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A STRUCTURAL APPROACH TO NOETHER LATTICES

E. W. JOHNSON, J. A. JOHNSON, AND ]J. P. LEDIAEV

0. In this paper we explore the extent to which embedding and isomorphism
questions about a Noether lattice £ can be reduced to questions about
simpler structures associated with .%.

In § 1, we use a variation of Dilworth’s congruence approach [2] to associate
a collection of semi-local Noether lattices with a given Noether lattice .%.
We show that these semi-localizations determine . to within isomorphism
(Corollary 1.5); thus embedding and isomorphism questions about ¥ are
largely reduced to the semi-local case.

In § 2, we consider the influence on a semi-local Noether lattice % of the
substructure 9.7 consisting of all elements, all of whose associated primes are
maximal. Here we find that if 8. can be embedded in a semi-local Noether
lattice £ *, then ¥ can be embedded in an extension % of £ *. Further,
since 9.% splits in such a way that each component can be embedded in a
localization of ., & can be embedded in the direct sum of local Noether
lattices, each of which is an extension of a localization of .%. It follows that
embedding problems for .# are largely dependent on the localizations of ..
The main tool of this section is that of an A-sequence [4]. The collection of
all A-sequencesin.? is closely related to the 4-adic completion of a Noetherian
ring.

1. Let £ be a Noether lattice, S a non-empty subset of .¥,and 4 € .Z. If
A= Q1 A ... A Qis anormal decomposition of 4 where Q; is P;-primary,
weset As = A {Qi; P; = X, for some X € S}. Since {P;; P; £ X, for some
X € S} is an isolated set of primes of 4, 4 s is well-defined. We also note that
As= NA{Q:;P; = X, for some X € S} is a normal decomposition of 4 s, and
(As)s =As. Wenowset [ =Tand ¥s={B€¥;B = Bg}.

LeMMA 1.1. The operation A — A s has the following properties:

(1.0) A = B implies As < By,
(1.1) (A ANB)s=(4ds N By)s,
(1.2) A4V B)s=(4sV Bg)s,
(1.3) (4-B)s = (As‘Bs)s,
(1.4) (A4:B)s = (As:Bg)s-
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The proofs are straightforward modifications of the special case S = {D},
which may be found in [2].

By (1.0), Os is a least element for Zs. Since £y inherits the ascending
chain condition from .7, it follows that every family of elements of s has a
greatest lower bound in #s. Consequently, %5 is a complete lattice.

We denote the greatest lower and least upper bound operations in %5 by
A s and V %, respectively. And we define the product of 4 and B in %5 by
A-sB = (4B)s.

LeMMA 1.2. For elements A, B € L,
() ANB=(4dAB)s=4 AsB,
(i) (A V B)s=A4 V3B,
(i) 4+ s(BVSC) = (4-5sB) V5(4-50),
(iv) A:B = (4:B)s = 4: 4B.

Proof of (i). (A A B)s < Agsand (A A B)s < Bg, and so
(AANB)s<AsANsBs=A NsB.
Furthermore, A AsB < Aand 4 AsB £ B, and so
AANsB<AABZ(AAB)s

This establishes (i).
The remaining identities follow similarly.

Using the relations thus far developed, it is easy to see that .¥sis a Noether
lattice: every element is the finite join of elements E g, where E is principal
in ., and elements of this type are principal in Zs. It is also seen that for
elements Q, P € Fs, Q is P-primary in %5 if, and only if, Q is P-primary
in%.

We note that if 4 € ¥ and S C .7, then there is a finite subset 7" of .&
such that 4, = A . This is so because every prime of 4 5 is a prime of 4,
and (Ag)r = Arp. Also,if Ap =Agand T C U C S, then 4y = A 5. Hence,
if Fis any finite subset of ., then S has a finite subset 7" such that 4 3 = 4 »
for all A € F. As a consequence, we have the following lemma.

LemMmA 1.3. Let A and B be elements of & and S C L. Let K be the set of
primes associated with any of the elements As, Bs, (A A B)s, (4 V B)g,
(AB)s. If T is any subset of S such that each element of K is contained in an
element of T, then

(1) ASyBS EgTy

(i) As NsBs=As ArBsg,
(ili) As VSBs=A45sVT'Bg,
(iv) As- sBs=As- 1Bg,
(v) AsisBs = As:rBs,

Proof. Since each prime of Ag, Bs, (4 V B)g, (A A B)g, and (4B)5 is
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contained in an element of 7', we have that As = Ay, Bgs = By, (A A B)g,
(4 V B)g, and (4B) s are elements of . ;. Then, for example,

AsVS5Bs= (AsV Bsg)s= (A VB)s=(4VB)r
= (ArVBr)r=ArVTBr=A4A5VTBg

(Lemma 1.2). The rest of the lemma follows similarly.
We are now in a position to prove the following.

