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ABSTRACT. Daily new snow water equivalent (HNW) and snow depth (HS) are of significant practical
importance in cryospheric sciences such as snow hydrology and avalanche formation. In this study we
present a virtual network (VN) for estimating HNW and HS on a regular mesh over Switzerland with a
grid size of 7 km. The method is based on the HNW output data of the numerical weather prediction
model COSMO-7, driving an external accumulation/melting routine. The verification of the VN shows
that, on average, HNW can be estimated with a mean systematic bias close to 0 and an averaged absolute
accuracy of 4.01mm. The results are equivalent to the performance observed when comparing different
automatic HNW point estimations with manual reference measurements. However, at the local scale,
HS derived by the VN may significantly deviate from corresponding point measurements. We argue that
the VN presented here may introduce promising cost-effective options as input for spatially distributed
snow hydrological and avalanche risk management applications in the Swiss Alps.

1. INTRODUCTION
In cryospheric sciences such as snow hydrology, avalanche
formation/dynamics and snow climatology, daily new snow
water equivalent (HNW, mm) and snow depth (HS, m)
are important measurement categories. Together with wind
speed, HNW is of significant practical importance for
avalanche hazard estimation (McClung and Schaerer, 1993;
Egli, 2008) and represents a key input parameter for spatially
distributed snow models (e.g. Lehning and others, 2006;
Liston and Elder, 2006). The monitoring and modelling of
water resources, represented by HS (respectively, snow water
equivalent (SWE)), is the basic aim of snow hydrology (e.g.
Grayson and Blöschl, 2001; Anderton and others, 2002). In
particular, estimates of the spatial and temporal distribution
of HS (or SWE) are essential (Luce and others, 1998; Skaugen,
2007) for water resources management (e.g. Schaefli and
others, 2007) and flood prevention.
During the last decades, various expensive networks of

manual and automatic point HS (and occasionally HNW)
measurements have been set up in the Swiss Alps. Automatic
methods have the advantage of providing data at high
temporal resolution in terrain that is difficult to access.
Durand and others (1993) presented a first analysis method
for relevant meteorological parameters for snow models,
while Egli and others (2009) investigated different methods
to reveal a general feasibility benchmark in automatic
estimation of HNW.
In this study, we present a virtual network (VN) to estimate

HNW and HS on a regular grid (grid size 7 km) covering the
entire Swiss Alps. The method is based on the HNW output
data of the numerical weather prediction model (COSMO-
7), developed by the Consortium for Small-Scale Modelling
currently composed of the national weather services of
Germany, Switzerland, Italy, Greece, Poland and Romania.
The raw snow precipitation output of COSMO-7 drives a
simple external accumulation/melting routine that allows
HNW and HS to be computed for each gridcell. This routine
does not account for individual physical processes (e.g.

settling of snow cover and fresh snow). Instead, it evaluates
bulk accumulation and melting rates based on COSMO-7
HNW data calibrated using observed HS data from existing
snow-monitoring networks.
We believe that the VN presented here may intro-

duce promising cost-effective options as input for spatially
distributed snow hydrological models and avalanche risk
management applications. If a numerical weather model and
HS point measurement stations are available, a VN can be
developed for other mountainous regions that are not as
densely instrumented as the Swiss Alps.

2. DATA
2.1. COSMO-7 model output data
A numerical weather prediction system is operated by
MeteoSwiss (www.meteoswiss.ch) for a wide range of
applications. This system is based on the COSMO-7 model
(www.cosmo-model.org), which is a primitive equation
model with non-hydrostatic, fully compressible dynamics.
The prognostic variables include precipitation (separated
into snow and rain) and many other meteorological par-
ameters. COSMO-7 is used in two modes: (1) a free
forecast mode, where the temporal evolution of the at-
mosphere is computed without any constraints other than
the lateral boundary conditions from the driving model
(European Centre for Medium-range Weather Forecasts,
www.ecmwf.int/research), and (2) an assimilation mode to
produce the best gridded representation of the atmosphere
by blending available current observations with the model
dynamic (the so-called data assimilation process). Note that
no observed precipitation is assimilated in COSMO-7. The
data assimilation process is not a simple interpolation of
available observations, but instead produces a consistent
state of the full atmosphere.
In this study we have chosen to use data from the

assimilation mode of COSMO-7 between September 2005
and February 2008. For each day, snow precipitation (i.e.
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Table 1. Table of nomenclature

