN@)(K — N(t — 1)) dt + 0dW(t), t>0,

which is frequently used to model the dynamics of a population size taking into
account time to maturity T and random fluctuations. Recently, the theory and
applications of stochastic delay differential equations have been studied by many
authors (see, for example, [5, 8, 10] and the references therein).

On the other hand, Lyapunov’s direct method has been successfully used to
investigate stability properties of a wide variety of differential equations. However,
there are many difficulties encountered in the study of stability by means of
Lyapunov’s direct method. Recently, Burton [1-4], Luo [9] and Zhang [11, 12] studied
stability using fixed point theory which overcame the difficulties encountered in the
study of stability by means of Lyapunov’s direct method.

This work was supported by the National Natural Science Foundation of China (10671135, 70831005)
and Specialized Research Fund for the Doctoral Program of Higher Education (20060610005).

© 2009 Australian Mathematical Publishing Association Inc. 0004-9727/2009 $16.00

369

https://doi.org/10.1017/5S0004972709000422 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972709000422

370 M. Wu , N.-J. Huang and C.-W. Zhao 2]

Hitherto, fixed point theory has been used almost exclusively to deal with
the stability of deterministic differential equations, not for stochastic differential
equations. Very recently, Luo [9] studied the mean square asymptotic stability of
a class of linear scalar neutral stochastic differential equations. For more details of
stability with regard to stochastic differential equations, we refer to [7, 8] and the
references therein.

Motivated by previous work, in this paper we study the mean square asymptotic
stability of a half-linear neutral stochastic differential equation with variable delays
applying fixed point theory. An asymptotic mean square stability theorem with a
necessary and sufficient condition is proved. Two examples are given to illustrate
our results. The results presented in this paper improve and generalize the main results
in[2,9, 11, 12].

2. Main results

Let (2, F, {F:}:>0, P) be a complete filtered probability space and W () denote a
one-dimensional standard Brownian motion defined on (€2, F, {¥;};>0, P) such that
{Ft}i>0 is the natural filtration of W(¢). Let a(t), a(t), b(t), b(1), c(t), e(t), q(t) €
C(RT,R) and t(¢),8(1) e C(RT, RT) with t —7(t) = 00 and ¢ — §(¢t) = oo as
t — oo. Here C(S1, $>) denotes the set of all continuous function ¢ : S| — S with
the supremum norm || - ||.

Burton in [2] and Zhang in [12] studied the equation

xX'(t) = =b()x(t — (1)) (2.1

and proved the following theorems.

THEOREM A (Burton [2]). Suppose that t(t) =r and there exists a constant o < 1
such that

t t ;- K _
f |b(s +r)| ds +/ |b(s + r)|e™ /s blutr)du / |b(u +r)| duds <o
t—r 0 s

—r

for all t >0 and fooo b(s)ds = oco. Then for every continuous initial function ¢ :
[—r, O] = R, the solution x(t) = x(t, 0, ¢) of (2.1) is bounded and tends to zero as
r — oQ.

THEOREM B (Zhang [12]). Suppose that t is differentiable, the inverse function
g(t) of t —t(t) exists, and there exists a constant o € (0, 1) such that for t >0,
lim inf, o0 [y b(g(s)) ds > —occ and

t t P _
/ 1b(g(s))| ds + / e~ Js PEWIdu o)) 12'(5)| ds
t—t(t) 0
t - _ s _
+/ e Js b(g(”))d”|b(g(s))|/ b(g(v)|dvds <a<1. (2.2)
0 s—1(s)
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Then the zero solution of (2.1) is asymptotically stable if and only lffo b(g(s)) ds —

00, ast — oQ.

Obviously, Theorem B improves Theorem A. Recently, Zhang [11] studied the half-
linear equation
x'(t) = —a®)x ) + b()g(x(t — (1)) (2.3)

where g : R — R is continuous and obtained the following theorem.

