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ALMOST ALL GRAPHS HAVE A SPANNING CYCLE

BY
J. W. MOON()

In memory of Leo Moser

1. Introduction. A graph is a collection of nodes some pairs of which are joined
by a single edge. A k-path, or a path of length k, is a sequence of nodes {p,, ps, . . .,
Di+1) such that p; is joined to p;,, for 1<i<k; we assume the nodes are distinct
except that p; and p, ., may be the same in which case we call the path a k-cycle
or a cycle of length k. (Notice that two nodes joined by an edge determine a
2-cycle according to this definition; it will also be convenient to regard a single
node as a 1-cycle.) A spanning path or cycle is one that involves every node of the
graph. One of the unsolved problems of graph theory is to characterize those
graphs that have a spanning path or cycle.

If0<p<1,let G(n, p) denote a random graph with # nodes in which each of the
in(n—1) possible edges is present with probability p. Erdos and Rényi [1] have
conjectured that most graphs with n nodes and n' *< edges contain a spanning cycle.
Our object here is to prove the following weaker result.

THEOREM. If € is any positive constant and p?=(1+¢€)(2/n)*'2logn, then the
probability that the random graph G(n, p) has a spanning cycle tends to one as n
tends to infinity.

2. Proof of theorem. Suppose node x does not belong to a given k-cycle Cin a
random graph G(n, p). If x is joined to two consecutive nodes of C, then x can be
inserted between these nodes to form a (k+ 1)-cycle. In this case we shall say we
have extended the k-cycle C. (Extending a 1-cycle means adjoining a new node
that is joined to it.)

If 1<k<n-—1, let P(n, k) denote the probability that a given k-cycle C in a
random graph G(n, p) cannot be extended. The probability that a given node x,
not in C, cannot be inserted between a given pair of consecutive nodes of C is
1—p2. If we only try to insert these n—k nodes x between every other pair of con-
secutive nodes of C, then the outcomes of these attempts are independent of each
other. It follows, therefore, that P(n, 1)=(1—p)"~*, P(n,2)=(1—-p?"~2, and
P(n, k)<(1—p?ik-bn=k for k>3,

There are (Z) -3(k—1)! ways to choose k nodes from a graph with n nodes and

order them in a cycle if k>3; the probability that any such ordering actually
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determines a cycle is p*. (The corresponding expressions for 1 and 2-cycles are
obvious.) If x denotes the expected number of cycles in G (n, p) that cannot be ex-
tended and whose length is at most n—L where L= [(2n)*/?], then

n—-L
b= P D+ (5) PO, D+3 S, (1) 6= D1 PP )
k=8
< n(l __P2)n—3+n2(l _p2)n—3+niL nk(l _p2)§(k—1)(n—k).
k=3

Since p?=(1+¢)(2/n)*'* log n, it follows that

1_p2 < n—(1+e)(2/n)1’2.

If we split the sum into two parts, consisting of those terms for which k<L and
k> L, it is not difficult to see that when # is large

g < Lnk(1—p2)r=384 (1 —p?)itn-L-1
< (2n)'n- €2mi2+0m=112) 4 4 —en+0mli2)

This tends to zero as n tends to infinity. Since G(n, p) certainly has some 1-cycles,
by definition, it follows that the probability that a random graph G(n, p) has at
least one (n—L)-cycle tends to one as » tends to infinity.

Now let C denote some (n—L)-cycle in a random graph G(n, p). We split this
cycle into L subpaths P;, Py, .. ., P; each of length at least [(n—L)/L]>(1/2n)*?—-2
in such a way that consecutive nodes of any path P; are also consecutive nodes of
C and only the first and last nodes of any path P; belong to any other path P,.
Let g4, ¢s, . - ., g1, denote the nodes of G(n, p) that are not in C. We try to find two
consecutive nodes of P; that are both joined to g;, for 1 <i< L. If, as before, we only
try to insert g; between every other pair of consecutive nodes of P; we find that the
probability that ¢; cannot be inserted in P; is at most (1—p2)¥1/2m*2-2 Thys the
probability that at least one of the nodes g; cannot be inserted in its corresponding
path is at most

L(l _ pz);«uzn)llﬁ-z) < QL2 ~1/2e+0(n=112)

This also tends to zero as n tends to infinity. It follows, therefore, that the prob-
ability that G'(n, p) contains an (n—L)-cycle that can be successively extended to
a spanning cycle tends to one as » tends to infinity. This suffices to complete the
proof of the theorem. (This proof can easily be modified to establish analogous
results for oriented and directed graphs; the result is undoubtedly valid for con-
siderably smaller values of p.)
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