THEOREM 1.4. Let & and £« be Noether lattices, S C ¥, and ¢ a map of S
into L «. Assume that, for every finite subset T of S, there is given a multiplicative
lattice morphism ¢r of L 1 into Lxycry tn such a way that T1 C Ty implies
o1, £ ¢r,. Then there is a uniqgue morphism ¢ of L s into L wy(sy such that
or = @5 for every finite subset T of S. Furthermore,

(i) g s onto if each map ¢y is onto,
(ii) ¢ g is one-to-one if each map ¢r is one-to-one,

(iii) ¢ g preserves residuals if each map o does,

(iv) o5 takes primaries to primaries, primes to primes, and principal elements

to principal elements if each map ¢r does.

Proof. Let S, be the collection of finite subsets of S. Then.¥ s = U res; & 1,
and so the uniqueness of ¢ is immediate. Also, if 4 € Fp, NY 7, and if
T =T,\UTs then X7, UE7 CLr and ¢r,(4) = ¢r(4d) = ¢r,(4).
Hence we can define ¢s on £ s by ¢s(4d) = ¢r(4) if A € ¥ or, equiva-
lently, ¢s(4) = Ares;er(47r). Then, given 4, B € L, there is only a
finite number of primes associated with A, B, (4 V B)g, and (4B)g, and
so we can choose a finite subset 7'y of S such that each prime of 4, B, (4 V B)y,
and (4B) s is contained in an element of 7. Similarly, we can choose a finite
subset T, of S'so thateach primeof ¢ s(4)y(s), e s(Blvisr: (s(d) V 0s(B)ucs),
and (¢s(4)es(B))y(s is contained in an element of ¢ (7). Set T = T, \U T..
Then by Lemma 1.3, ¢5(4 V5 B) = ¢7r(4 VT B) = ¢7r(4) V¥D 0,(B) =
os(4) V¥D ¢ 5(B), and similarly for 4 A 5B, 4 - 3B. Hence ¢ is a mor-
phism of & s into L sy(s)- It is immediate that ¢ sis one-to-one if each map ¢
is one-to-one, and also that ¢ ¢ is onto if each ¢ is onto. If each ¢, preserves
residuals (i.e., ¢r(4:rB) = or(4):y(ner(B)), then ¢ preserves residuals
by Lemma 1.3. Since the primaries and primes of .# s are the primaries and
primes of & which are elements of % g, it is clear that ¢g4 preserves primes
and primaries if each ¢ does.

Now, assume that each ¢, preserves principal elements. Let E be principal
in % 5. Then Ey is principal in &7 = (£ s)r, and thus ¢, (Er) is principal
in % sy(ry. From this we conclude that ¢ s(E) is principal in.% xy(s) (Lemma 1.3).

Let.# (%) denote the set of all maximal elements of &£

CoROLLARY 1.5. Let £ and £« be Noether laitices and ¢ a map of M (L)
onto M (L x). Assume that for each finite subset S of M (L) there is a morphism
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05 0f & s into Lwy(s) in such a way that Sy C Sy implies o5, < ¢s,. Then there
is a unique morphism ¢ of & into L« such that o5 < ¢ for all S € M (L) ;.
As in Theorem 1.4, ¢ inherits the special properties of the maps ¢ s. In particular,
¢ 15 @ Noether lattice embedding (in the sense of [1]) if each of the maps ¢ 1s.

We note that for S € # (¥ ),, £ s is a semi-local Noether lattice. Hence,
a Noether lattice is determined by its semi-localizations.

2. We are now interested primarily in semi-local Noether lattices. For such
a Noether lattice &, we let 0.¢ denote the subset consisting of I and all
elements 4 such that every associated prime is a maximal element. We use
8% 9to denote 0.¢ U {0}. Then 9% °is a complete, modular, multiplicative
lattice. In this section, we use 9.% to reduce the embedding problem for a
semi-local Noether lattice to the local case. Before we begin, however, we
require some definitions.

(2.0). If {B,} is any sequence of elements of .¥" and 4 € ., then {B} is
an A-sequence if, given n = 1, it follows that B; V A" is constant for large <.