Abbreviation Description

HNW Daily new snow water equivalent
HS Snow depth
HNWMEAS Observed daily new snow water equivalent
VN.RAW Uncorrected COSMO-7 output
VN.CORR Corrected COSMO-7 (virtual network)
δHNW Systematic bias
σ(δHNW) Absolute accuracy
R2log Coefficient of correlation

POD Probability of detection
FAR False alarm rate

solid precipitation only) cumulated from 0000UTC to
2400UTC for the automatic reference stations (and from
0800UTC to 0800UTC on the following day for the manual
reference stations) has been extracted from COSMO-7 and
used to derive HNWVN.RAW at the surface. Introduced
abbreviations are summarized in Table 1.

2.2. Point measurements
For this study, 141 stations spread over the entire range
of the Swiss Alps (Fig. 1) were available to provide daily
measurements of HS during the period September 2005 to
February 2008. The sites have been carefully selected in
flat open terrain, with as little wind influence as possible,
to ensure regional representativeness of the HS/HNW
estimation (Egli, 2008). In order to derive HNW from HS
measurements, we used a simple parameterization proposed
by Egli and others (2009):

HNWMEAS(δHS24h) (mm)

=

{
1 + 1.09 δHSMEAS.24h (cm) for δHSMEAS.24h > 0
0 for δHSMEAS.24h � 0,

(1)

where δHSMEAS.24h denotes the 24 hour difference between
an HS reading (measured here in centimetres) and the
respective observations from the previous day. Possible
limitations of using Equation (1) are discussed in section
4.1. Note that for automatic measurements from the
network of the Intercantonal Measurement and Information
System (IMIS; see Rhyner and others, 2002), HS estimations
were provided at 0000 h while manual HS readings (for
observations, see Marty, 2008) were provided at around
0800h. The values of HS were later checked for plausibility,
and single missing/faulty values were corrected manually
by interpolation. Finally, HNW was only calculated for the
period 1 November–30 April for each season (analogous to
Egli and others, 2009), while HS is considered during the
entire seasons of 2005–08 if HS> 0.

3. METHODOLOGY
3.1. Virtual network (VN)
HNW estimated by VN
The cumulated snow precipitation output of COSMO-7
(HNWVN.RAW) constituted the basis of the VN. Thirty-
five snow stations (of 141) were set aside for adjusting
HNWVN.RAW to measured HS (HNWMEAS). These stations are
referred to as reference stations (Fig. 1, crosses), while the
remaining 106 stations are referred to as control stations. All

Fig. 1. Measurement stations: 141 point measurements of snow
depths in the Alpine region over Switzerland. The stations are
located at altitudes 800–3130ma.s.l., where the three different
elevation zones are indicated with squares, points and triangles.
Reference stations are marked with a cross.

stations were separated into three different elevation bands
(800–1500m, 1501–2200m and 2201–3200m; see legend
of Fig. 1).
Reference stations were selected to cover all regions and

elevation bands approximately evenly, in the horizontal as
well as in the vertical space. COSMO-7 mesh points were
assigned to corresponding snow stations by searching the
gridpoint with centre nearest to the station. The horizontal
station coordinates deviated about ±2.7 km on average
(maximum 7km × √

2/2 = 4.9km) from the centre of
HNWVN.RAW, while the vertical difference between stations
and respective HNWVN.RAW gridcells deviated by about
±250m (Schaub, 2007). The VN therefore covers an area
of approximately 7 km×7 km on the surface (horizontal). In
comparison with the point measurement stations, a vertical
distension of about 500m is provided.
The correction routine for HNWVN.RAW first identified

possible outliers of HNWVN.RAW if HNWVN.RAW exceeded
the maximum of HNWr

MEAS at the reference stations (index
r). Outliers were replaced by the maximum of HNWr

