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1. Introduction

Frequently in infinite-dimensional convex optimization problems the usual methods fail
because, for instance, the interior of the positive cone in L?,

C={uel”(T,p):ult)>0ae},

is empty. For this reason, Borwein and Lewis [2] developed the notion of quasi-relative
interior of a convex set, which is an extension of the relative interior in finite dimension.

In this paper we wish to establish two separation theorems involving the quasi-relative
interior of a convex set.

Before proceeding with the discussion, we present the definitions and the properties
that we need for our purposes. In the sequel, X will denote a real locally convex Hausdorff
topological vector space and X* will denote the topological dual space of all continuous
linear functionals on X, whose neutral element will be denoted by 6x-, with C being the
closure of C.

Given C C X, we define the cone generated by C as cone(C) = {\x : 2z € C, X €
R, A > 0}.

Definition 1.1. A subset C of X is said to be a cone if Az € C, for all x € C and all
A= 0.

* Because of a surprising coincidence of names within our department, we have to point out that the
author was born on 4 August 1968.
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Definition 1.2. A convex cone C of X is said to be pointed if C' N (—=C) = {fx}.
Definition 1.3. A convex cone C of X is said to be acute if C' is pointed.

Definition 1.4. Let C be a convex subset of X. The quasi-relative interior of C,
denoted by qriC, is the set of those x € C for which cone(C — z) is a linear subspace
of X.

If C is a convex subset of X with Int C # 0, then qri C' = Int C [2]. Moreover, it is easy
to note that in R™ the notions of relative interior and quasi-relative interior coincide.

Now, we wish to recall some useful properties concerning the quasi-relative interior of
sets.

Definition 1.5. Let C be a convex subset of X. The normal cone to C at z € C is
the set
Ne(@):={pe X" :¢(x—2Z) <0, Vo € C}.

Proposition 1.6 (Proposition 2.8 of [2]). Let C' be a convex subset of X and
Z € C. Then z € qriC if and only if N¢(Z) is a linear subspace of X*.

Proposition 1.7 (Proposition 2.12 of [2]). Let C' be a convex subset of X. If
qriC # 0, then
qriC = C.
Proposition 1.8 (Lemma 2.9 of [2]). Let C be a convex subset of X and suppose
that z € qriC and x € C. Then (1 — A\)Z + Az € qriC, for all X € [0,1].

Proposition 1.9 (Lemma 3.6 of [1]). Let C and D be two convex subsets of X
such that qriC # () and qri D # ), and let A\ € R. Then

qriC' 4 qri D C qri(C + D), (1.1)
AqriC = qri(AC), (1.2)
qri(C x D) = qriC x qri D. (1.3)

Proposition 1.10 (Theorem 3.4 of [1]). Let C be a convex subset of X such that
qriC # 0, and let ® € X*. If Int &(C) # (), then

S(qriC) = Int (C).
Proposition 1.11. Let C' be a convex subset of X. Then
qriC' = qri(qri C).

Proof. Obviously, qriC' 2 qri(qriC). Let xy € qriC. We show that cone(C' — zg) =
cone(qri C' — zg). For this purpose, let z € cone(C — x); then z = a(z — xo) with z € C
and a > 0. After choosing A > 1 it is easy to observe that
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By Proposition 1.8 we have

1 1 .
(1 - )\>$() + Xm eqriC

and then we obtain z € cone(qriC' — z). Thus,
cone(C — xq) = cone(qri C — xg) (1.4)
and then z¢ € qri(qriC). O
Before proceeding, we point out that, by (1.4), if yo € X, trivially one has

qri C' — yo = qri(qriC' — yo)
and it is also easy to prove that

qriC — yo = qri(C — yo).
In particular, if C' is an affine set, then qriC = C.

Proposition 1.12. Let C and D be two convex subsets of X such that aff C' = aff D.
Then, if C C D, qriC C qri D.

Proof. Let zy € qriC, then cone(C' — z() is a linear subspace of X and so
cone(C — xg) = span(C — xg). It is easy to observe that

cone(C — ) C cone(D — xp) C span(D — xo).

As aff C = aff D, one easily obtains span(C — z() = Span(D — xp). This implies that
span(C — x¢) = span(D — x¢) and then z( € qri D. O

Proposition 1.13. If C is a non-trivial convex acute cone, then 0x ¢ qriC.

Proof. Arguing by contradiction, let us suppose that 6x € qriC. Then coneC is a
linear subspace of X and then, C is also a linear subspace of X. Therefore, CN(-C) = C
and this contradicts the fact that C' is acute and non-trivial. |

2. Separation theorems

Before proceeding, we point out that, generally, separation between sets can be hard in
the infinite-dimensional case working only with the quasi-relative interior. We show two
examples.

Example 2.1. Let X be an infinite-dimensional normed vector space and let ¢ : X —
R be a non-continuous linear functional. Consider the affine set S := {z € X : p(x) = 1}.
In this case qriS = S and Ox ¢ qriS. Anyway 6x cannot be separated from S; in fact, if
there exists g € X* such that g(x) < 0 for each x € S, then g(x) < 0 for each x € S = X,
and so g = Ox~.
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Example 2.2. Let X be an infinite-dimensional normed vector space and let V' # X
be a dense linear subspace. Let 2 ¢ V' = qri V. Also in this case 2o cannot be separated
from V; in fact, if there exists g € X* such that g(x) < g(xg) for each x € V, then
g(x) < g(wg) for each x € V = X, and so g = fx-.

Before proving the main results, we need to establish the following two propositions.