(2.1). An A-sequence {B;} is a regular 4-sequence if, given #, it follows that
B; V A" is constant for all 7 = n.

(2.2). An A-sequence {B,} is a completely regular A-sequence if
B,1 V A®" = B, foralln = 1.

(2.3). & is A-complete if, given any completely regular 4-sequence {B.},
it follows that B, = (A:B:) V A" foralln = 1.

If {B,} is any A-sequence and if C; = A;(B; V 41, then {C,} is a com-
pletely regular A-sequence. This follows since if B; V A% and B; V A*! are
constant for j = k, then C;, = B; V A= (B; V A") Vv A* = C;11 V 4L

We note that if A (B V A%) = B for all B € %, then a sequence {B;} of
elements of .¥ is an A-sequence if, and only if, {B;} is a Cauchy sequence
relative to the metric: d(D,C) =1/2" if DV A" = CV 4A® and
DV A # C VvV 4™,

LEMMA 2.1. Let A, B, and C be elements of & . Then there is a positive integer k
such that A N (BV C*) = (4 ANB)V AC* foralln = k.

Proof. By the Artin-Rees Lemma for Noether lattices [3],
AVBYABVCY)Y=S[AVB)ANBYVCH]BYV C* V B,
for some & and for all # = k. Then
ANBVCY=MAVBYANABVCY
S(A@AANBV))YVBYBVC*YVB=(AA BV C)Y)C—*vV B,
and so
ANBVC)Y=AN({(ANBYVCH)C*V B)
SAANBVENCTFVAANB)= (A ANB)V AC
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COROLLARY 2.2. Let Ay, ..., A, and C be elements of . Then for some k
and for all n = k,

Z\l ;v CY = <1/3\1A¢) v R
Proof. By induction, we can assume that
?_\II(A,VC") é(?\_llA,)VC""“ for all n = k.
By Lemma 2.1, we can choose %, such that

(v ne e () v v

i=1

IIA
—~
T >

N

i) V Cn—kx—kz v Cn—kl

for all # = ky + ko. Thus

forall w = k = ky + k.

COROLLARY 2.3. Let A, B, and C be elements of £. Then, for some k and all
n =k,
4V Cey:(Bv Ch) = (4:B) v CE

Proof. If B is principal, we choose & such that
AV C)YyNBZ=(AAB)V BC*
for all # = & (Lemma 2.1). Then
(AV C)yB)B=(AVC)yANB=AAB)V BC*=((4:B) Vv C"™)B

and hence AV CY):BVC)=AVC)y:B= (4:B)V C*F for all
n = k.

If B is arbitrary, we write B as the join B = B; V ... V B; of principal
elements. Then

MAveHYy:BVvCY=AVCYB=AVC):(BL1V...V B,

= /_’\1 (4V CY:B; = /i\1 ((4:B)) v C",
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where k; is chosen for B, as above. Let #’ = max{ky, ..., k,}. Then

i/=\1 ((4:B) v C™) < 1/1\1 ((4:B)) Vv C™)

< </\ A4 :B») v T
i=1

for some k" and all » = k' + k. Since A;-1(4:B;) = A:(\/f=1B,~) = A:B,
we have (4 V C"):(BV C") £ (A:B) V C** foralln =k =k + k.

Now, let 9o(F) = {4 € ;A = C*, for some n}, so that do(.F) is a
sub-multiplicative lattice of . Let /(£ ) denote the greatest lower bound
of the collection of maximal elements of %.

THEOREM 2.4. Let C and Cx be elements of Noether lattices & and £ x, respec-
tively, and d¢ a morphism of 9o (L) into 8 (Lx) such that do(C) = Cx. If
Ly is Cx-complete and Cx < F (L), then d¢ extends uniquely to a morphism ¢
of &£ into L. Furthermore:

(1) o preserves residuals if d¢ preserves residuals;
(ii) ¢ is one-to-one if d¢ is one-to-one and C < JF (L);
(iii) If d¢ maps dc( L) onto dou(Lx), L is C-complete, and either do 1is
one-to-one or £/ C is finite-dimensional, then o maps & onto L x.
Proof. Set ¢(A) = An.d¢(4 V C*). Then
dp(A V Ct1) V Cy™ = dp(4 V C™1) V 9p(C*) = dp(4 V C"),

and so {d¢(4 V C")} is a completely regular Cx-sequence in £«. Since ¥« is
Cs-complete, it follows that

e(A) V Cs* = Nido(A V C)) V C¥" = dp(4 V C)
for all ». Then

e(4) V ¢(B) V Cs" = dp(4 V C") V d¢p(B V C)
=94 VBV (C') =¢4dV B)V C,

for all #n. Hence, by the intersection theorem and the relation Cx < 7 (%),
it follows that

o(d) V ¢(B) =N (p(4) V ¢(B) Vv Ci")
=N (¢4 VB)V G = ¢4 V B).
Similarly, "