THEOREM C (Zhang [11]). Suppose that T(t) > 0 such that fort >0, t — t(t) > o0
as t — 0o, and there exists a constant L >0, for |x|,|y| <L, |gx) —g(y)| <
|x —y| and q(0)=0. Fort > 0, liminf;_, o f(; a(s)ds > —oo and

t -
sup/ e~ s awdup oy ds < 1. 2.4)
t>0 JO

Then the zero solution of (2.3) is asymptotically stable if and only if fé a(s)ds — oo,
ast — oo.

Very recently, Luo [9] considered the linear neutral stochastic differential equation
dlx(t) —q@)x(t —t(@)] = [a@®)x (1) +bO)x(t — (1)) dt
[c®)x(@)+e®)x(t =8@)]dW(E) (2.5
and obtained the following theorem.

THEOREM D (Luo [9]). Let t©(t) be differentiable.  Assume that there exist a
constant a € (0, 1) and a continuous function h(t) : [0, co) — R such that for t > 0,
lim inf;_, oo f(; h(s) ds > —oo and

t
lq (©)] +/ la(s) + h(s)| ds
t

—1(t)

! 1
- /o ™ S MW A (a(s — 7(5) + (s — TN = T'(5)) + b(s) — q()h(s)| ds

t " s
+ / e i B du o) la(u) + k()| du ds
0

s—1(s)
' ) 12
+ </O e~2 s h du1c(s)] + le(s)])2 ds) <a<l.

Then the zero solution of (2.5) is mean square asymptotically stable if and only if
fé h(s)ds — 0o, ast — oo.

In this paper, we consider the following half-linear neutral stochastic differential
equation

dlx(®) —q @) f(x(t —t@®))N] = [a@®)x@) + b() f(x(t — ()] dt
+ [c@)x(@) +e(®)gx(t =8N dW (1), (2.6)
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with the initial condition
x(s) =¢(s) fors e [m(0),0],

where the functions f: R — R, g: R — R are continuous, ¢ € C([m(0), 0], R),
x :[m(0), o0) x 2 — R, and

m(0) = min {inf{s — 7(s), s > 0}, inf{s — 8(s), s > 0}} <O0.

Note that (2.6) becomes (2.5) for f(x)=g(x)=x. Thus we know that (2.6)
includes (2.1), (2.3) and (2.5) as special cases. Our aim here is to generalize
Theorems B, C and D to apply to (2.6).

Forany ¢ € C([m(0), 0], R), we define ||¢ || = Sup;c(m(0).07 [#(s)]. Foreach A > 0,
we define C(A) :={¢p € C([m(0), 0], R) : ||¢|| <A}. Denote by F the Banach space
of all F-adapted processes (¢, w) : [m(0), co) x & — R which are almost surely
continuous in ¢ with norm

12
||w||F={E< sup |1/f(s,w)|2>} .

s>m(0)

Moreover, we define F(A) ={y € F : || ||F < A} for each A > 0 and let

1/2
||¢||5£”={E< sup |w(s,w)|2)} ., forr<t,

s€[r,t]

and

172
||w||5‘3’°°>={E(supW(s,w)P)} :

s>0

THEOREM 2.1. Suppose that t is differentiable, and there exist continuous functions
h(t) : [0, 0c0) = R and constants L > 0, a € (0, 1), B € (0, 1] such that fort > 0:

() liminf_ o [y h(s)ds > —oo;
t

(i) ﬂlq(t)l-i-/ la(s) + h(s)| ds

t—1(t)

t . s
+/O e~ Js M dup o)) la(u) + h(u)| du ds

s—1(s)
t t
* / e [ MW du((a(s — v () + h(s — T())) (1 — 7'(5))]
0
+ Blb(s) — q(s)h(s)|) ds U2
! 1
+2 / e 2L hwW du (1o (o) + Ble(s)])? ds <a<l1;

0
(i) |f(x)—fMI<Blx —yl| and |g(x) — g(y)| <Blx —y| for all x,y e F(L)
with f(0) = g(0) = 0.
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Then the zero solution of (2.6) is mean square asymptotically stable if and only if
t
/ h(s)ds — oo, ast— oQ. 2.7)
0

PROOF. We suppose that (2.7) holds. Choose § > 0, § < L such that 26K + oL <L,
where K = sup,.ofe” Jo hs) 45y Let ¢ € C(8) and set

S = {x 1 [m(0), 00) x L = R | x(t, w) = ¢(t) for t € [m(0), 0],
x(t, ) € F(L) fort >0, E|x(t, w)|* — Oast — oo}.