MEAS for
each elevation band. Secondly, a correction matrix CorrMatr

was calculated from the difference between HNWMEAS
and HNWVN.RAW for each reference station and for each
elevation band:

CorrMatr = HNWr
MEAS − HNWr

VN.RAW. (2)

For all remaining locations (index c) of the respective
elevation band, the values of the correction matrix were then
interpolated by an inverse distance interpolation:

CorrMatc =

∑N
i=1 wi × CorrMatr i∑N

i=1wi
, (3)

where

wi =
1

d (|ri − c|) (4)

is the inverse distance weighting function. d represents
the Euclidean metric distance operator and N is the
total number of reference locations (N = 35 here).
The corrected COSMO-7 HNW estimation for the control
stations (HNWc

VN.CORR) was then defined by:

HNWc
VN.CORR = CorrMat

c + HNWc
VN.RAW, (5)
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Table 2. Contingency table for the validation of the HNW
estimations of the virtual network. The point measurements at the
control sites HNWMEAS are observed and the estimations of the
virtual network HNWVN are forecast

HNWMEAS (observed)
HNWVN (forecast) NO YES

NO a b
YES c d

where negative values of HNWc
VN.CORR were set to zero.

HS estimation by the VN
HS is basically calculated from the summation of HNW
during the accumulation period, while a simple melting
procedure is used to calculate HS during the ablation
period. To calculate a temporary term TEMP.HScrVN(t ) for
the COSMO-7 gridpoints, the values of HNWcr

VN.CORR were
added iteratively day by day:

TEMP.HScrVN(t ) = HNW
cr
VN.CORR(t ) + HS

cr
VN(t − 1). (6)

Note that instead of a simple cumulation of
HNWcr

VN.CORR(t ) for each day, this iterative procedure
also allows HS to be determined for snowfall events during
the melting period. However, at this point TEMP.HScrVN(t )
does not indicate a real snow depth measure. In order
to convert TEMP.HScrVN(t ) to corresponding HS data, we
employed data from the reference stations to calibrate
TEMP.HScrVN(t ) using a simple linear parameterization:

HSrVN(t ) = TEMP.HS
r
MEAS(t ) × slope + intercept. (7)

Again, such a parameterization was obtained for each
elevation band separately. The resulting parameters of
Equation (7) (slope and intercept) were subsequently used
to convert TEMP.HS to HS at the control stations:

HScVN(t ) = TEMP.HS
c
VN(t )× slope + intercept. (8)

The above procedure was applied for all days (consid-
ered here as the period of accumulation) except during
ablation, which is defined as all days if mean(HSrMEAS(t )) −
mean(HSrMEAS(t − 4)) < 0 and mean(HSrMEAS(t )) < 0.75 ×
max(mean(HSrMEAS(t ))). Note that this criterion does not take
into account any information about the physical processes of
melting (e.g. liquid water content). It approximately defines
the point where the mean snow depth at the reference sta-
tions for each elevation band decreases due to melting condi-
tions (Egli and Jonas, 2009). In case of melting conditions, we
calculated a melting matrix from HSrMEAS(t )−HSrMEAS(t − 1)
for every elevation band at the reference stations:

MeltMatr(t ) = HSrMEAS(t ) −HSrMEAS(t − 1). (9)

We calculated melt rates for all remaining locations using
the inverse distance weighting method, in the same way as
for Equations (3) and (4):

MeltMatc(t ) =

∑N
i=1wi ×MeltMatr i (t )∑N

i=1 wi
, (10)

where

wi =
1

d (|ri − c|) . (11)

Finally, HS (for melting conditions) was derived for the
control stations as

HScVN(t ) = MeltMat
c(t ) + HScVN(t − 1). (12)

Note that at the very end of the winter season the reference
stations would eventually melt out, preventing any melting
rates from being derived. In this case, the final melting
rates before meltout have been used for the interpolation.
In addition, negative values of HSVN have been set to 0.

3.2. Parameters of verification
HNW verification
In order to validate the performance of HNWVN at the control
stations (in the following the index c is not included) by
comparing to the point measurements HNWMEAS, and to
compare the results to the performance of other automatic
methods, parameters of comparison were used (Egli and
Jonas, 2009). The parameters are briefly summarized below.