(e(A)eB)IV Gk = ((¢(4) V C¥")(o(B) V Cs) V C*
= (0¢(4 V C")0e(B V C*)) V 9¢(C") = do(((4 V CY(B V ) V C)
dp(AB V C") = ¢(AB) V C¥",

for all #, and thus ¢(A4)e(B) = ¢(4B).
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To see that ¢ preserves meets, we use Corollary 2.2 to choose k so that
AVvVCHYANBYVC)=Z(AAB)V C™ foralln = k. Then

e(A) AN o(B) = (¢(4) V C¥") A (o(B) V Cx") = dp(4 V C") A 3¢(B V C)
=3p((AVC) AN BV C))=dp((A AB)V C*) = ¢4 AN B) Vs,
for all # = k. Thus ¢(4) A ¢(B) = Aule(d A B) V C«"*) = o(4 A B).
Since o is clearly isotone, it follows that ¢(4 A B) = ¢(4) A ¢(B).

To see that ¢ preserves residuals if d¢ does, we use Corollary 2.3 to choose %
sothat (4 V C*):(BV C*) £ (4:B) V C**, for all w = k. Then

(p(A4):0(B)) = (p(4) V C"):(p(B) V C&") = dp(4 V C*):9¢(B V C")
= 90p((AV C"):(BVCY) £3o((4:B) V C"*) = ¢(4:B) V Cs**,
for all # =2 k. Thus ¢(4):¢(B) = An(e(4:B) V C¥**) = ¢(4:B). Also,
since ¢ is isotone, we have ¢(4:B)p(B) = ¢((4:B)B) = ¢(4), so that
0(4:B) = ¢(4):¢(B). Hence ¢(4:B) = ¢(4):¢(B), if d¢ preserves residuals.
Assume now that dg is one-to-one and that C < _Z (.&£). Then ¢(4) = ¢(B)

implies dp(4A V C") = ¢(4A) V Cs* = ¢(B) V C¥" = dp(B V C*), for all n.
Hence 4 V C* = B V C* for all n, and therefore

A=Nu4dvcy=ANBvcCH)=B

We now assume that % is C-complete and that d¢ maps d¢(.%) onto
e (Lx). If dp is one-to-one and Dx € Ly, then for each 7 thereis a unique
D; = C*such that d¢p(D;) = D« V Cx'. Further, since

0p(Diy1 V C) = (Dx V G V Ck' = 99(Dy),

we have that {D;} is a completely regular C-sequence in Z. If D = A ,D,,
then D V C* = D, for all 4, and so

e(D) V Gs* = (D V C') = ¢(D:) = Dx V G4,

for all 4, and therefore ¢(D) = Ai(e(D) V Cx*) = Ni(Dx V Cs') = Dy.

On the other hand, if &/ C is finite-dimensional, then.¥’/ C'is finite-dimensional

for all ¢ [3]. In this case, if D« € %« we choose D,/ = C' for each i such that

<p(D 'Y = D V Cx%, but of course D,/ need not be uniquely determined. Set
= As=:D/. Then {D} is a decreasing sequence in .Z such that

e(Dy) = ¢<,s/\1D’I) = j/_<\1 e(D/) = ,/s\i (D V C’) = Dy V Cy'

Then by the descending chain condition in #/CY, it follows that {D,} is a
C-sequence. Set D; = A ;(D; V €%, and D = A.D;. Then {D,} is a com-
pletely regular C-sequence with ¢(D;) = Dx V Cs?, for all 4. Therefore,
Dy < Dx V Cxt = ¢(Dy) £ o(D V C") = ¢(D) V Cx'. Hence

Di =N\ (o(D) V G = o(D) = N (D) = N (Dy v C") =
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If & is a semi-local Noether lattice, then /% (%) is finite-dimensional.
Also, in this case, dg(.%) = 9(%). Hence we have the following result.