Then it is easy to check that S is a closed subset of F'. From the definitions of || - ||, for
anyx € Sandt > 0,

x|l F = max{(|g|l, IIXIIEQ’OO)} <L. (2.8)
Define an operator P : S — S by (Px)(t) = ¢(t) for t € [m(0), 0] and for ¢ > 0,
0

(Px)(t) = (¢(0) —q(0) f(¢(=7(0))) —f

—7(0)

(@(s) + () (5) dS>e_ Ji sy ds

t

+q@) f(x(r — (1)) +/ (a(s) + h(s))x(s)ds

t—1(1)
! 1
+ / e~ S MW du (s — 7(s)) + h(s — 1(s)))
0
x (I —1'(s)x(s — 7(s)) + (b(s) — q()h(s)) f (x(s — T(5)))) ds
t . Ky
_ / e Js hw d“h(s)(/ (a(u) + h@u))x(u) du) ds

0 —7(s)

t t
- /o e B WA () x(5) + e(s)g(x (s — 8(5)))) AW (s)
5
= Z I; (1). (2.9)
i=1

We now show the mean square continuity of P on [0, c0). Let x € §, 71 > 0 and |r|
be sufficiently small. Then

5
E|(Px)(Ty +r) — (Px)(TDI* <5 ) EIL(Ti +r) — Li(T).
i=1

It is easy to verify that

EILT +r)—LTDP?—0, asr—0,i=1,2,3,4.
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From the last term /5 in (2.9), we have
E|Is(Ty +r) — Is(Tp)?
/T' o N ) du i n du D
(>)< (c(8)x(s) +e(s)gx(s —8(s)))) dW(s)

Ti+r T +r 2
+/Tl e IO (e (5)x (5) + e(5)g (x (s — 8(5)))) AW (s)

1

= F

<2E /Tl e72 fsTl h(”)dule— fTTllJrr h(u) du 1|2
0
X |e(9)x(s) +e($)g (x(s = 8(s)))|* ds
Titr Ty +r
+2E / ! 6721_; h(u) d“|c(s)x(s) + e(s)g(x(s _ 8(S)))|2 ds
T

—0 asr—0.

Therefore P is mean square continuous on [0, 00).
Next, we verify that | Px||r < L. As¢p € C(§) andx € S,

12
I Px|190 = {E(sup |Px(s)|2)} = {E(sup

5>0 s>0

5

sl )}

5 1/2
Z{E(sup|ll~(s)|2)} : (2.10)
i=1 520

It follows from (2.9), (2.10), condition (ii), (iii) and Doob’s L”-inequality (see [6])
that

I; (s)
1

IA

1P < (I¢(0)| +1g0)| - Bl (—7(0))]

0 s
+ / la(v) +h)|- ¢ )| dv) - supfe” Jo h) dvy

—7(0) 5>0

+ (E sup (|q(s)| - Blx(s —t(s))]

s>0
s 2\ 1/2
+ / la(v) +h@)| - |[x ()] dv> >
s—T(s)
+ (E sup (/S o= Iy hw du(|(a(v — 7(v))
s>0 0

+h(w -t =7 W) |x(— 1))
2\ 1/2
+ [b(v) — g(V)h(V)| - Blx(v — T(v))]) dv> >
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+ <E sup (fg el h(”)dulh(v)|(fv la(u)
>0 0 v—T(v)
20 12
+ h(u)] - |x(u)] du) dv> >

+2sup (E / T2 M du ) )]
>0 0
B 12
+le()] - Blx(w — 8> dv)