1. Systematic bias δHNW:

δHNW = mean(HNWVN − HNWMEAS). (13)

2. The absolute accuracy σ(δHNW):

σ(δHNW) = standard deviation(HNWVN −HNWMEAS).
(14)

3. R2log: The coefficient of correlation (R
2
log) between log-

transformed HNWVN and HNWMEAS.

4. POD and FAR: Parameters adopted from severe weather
forecast theory (Murphy and Winkler, 1987) have
been used to detect certain classes of snowfall events,
namely the probability of detection (POD) and the
false alarm rate (FAR). To calculate POD and FAR, we
used contingency tables (Table 2) for four classes of
HNW intensity (Snow-NoSnow: HNWMEAS � 0mm
and < 1mm; Low: HNWMEAS � 1mm and < 15mm;
Medium: HNWMEAS � 15mm and < 30mm; High:
HNWMEAS � 30mm).
The POD and FAR were calculated for every class

using

POD =
d

b + d
(15)

and
FAR =

c
c + d

, (16)

where b, c and d were derived from the contingency
table (Table 2).

5. Ranking points: A ranking point scale for the overall
assessment relative to other HNW estimation methods
was tested in Egli and others (2009). For each comparative
measure as described above, the best performance was
rated with 7 points and the lowest performance with 0
points. The different ranking points for each parameter
and class were added.

HS verification
HS data from the VN (HSVN) were validated against HSMEAS
by applying the following parameters of comparison (Egli and
Jonas, 2009), restricted to the control stations.

1. Systematic bias (α): The percent systematic bias α was
determined by a least-squares fit to

HSVN = α×HSMEAS, (17)
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Fig. 2. POD and FAR values for the four different classes of HNW intensity (diamond, point, triangle, star). The values are listed either for
single point measurements or the average of 106 control stations, where the error bars denote the deviation from the mean.

where the standard error of α was also determined
(errorα). Here, errorα is a measure of the spread of the
data around the fitting line.

2. Absolute error (RMSE): The averaged absolute difference
between HSVN and HSMEAS, the root-mean-squared error
(RMSE), was included in the comparison statistics:

RMSE =

√√√√ 1
N

N∑
i=1

(
HSVN

i −HSMEAS i
)2
, (18)

where i indexes one day of the analysed periods if
either HSVN

i > 0 or HSMEAS
i > 0. Since HS is

investigated instead of SWE (Egli and others, 2009), a
direct comparison of these studies by a ranking point
score is not appropriate.

4. RESULTS AND DISCUSSION
4.1. HNW
Results of the validation of HNWVN and HNWMEAS are
listed in Table 3 and presented in Figure 2. The parameters
of comparison were calculated for both HNWVN.CORR and
HNWVN.RAW compared to HNWMEAS. For reference, they
are listed together with corresponding results of other HNW
estimation methods which were tested in Egli and others
(2009). The parameters for VN.CORR and VN.RAW are
averaged over all 106 control stations (Table 3: nstations),
where the lines below and above the end of the vertical bars
in Figure 2 (as well as the numbers in brackets in Table 3)
represent ±half of the standard deviation.
Table 3 summarizes the parameters for HNW comparison

(δHNW, σ(δHNW) and R2log)in order of the highest ranking

points. While δHNW < 0 indicates a general underes-
timation of HNWVN to HNWMEAS, δHNW > 0 denote
a statistical overestimation. The results for VN.CORR and
VN.RAW reveal a systematic bias close to 0. However, the
considerably large deviation around the mean values of