COROLLARY 2.5. Let £ be a semi-local Noether lattice and s an arbitrary
Noether lattice. Let 3¢ be a morphism of 9L into Lx with do( F (L)) =
Cx < 2 (Lx). If Lx is Cx-complete, then do extends to a morphism ¢ of £
into Lx. Further, ¢ maps L onto L« if do maps 9L onto d L« and L is
/ -complete. And ¢ is one-to-one if dp is one-to-one.

Proof. 1f do(F (&) = Cx, then 4 = _#" implies dp(4) = do( F") =
(3o( )" = Cs*, and thus d¢ is a morphism of 95 into 9, (%) with
de(F) = Cs.

Hence, a semi-local Noether lattice & which is f (&£ )-complete is determined
by 9 Z. It will be shown later that a semi-local Noether lattice ¢ is embed-
able in a semi-local Noether lattice & * which is JZ (£ *)-complete and has
the property that 0. = 9. ¢ *. In fact, if & is the lattice of ideals of a
Noetherian ring R, then £ * is the lattice of ideals of the completion R* of R
in the Jacobson radical topology. For the present, however, we are interested
in the structure of semi-local Noether lattices % which are /£ (¢ )-complete.

LeEMMA 2.6. Let & be a semi-local Noether lattice which is / (&L )-complete,
and let P be a maximal prime of & . Then L is P-complete.

Proof. Let {4} be a completely regular P-sequence in .&. Then {A4,} is
decreasing, and so by the descending chain condition in £/ 2 (L) {44} is
a JF(Z)-sequence. For each 4, set B, = A;A;V Z(Z)Y). Then
A; B, 24,V (L) < A4, for large j, and thus AB; = A4 Since
&L is f (£ )-complete, the result follows.

COROLLARY 2.7. Let & be a semi-local Noether laitice which is 2 (& )-
complete. If P is any maximal prime of L, then L p = L py is P-complete.

Proof. Let {A4;} be any completely regular P-sequence in £ . Then {4}
is a completely regular P-sequence in.¥, and so for each z, 4, = (A\:4:) V P
Hence A4, = (A.)r = ((ANds) V P")p = (ANid:) VEP It follows that
& p is P-complete.

THEOREM 2.8. Let &£ be a semi-local Noether lattice which is Z (&£ )-complete.
Let Py, ..., Py be the maximal primes of L. Then £ is the direct sum of the
local Noether lattices & ¢ = L p,.

Proof. Let A be any element of d.4. Then A4 has a decomposition
4 =01 A ... A\ Qy where, for each 7, either Q; is Pprimary or Q, = I.
Since each of the primes of 4 is maximal, it follows that the decomposition
is unique and that 4 = Q1 A ... A Qx = Q1. .. Q. Consequently, the map
Qe Q)= A... NQof 0 ,®...0 0L, to 8% is a multi-

plicative lattice isomorphism.
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The maximal primes of X*=%,®... 0%, are the elements
(I,...,Py...,I), thus 0L*=0Y1®...0030F; and 0L *>0 Y.
Also, each component ¥ ; of £ * is P-complete (Lemma 2.7), and hence £ *
is #-complete. It follows (Corollary 2.5) that ¥ =X ¥* =%, @ ... @ ..

THEOREM 2.9. Let £ be a semi-local Noether lattice. Then L is a sublattice of a
Noether lattice L x which is semi-local and f (& x)-complete, and has the property
that 3. =~ 9 L.

Proof. Let Py, ..., P; be the maximal elements of ., and set ¥; = % »,,
1=1,...,k In [4] it was shown that any local Noether lattice (&, P;)
can be embedded in a local Noether lattice (& *, P*) which is P *-complete
in such a way that 9., =~ 9 .% *. We use that result and set

g*=$1*®...®gk*.
It follows that %« is/(éﬂ*)-complete. Also, since
0 29l p, ®... 00 L0 L *®...® dL"
it follows from Corollary 2.5 that % is embedded in £« in the desired way.

THEOREM 2.10. Let (&, Py, ..., P:) and (L* Pi*, ..., P*, ..., PX*)
be semi-local Noether lattices. Assume that, for each © = 1,...,k there is a
morphism ¢; of L p; into L*p. If L* is J (L *)-complete, then there is a
morphism ¢ of L into & *. Further, ¢ is one-to-one if each ¢; is one-to-one.

Proof. In this case, there is a natural morphism d¢ of
0 =0Lp, ®...0 0L 5
into 0.L*=0L*pp @ ... @ 0L *pr ® ... ® 0.L*p,» defined by
oAy, .o, Ay) = (ei(Ay), ..., oe(Ar), I, I,...,]I).
The result follows from Corollary 2.5.
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