0

< aK(l + Bla(0)] +/ () + h(w)| dv)

—1(0)
N

+lIxllF - su%) {ﬂlq(s)l +/ . la(v) + h(v)| dv
+ / e 0 du(|(a(v — 7(v) +h(v — T (A — ' ()]
0
+ Blb(v) — g(V)h(v)|) dv

+ / e—f5’1<”>d”|h(v)|(fv |a(u)+h(u)|du) dv
0 v

—7(v)

s ) 12
+ 2( / 21 du ()] 4 Ble(v)))’ dv) }
0
<2K +oaL <L.

It follows from (2.8) that
0,
| Px|lF = max{||¢]l, IIPXIIEV N <L

Thirdly, we verify that E|(Px))|>*—> 0 as t — oco. Since Elx(t)]*> — 0,
t —§(t) > ocoast — oo, for each € > 0, there exists a 77 > 0 such that s > 77 implies
E|x(s)|> < € and E|x(s — 8(s))|* < €. By condition (ii), for > Ti, the last term Is
in (2.9) satisfies

T ,
E|ls(n)] < Efo e 2l hdu (e (5)] - x(s)] + le(s)] - [g(x(s — 8(s)))])? ds

¢ t
+E fT e 2L W du (e (5)] - x(s)] + le(s)] - [g(x(s — () ds

T, .
< (||x||5£”“”’”>2/0 e 2l M0 du 10 (5) 4 Ble(s)])? ds + ae

2 [t h T
< flx)p e 2 /0 e 2L A (o)) 4 Ble(s)])? ds + e

2[5 hu)d
§L2aze le @) "4 ae.
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1
By (2.7), there exists T» > T7 such that L2a26_2 Jry hw du

t>1,

<€ for t > T>. Thus for

E|Is()]” < € + ae.

This proves that E |I5(t)|2—> 0, as t — o0. Similarly, we can show that

E|I,-(z‘)|2 —0,i=1,2,3,4,as t — oo. Thus E|(Px)(t)|*> — 0 as t — oo. Hence
Px eS.

Now we show that P : § — S is a contraction mapping. For any x, y € S,

12
IPx — Pyl = <E sup |(Px)(s) — (Py)(s)|2>
= <E sup
s>0

+ / @@+ RENGE) = yw) do

g)(fx(s —1(s)) = f(y(s — ()

+ /0 e o MO A (g — T(v)) + h(v — T(V)))

x (1= ()(x@ —1(@) =y —1(v)))
+ (0() —qgh@)(f(x(v =) — f(y(v —7(v))))) dv

- / e~ Jo hw d”h(v)(/v (@) + h@w) (x @) — y(@)) du) dv
0 v

—7(v)

+ /0 e Jo MW A (1) (x (v) — y(V)) + e() (g(x (v — 5()))

2>1/2

<llx = yllF - sup {ﬂlq(S)l +/ la(v) + h(v)| dv

s>0 —1(s)

—&(y(w—=14(v))))) dW(v)

n f e~ Jr M A (B1p(v) — g()A(W)| + (@ — T(v)
0

+hw — TN — T W) dv

+ / o= I} 1w du ) @) + h(w)| du dv
0

v—1(v)

s . 1/2
+2< /0 e 2L h0 A (1) 4 Ble(v)])? dv) }

<alx = ylF.
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Therefore, P : S — S is contraction mapping and so P has a fixed point x € S, which
is a solution of (2.6) with x(s) = ¢ (s) on [m(0), 0] and E|x(¢)|*> — 0 as t — oo.