Proposition 2.3. Let C be a convex subset of X such that qriC # () and g € X
such that cone|qri C — xg] is not a linear subspace of X. Then 3g € X*\ {0x~} such that
g(z) < g(xp) for all x € C.

Proof. First, if zg € C, xo € C'\ qriC. Hence, Proposition 1.6 ensures that N¢(zg)
is not a linear subspace of X*, which means that N¢(zg) # {0x~}. Then g € N¢(z)
such that g # fx«; this ensures that g(x) < g(zg) for all x € C.

Instead, if g € X \ C, we take A = C — 29 and B = conv[qri A U {fx}]. It is easy
to prove that coneB = cone[qri C' — xg]. This ensures that 0x € B\ qri B and for the
previous case we find that 3g € X* \ {fx-} such that g(x) < 0 for all z € B and then
g(x) < g(xp) for all z € C. O

Proposition 2.4. Let C be a convex subset of X such that qriC # () and g € X
such that conelqri C' — x| is acute. Then 3g € X* \ {0x+} such that g(x) < g(xo) for all
xeC.

Proof. First, if C = {z(}, then the conclusion holds, taking as g any non-zero con-
tinuous linear functional. If C' # {x¢}, it is easy to observe that Proposition 1.8 ensures
that qriC # {zo} and then the set V' = cone[qriC — z] is a non-trivial acute cone.
Obviously, fx € V and, by Proposition 1.13, 8x ¢ qri V. Therefore, cone[qri C' — (] is
not a linear subspace of X and the conclusion follows by Proposition 2.3. O

Now we are able to prove our main result.

Theorem 2.5. Let S and T be non-empty convex subsets of X with qriS # 0,
qriT # (0 and such that cone(qriS — qriT) is not a linear subspace of X. Then there
exists @ € X* \ {fx~} such that &(s) < P(t) foralls€ S, teT.

Proof. Let us consider the convex set qriS — qri7. By Proposition 1.11 and (1.1),
one has

qriS — qriT = qri(qriS) — qri(qriT) C qri(qriS — qriT) C qriS — qriT

and then qri(qriS — qriT) # . Since cone|qri(qri S — qriT))] is not a linear subspace of
X, by Proposition 2.3, taking xz¢ = fx, there exists & € X* \ {fx+} such that ¢#(z) <0
for all z € qriS —qriT.

It is easy to observe that the previous fact implies that

sup @ < inf . (2.1)
qri 8 qriT
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Now we note that

qriS € S C S =qrils,
qriT CT CT =quiT,

where we have also made use of Proposition 1.7. So, by a general property of the
continuous functions, one has sup,,;s® = supg ®, and infyi7 @ = infr &. Therefore,
(2.1) ensures that

sup @ < inf @.
S T
Then @ is the continuous linear functional that separates S and T'. O

Remark 2.6. We observe that, by Proposition 2.4, the previous result continues to
hold if we replace the condition that cone(qriS — qri7’) is not a linear subspace of X
with the condition that cone(qri S — qriT) is acute.

Remark 2.7. Now we want to observe that it is not generally true that, if there exists
& € X*\ {0x~} separating S and T, then cone(qriS — qriT) is not a linear subspace of
X (or cone(qriS — qriT) is acute). To show this, we can consider the following simple
example.

Let X =R?, S = {(z,y) € R? : 22 +3y > 0} and T = {(0,0)}. Obviously, S and T are
convex and qriT = {(0,0)}. Moreover, the continuous linear functional &(z,y) = 2z + 3y
for all (z,y) € R? separates S and T, but in this case cone(qri S — qri7) = S is not a
linear subspace of R? (and cone(qri.S — qriT) = S is not acute).

We note that the sets in Examples 2.1 and 2.2 do not satisfy the hypotheses of Theo-
rem 2.5. In fact the sets cone(S) in Example 2.1 and cone(V —zg) in Example 2.2 coincide
with the entire space X . Moreover, the sets cone(S) and cone(V — ) are pointed but not
acute (and so the hypothesis that the cone is acute cannot be weakened by the hypothesis
that the cone is pointed).

Now we wish to state a strict separation theorem.

Theorem 2.8. Let S and T' be non-empty disjoint convex subsets of X such that
qriS # 0 and qriT # (). Suppose that there exists a convex set V. C X such that
V-V =X,0x € qriV, and cone(qri(S—T) —qri V) is not a linear subspace of X. Then
there exists @ € X* \ {0x~} such that supg @ < infp P.

Proof. We apply Theorem 2.5 to the sets S — T and V. In particular, by (1.1) and
(1.2), we obtain

qriS —qriT C qri(S —T)

and then qri(S — T') # (). Moreover, by hypothesis, cone(qri(S — T) — qriV) is not a
linear subspace of X. Therefore, there exists @ € X* \ {fx~} such that &(z — y) < &(v)
for each x € S, y € T, v € V. Certainly, we can find © € V such that &(v) # 0. In fact
if (V) = {0}, we obtain &(V — V) = {0}, that is & = Ox~. This ensures that $(V)
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is a real non-degenerate interval and consequently Int (V') # (). By Proposition 1.10,
0 € Int ¢(V'), and hence there exists o € V such that ¢(v) < 0. Therefore,

sup® — inf & < P(v) < 0,
S T

and this completes the proof. (I

Remark 2.9. Also in this case, we observe that Theorem 2.8 continues to hold if we
replace the condition that cone(qri(S — T') — qri V) is not a linear subspace of X with
the condition that cone(qri(S — T') — qri V) is acute.
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