Table 3. Comparative statistics to assess the performance of VN relative to competing methods tested in Egli and others (2009); notation
of the systematic bias (δHNW), the absolute accuracy (σ(δHNW)), the coefficient of correlation R2log) and the ranking point system are

described in section 3.2

Method nstations ndays δHNW σ(δHNW) R2log Ranking points

mm mm

VN.CORR 106 484 –0.03 (±0.35) 4.01 (±0.62) 0.78 (±0.037) 51
GAUGE 1 725 –1.15 4.12 0.89 50
SNOWPILLOW 1 719 0.6 4.41 0.79 49
SNOWPACK 1 726 0.6 5.07 0.82 48
SIMPLE-HNW 1 723 –0.68 5.04 0.8 45
VN.RAW 106 484 0.22 (±0.47) 4.89 (±0.65) 0.72 (±0.035) 30
COSMO forecast 1 722 0.09 6.59 0.74 30
SNOWPOWER 1 348 2.59 15.37 0.41 5
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Fig. 3. The temporal development of snow depths derived by the
virtual network (black curves) and the point measurements (grey
curves) for three selected stations. The systematic bias (α) and the
absolute error (RMSE) are indicated in the legend.

VN.CORR and VN.RAW indicates that some stations exhibit
a large under-/overestimation of HNWVN.
A more detailed analysis of the frequency distribution

showed that the individual δHNWs at each control station
are approximately equally distributed around the mean value
of –0.03mm. This indicates an arbitrary character which
stems from the comparison of the point measurements
HNWMEAS with data representing a much larger domain
of estimation for HNWVN.CORR or HNWVN.RAW. This is
supported by the fact that the stations are randomly
distributed in a cuboid of 7 km×7 km by 500m (Schaub,
2007), which also explains why the deviations are generally
similar for VN.CORR and VN.RAW.
For VN.CORR, σ(δHNW) demonstrates considerably small

values for the mean (σ(δHNW) = 4.01mm) with a deviation
from the mean of about ±0.62. This low absolute error
σ(δHNW) implies that, in principle, HNWVN.CORR can also
be calibrated for each single station of the measuring
network. The systematic bias of each station can therefore
be reduced, resulting in a lower deviation (±) in δHNW.
However, due to the comparison of a point measurement
with a cuboid area, a calibration of HNWVN.CORR is not
meaningful. In fact, the values of HNWVN.CORR may be
considered as an average measurement of HNW over a large
area, therefore representing a complementary network to the
point measurements.
Taking the performance of SNOWPACK for σ(δHNW)

as a benchmark, about 82% of the 106 control stations
of the VN exhibit a σ(δHNW) < 5.07mm. The absolute
accuracy between HNWMEAS and HNWVN.CORR is therefore
comparable to the operational SNOWPACK-HNW estima-
tions for manual reference measurements investigated at
a single location. Note that SNOWPACK calculations are
in operational use for Swiss avalanche warning (Rhyner
and others, 2002) and provide different types of snowpack
properties (Lehning and others, 2002). However, they are
restricted to the locations of the IMIS network (Rhyner
and others, 2002). In contrast, VN.CORR constitutes a
complementary network over the entire Swiss Alps (although
restricted solely to the HNW (and HS) estimation).
The POD/FAR statistics show that VN.CORR performs

for all classes of intensities with better POD/FAR values
than VN.RAW. Note that POD denotes the percentage of
HNWMEAS, also measured by HNWVN, while FAR represents

the percentage of HNWVN which are not observed by
HNWMEAS. VN.CORR has similar features to the POD/FAR
statistics of SNOWPACK, in particular for the two highest
classes of intensity (Medium and High) and for the Snow-
NoSnow class, which are the most important for avalanche
risk management decisions. The good performance of
VN.CORR in POD/FAR statistics with respect to the Snow-
NoSnow class also implies that COSMO-7 is capable of
distinguishing between snow and rain. Note that results do
not deteriorate if evaluated for the three elevation bands
separately (data not shown).
Furthermore, the calibration routine to derive VN.CORR

implies that at the reference station HNWVN.CORR =
HNWMEAS, independent of the processes leading to
HNWMEAS such as combinations of solid, liquid precipitation
and evaporation.
The low performance of VN.CORR in POD (∼0.45)