To obtain the mean square asymptotic stability, we need to show that the zero
solution of (2.6) is mean square stable. From (ii) we can choose & > 0 such that
a? 4+ & < 1. Thus we can find a constant N > 0 such that

1 t
<1+N> (ﬂlq(t)H-/ la(s) + h(s)| ds
t—1(1)

! 1
* /0 e~ J MW du((q(s — 7(s)) + h(s — 7()))(1 — 7'(s))]
+ Blb(s) — q(s)h(s)]) ds

t . s 2
_|_/ e s h(“)d”|h(s)| |a(u)+h(u)|dudS)
0

s—1(s)

! 't
+4(1 4 N) f e 2L hwdu(io() + Ble(s))2 ds <o +e < 1. (2.11)
0

Let e > 0 and € < L be given and choose §yp > 0 and §y < € satisfying the condition
41+ N)SZK? + (@ + e)e <,

where N is defined in (2.11). If x(¢) = x(¢, 0, ¢) is a solution of (2.6) with ||¢|| < &9,
then x(r) = (Px)(r) defined in (2.9). We claim that E|x(¢)|*> < ¢ for all r > 0.
Notice that E|x(¢)|? = ||d)(t)||2 < € for t € [m(0), 0]. If there exists t* > 0 such that
E|x(t*)|> =€ and E|x(1)|> < € for t € [m(0), t*), then (2.9) and (2.11) imply that

0

2 *
Elx@? <1+ N)||¢||2(1 + Blqg(0)] +/ la(s) + h(s)| ds) e—2Jo hGw du

—7(0)

t*
+€<1+%> <,3|q(t*)|+/ la(s) + h(s)| ds
t

k(%)

t* % s
+/ o h(u)du(/ |a(u)+h(u)|du)|h(S)|dS
0 s—1(s)

*

t %
+/0 e s M (a(s — T (s)) + h(s — T(s)))

2
x (1 =7()]+ Blb(s) — q(s)h(s)]) dS)

e /0 e 2 MO (e()| 4 Ble(s))? ds

0

2 *
= <1+N)33(1+ﬂlq(0)l+f |a(s)—|—h(s)|ds> ¢=2 0o ) du

—1(0)

+ (Ol2 +e)e <€, (2.12)

https://doi.org/10.1017/5S0004972709000422 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972709000422

378 M. Wu , N.-J. Huang and C.-W. Zhao [10]

which contradicts the definition of ¢*. Thus the zero solution of (2.6) is mean square
asymptotically stable if (2.7) holds.

Conversely, we suppose that (2.7) fails. From (i) there exists a sequence {z,} with
t, — 00 as n — oo such that lim,,_, o f(;” h(u) du = ¢ for some ¢ € R. Then, we can

choose a constant J > 0 satisfying fot” h(u) du € [—J, J] for all n > 1. Define

w(s) == |(a(s — () + h(s — ()1 = '(s))| + Blb(s) — q(s)h(s)]
+ |h(s)] la(u) + h(u)| du

s—1(s)

for all s > 0. From (ii) we have
In n
/ e~ Ji" hw duey(s) ds < a,
0
which implies that

In s n
/ elo @) d”a)(s) ds < ozefé hw) du — o J
0

Therefore, the sequence { fot" elo h(”)d“a)(s) ds} has a convergent subsequence.

Without loss of generality, we can assume that

In s
lim eJo h@w We(s)yds =y
n—>oo 0

for some y > 0. Let k be an integer such that
"R hwd 81
/ elo h@w Yw(s)ds < — (2.13)

for all n > k, where 0 < 81 < 1 satisfies 83%1{262] +(@?+¢)<1.

We now consider the solution x(t) = x(t, t, ¢) of (2.6) with ||¢(tx)|| = &1 and
¢ ()| < &1 for t < 1. By the similar method in (2.12), we have E|x(®)|? < 1 for
t > tr. We may choose ¢ so that