and FAR (∼0.35) for the Low class diverges from the
SNOWPACK results. In this class, VN.CORR is comparable
to the performance of the SIMPLE-HNW method. This is
unsurprising given that HNW are determined using SIMPLE-
HNW at the control stations. This limits the potential of our
approach to deal with situations in which the change in snow
depth is strongly influenced by both snowfall and settling.
While Equation (1) implicitly includes the effect of settling
of new snow and the entire snow cover, it may become
inaccurate after the first day of a multi-day snowfall event.
In such situations VN.CORR therefore may not perform as
well as a physical snowpack model. Note also that the
difference in the time of measurements between the manual
and automatic measurements (8 hours; see section 2) may
lead to erroneous HNW estimates in a few cases (e.g.
if a significant precipitation event occurs between 0000
and 0800h). However, an HNW analysis of manual and
automatic stations separately (data not shown) revealed very
similar results with respect to POD/FAR statistics, which
implies that this effect is minor.
Overall, VN.CORR demonstrates an advantage over

VN.RAW. In particular, the calculation described by Equa-
tions (1–5) demonstrated the largest improvement. The
method of removing the outliers has a minor impact on the
results of VN.CORR. Moreover, in comparison to the other
methods, VN.CORR yields the highest number of ranking
points and therefore constitutes an adequate automatic
estimation for HNW over the entire Swiss Alps.

4.2. HS
Figure 3 shows the temporal development of the modelled
HS (HSVN, black curves) and the measured HS (HSMEAS, grey
curves) during winter 2006/07 for three exemplary locations
of automatic measurement stations (ELM 2, DAV 2 and
DAV 3). A temporal development of HS is first displayed
where HSVN describes a curve consistently below HSMEAS
(ELM 2), resulting in a systematic underestimation of α =
0.65 and a mean absolute error (RMSE) of 0.42m. Secondly,
a trajectory is shown (DAV 3) where the systematic bias
(α) is close to 1 and RMSE=0.19m, indicating a strong
congruence between the curves. Finally, a station (DAV 2)
is shown which describes a path constantly above HSMEAS,
resulting in α = 1.54 and RMSE=0.45m (i.e. similar
to that of ELM 2). Despite the fact that HSVN shows
considerable deviation from HSMEAS for some stations,
all stations generally reproduce the temporal progression
qualitatively well. This is particularly true for the peaks
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Fig. 4. The evolution of the mean snow depths (HS) and the standard deviation of snow depths (σ(HS)) derived by the virtual network
(HSVN, black symbols) and the point measurements (HSMEAS, grey symbols). The trajectory during the period of accumulation is indicated
by points; the trajectory during ablation is indicated by triangles.

during accumulation and the following settling (produced
by Equations (7) and (8)). The same result is obtained for the
ablation derived by Equations (9–12).
Basically, the ablation period is generated by the VN

only by means of differences of HS, where the melt rate
matrix (Equation (8)) actually refers to a combination of
some fresh snow accumulation, settling and melting. As
the peaks are attributed to snow accumulation by daily
new snowfall (HNWVN.CORR), the deviation from HSMEAS
stems from possible under-/overestimations of HNWVN.CORR,
as discussed in section 4.1. Analogous to the results and
discussion of the systematic bias of HNWVN.CORR, the
specific values of α for each station are approximately
equally distributed around the mean value of α = 1.06 ±
0.286. Accordingly, while α is reasonably close to 1,
errorα = 0.022 ± 0.026 and RMSE = 0.40 ± 0.12m are
very large (see Table 4).

4.3. Spatial analysis
Since the analysis of the single point measurements of HSVN
is limited due to its random nature, an investigation of HSVN
and HNWVN.CORR regarding the Swiss Alps as an entire area

is also considered. First, the mean of all snow depths of point
and VN estimations (HSMEAS and HSVN) and their standard
deviation (σ(HSMEAS) and σ(HSVN)) are calculated. Figure 4
displays the evolution of σ(HSVN) with HSVN (black symbols)
and σ(HSMEAS) with HSMEAS (grey symbols), where each point
of the trajectory represents one day of the year 2006/07.
The curves show a characteristic hysteretic dynamics as
discussed in Egli and Jonas (2009). The trajectories of the
period of accumulation (points) and ablation (triangles) are
clearly separated. The quasi-linear increase of σ(HSVN) with
increasing HSVN highlights that accumulation of snow leads
to an increase in the differences between sites. The path
during ablation, on the other hand, is mainly attributed to
the spatial distribution of melting rates in the Alpine region.
It has been shown (Egli and Jonas, 2009) that the curves

of the hysteretic dynamics are similar between years and
therefore characterize the seasonal development of HS in
the Swiss Alps. Figure 4 shows that both the periods of
accumulation and ablation are well reproduced by HSVN
when compared to HSMEAS. The seasonal characteristic of the
HS development is therefore also displayed by the VN. We
therefore speculate that HSVN correctly reproduces the total