Tk

8
G(t) == tr) — q (1) f (@ (1 — (1)) — / ( )(a(S) +h(s)g(s)ds = 31
—T(tx
(2.14)
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It follows from (2.9), (2.13) and (2.14) with x(¢) = (Px)(¢) that for n > k,
In 2
E\x(tn) — q(tn) f (x(tn — T(tn))) — / (a(s) + h(s))x(s) dS‘

tn—7(ty)

tn _ (In th n
> Gz(tk)e_zf’k h(u)du 2G(1)e i hw) du/ o I hGw) du gy (o s

173

n
> G(lk)e_ ftk h(u) du

X <G(tk)€_ Syl b du _ 2e= Jo" hw du /

Tk

n In 5
> G(tk)e_z ftk h(u) du <G(tk) e fOtk h(u) du / efo h(u) duw(s) ds)
Tk

n tn N
LA 2w an (8L / elo 1 du gy () g
2 2 174

82
> gle‘” > 0. (2.15)

In s
elo h@w du e (s) ds)

If the zero solution of (2.6) is mean square asymptotically stable, then E|x(1)|> =
Elx(t, t, <;5)|2 — 0 as t — oo. Since t, — t(t,) = 00, t, — 8(t,) — 00 as n — X
and conditions (ii) and (iii) hold,

tn 2

Elx(t) — qn) f(x(@tn — T(th))) —/ ( )(a(S) + h(s)x(s)ds| — 0,
th—1t(ty
asn — oo,

which contradicts (2.15). Thus (2.7) is necessary for Theorem 2.1. This completes the
proof. O

REMARK 2.2. Theorem 2.1 is still true if condition (ii) is satisfied for ¢ > 1, with
some t, € RT.

REMARK 2.3. Theorem 2.1 improves Theorem D under different conditions.
Choosing /(t) = —a(t) in Theorem 2.1, we have the following corollary.

COROLLARY 2.4. Suppose that T is differentiable, and there exist constants L > 0,
a € (0, 1), B € (0, 1] such that fort > 0O:
(i) liminf o [y —a(s) ds > —oo;
i) Blg®)l+ B fy el 1@ M b(s) + g()ats)| ds
+ 2(fy e AW ((e(s)] + Ble(s))? ds) 2 < < 1;

(i) |f(x) = fOI=<Blx —y| and |g(x) — g(y)| < Blx —y| for all x,y e F(L)
with f(0) = g(0) =0.
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Then the zero solution of (2.6) is mean square asymptotically stable if and only if
fota(s)ds—> 00 ast — oo.

Let h(t) = —b(p(t)) in Theorem 2.1. Then we have the following corollary.

COROLLARY 2.5. Suppose that t is differentiable, the inverse function p(t) of t —
T(t) exists, and there exist constants L >0, o € (0, 1) and B € (0, 1] such that for
t>0:

(i) liminf,_ f(; —b(p(s))ds > —oo;
(ii)

t
Blg ()| + / . la(s) — b(p(s))| ds
r—t(t
t . s
+ /0 els PP duyp (5| / ()|a(u)—b(p(u))|duds

t t
+ fo eJs PP du((a(s — 7(s)) — b(5))(1 — T/ (s))]
+ BIb(s) + q(s)b(p(s))) ds

t . 1/2
+ 2(/ 2 Js PP du (10 (5)| + Ble(s)])? ds) <a<l;
0

(i) |f(x)— fO)| <Blx —y| and |g(x) — g(y)| <Blx — y| for all x,y € F(L)
with f(0) = g(0) =0.

Then the zero solution of (2.6) is mean square asymptotically stable if and only if
f(; b(p(s)) ds — oo ast — o0.

REMARK 2.6. When g(t) =a(t)=c(t)=e(t) =0, f(x)=gkx)=x with =1,
and b(t) = —b(r), from the proof process of Theorem 2.1, we know that the
conclusion of Corollary 2.5 still holds if condition (ii) is replaced by (2.2). Therefore,
Corollary 2.5 is a generalization of Theorem B.

When ¢g(t) =c(t) =e(t) =0 and a(t) = —a(t) in Theorem 2.1, we obtain the
following corollary.