Table 4. The parameters of HSVN evaluation statistics (α, errorα and RMSE) as described in section 3.2 calculated either for the analysis per
station averaged over 106 stations (HSVN per station), or for the analysis of HSVN averaged over all stations (average of HSVN)

nstations ndays α errorα RMSE
HSVN per station 106 782 (±73) 1.06 (±0.286) 0.022 (±0.026) 0.40 (±0.12)

nstations ndays α of HS errorα of HS RMSE of HS
Average of HSVN 106 809 0.96 0.004 0.08
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amount of snow depths during a season at Swiss Alpine scale.
Moreover, when evaluating α, errorα and RMSE for HSMEAS
and HSVN (HS is averaged day by day over all stations), the
percentage bias is as small as –4% (Table 4).
Furthermore, the variogram analysis of HNW (Egli,

2008) showed that the statistical correlation length of
HNW over the entire Swiss Alps is about 50–60 km.
The same correlation length was found in Schaub (2007),
analysing the raw HNW output of COSMO (HNWVN.RAW).
This additionally supports the assumption that HNWVN
reproduces the regional precipitation patterns of the Swiss
Alps appropriately and can be used as an input parameter
for spatially distributed snow models.
Finally, the POD statistics of point HNW measurements

as a function of the distance between two measuring sites
(Egli, 2008) showed that, for the smallest scale (5–10 km), the
POD is about 60% for HNW intensities more than 30mm
(High). The same value has been derived from a comparison
of HNWVN.CORR and HNWMEAS. Again, a better performance
of the VN HNW estimation in the POD statistics of two point
measurement stations about 7 km distant would have been
astonishing, since the large area of HNWVN.CORR covers a
gridcell of 7 km×7 km. As the POD decreases rapidly with
the distance from a point measurement station (Egli, 2008),
the VN may also be applied for avalanche risk management
warning for the locations between the point measurements
where no HNW estimation is available.

5. CONCLUSION AND OUTLOOK
In this study, the HNW output of the numerical weather
prediction model COSMO-7 was coupled with a simple
snow accumulation/melting model in order to provide
HNW/HS grids of 7 km resolution for the entire Swiss Alps.
The results for the HNWVN estimation showed that, on
average, its performance is comparable to the performance of
different automatic point measurements. HNWVN therefore
represents a complementary network for avalanche risk
management applications and can also be used as input data
for spatially distributed snow hydrological models where
HNW is required.
This is also the case for the HS estimation by the VN, where

the statistical dynamics of the mean of HS (HSVN) and its
standard deviation (σ(HSVN)) are congruent to the measured
dynamics. As a consequence, the estimations of HS by the
VN over the entire Swiss Alps may be used to estimate the
total amount of snow and snow water equivalent for larger
catchments. At a local scale, however, a direct comparison of
the point measurement to the corresponding gridcell of the
VNmay result in considerable deviation. This may stem from
the fact that a measurement over a large area (7 km×7 km
for the VN) is compared to a single point measurement.
Future effort is necessary to investigate the spatial

scales over which the VN is capable of providing a good
performance for estimation of HNW/HS. For this purpose
we will extend the application to COSMO-2, a new high-
resolution version of COSMO available from February 2008
for a mesh size of 2.2 km. Additionally, the differences in the
VN between the assimilation mode and the forecast mode
of COSMO-2 will be investigated. Finally, the principle
of the VN presented here can be applied to other regions
which are less densely equipped with automatic or manual
point measurement stations than the Swiss Alps. If point

measurement stations and a numerical weather prediction
model are available, HNW and HS can be estimated with
a refined accuracy for spatially larger extended regions for
avalanche-risk and water-resources management.
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