COROLLARY 2.7. Suppose that t is differentiable, and there exist continuous
functions h(t) : [0, 00) = R and constants L > 0, o« € (0, 1), B € (0, 1] such that for
t>0:
() liminf_ o [y h(s)ds > —oo;
Q) [ o 1hS) —a(s)|ds + [y e = "W M (s [2 . hu) — au)| duds +
Jo e S M du(i(n(s — 7(s)) — a(s — 7)1 — T'($)] + Blb(s)]) ds <
< 1;
(iii) iflx] <L, |yl <Land|g(x) —g(y)| < Blx —y|forall x,y € Rwith g(0) = 0.
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Then the zero solution of (2.3) is asymptotically stable if and only lffol h(s)ds — oo
ast — oQ.

REMARK 2.8. Choosing h(t) = a(t) and B = 1, Corollary 2.7 reduces to Theorem C.

3. Two Examples

In this section, we give two examples to illustrate the applications of our main
results.

EXAMPLE 3.1. Consider the half-linear neutral stochastic delay differential equation

[ ! 2 5 t
d(X(t) -3 (l - Z)) = <—2x(t) + 3% (t - Z)) dt

1 3,0 1
+ <Zx(t) + 2 (r - 5)) AW (). (3.1)

Then the zero solution of (3.1) is mean square asymptotically stable.

PROOF. Itis easy to verify thatt — t(¢) =t —t/4 — ocoandt — §(t) =t —t/2 — 00
as t — oo. Since |x2| < |x| and |x3| < |x| when |x| <1 for x € R, we can choose
L =1/2 and B = 1 such that condition (iii) of Theorem 2.1 holds. Choosing A(t) =2
in Theorem 2.1, we have |¢(¢)| = 1/3,

t t . S
/ |a<s>+h<s>|ds=/ e S Mt )| la(u) + h(w)| du ds =0,
t 0

—7(t) s—1(s)
t t
/ e [ MW du (s — T (s)) + h(s — 7(s)))(1 — T'(s))]
0
+ |b(s) — q(s)h(s)|) ds =0,

¢ ) 12 5 t 1/2
2(/ e 2 M duie(s)] + Je(s)])> ds> :—(/ e 4D ds>
0 4\ Jo
5

and

It is easy to check that fot h(s)ds - oo as t > oo. Let «a =1/3+5/8. Then
o =23/24 < 1 and the zero solution of (3.1) is mean square asymptotically stable
by Theorem 2.1. O

EXAMPLE 3.2. Consider the delay differential equation

x'(t) = —%x(l) + é sin <1—10x(t - e_t)). (3.2)

Then the zero solution of (3.2) is asymptotically stable.
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PROOF. It is easy to verify that 1 —t(f) =1 — e — 00 as t — 0co. Because
|sin%x| < %lxl for x € R, we can choose 8 = % and L for any positive constant.
Then condition (iii) of Corollary 2.7 is satisfied. = Choosing h(#) =0.29 in
Corollary 2.7, we have

t t
/ |h(s) —Ez(s)lds:/ (0.29 — 0.19) ds — 0.1~ < 0.1,
t—1(1) t—e!
t ; S
/ e~ Js By dujp gy \h(u) — a(u)| du ds
0

s—1(s)

t
< / e 0-290=90.29 x 0.1) ds < 0.1
0
and

t t
/0 e Js M du((h(s — 7(s)) — als — T())(1 — T'())| + Blb(s)]) ds

! 11
- f e—°-29<’—“>[(0.29 —0.19(1 +¢7%) + Tk 3] ds <0.7587.
0

It is easy to see that all the conditions of Corollary 2.7 hold for ¢ = 0.1 + 0.1 +
0.7587 =0.9587 < 1. Thus Corollary 2.7 implies that the zero solution of (3.2) is
asymptotically stable. O

However, Theorem C cannot be used to verify that the zero solution of (3.2)
is asymptotically stable. In fact, noticing that |sin%x — sin 11—0 y| <|x — y| for all
x,y€R,b(t)=0.2,a(t) =0.19 and

1 _ t
/ e~ [ aw dupp oy gs = 0.2 / e 0190=9) g < 1.0527,
0 0
we can see that the condition (2.4) of Theorem C does not hold with « = 1.05327 > 1.
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