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A CHARACTERIZATION OF REAL HYPERSURFACES
IN COMPLEX SPACE FORMSIN TERMS
OF THE RICCI TENSOR

CHRISTOS BAIKOUSSIS

ABsTRACT.  We study real hypersurfaces of a complex space form My(c), ¢ # 0
under certain conditions of the Ricci tensor on the orthogonal distribution T,.

1. Introduction. LetM;,(c) denotean n-dimensional complex spaceform with con-
stant holomorphic sectional curvature c. It is well known that a complete and simply
connected complex spaceform consists of acomplex projective space P,(C), acomplex
Euclidean space C", or acomplex hyperbolic space H,(C), accordingasc > 0,c = Oor
¢ < 0. In this paper we consider real hypersurfacesM of M(c), ¢ # 0, namely of P,(C)
or Hp(C).

Now, let M be areal hypersurface of an n-dimensional complex spaceform My (c), ¢ #
0. Then M has an almost contact metric structure (¢, &, 17, g) induced from the complex
structure J of P,(C) or H,(C).

The study of real hypersurfaces of P,(C) was initiated by Takagi [19], who proved
that all homogeneous hypersurfaces of P,(C) could be divided into six typeswhich are
said to be of type Aq, Az, B, C, D, and E. Many results for real hypersurfaces of com-
plex projective space have been obtained by Cecil and Ryan [3], Kimura[8], Kon [13],
S. Maeda [14], [15], Okumura [18] and so on (for more details see [14]). On the other
hand, real hypersurfaces of H,(C) have also been investigated by many authors, from
different points of view (cf. [1], [2], [4], [5], [16], [17], etc.). In particular Berndt [1], [2]
showed recently that all real hypersurfaceswith constant principal curvaturesof complex
hyperbolic space Hn(C) arerealized asthe tubes of constant radius over certain subman-
ifolds when the structure vector field € is principal. Nowadaysin Hy(C) they are said to
be of type Ag, A1, A; and B.

M. Kimuraand S. Maeda[11], [12] investigated the condition

(L1) (Vx9Y = u(9(eX, VE + n(V)eX)

where Sis the Ricci tensor, 1 is a non-zero constant for any tangent vector fields X and
Y of M in P,(C). They used it to find a lower bound of ||VS||. Also T. Taniguchi [20]
extended the results of M. Kimuraand S. Maedato real hypersurfacesin H,(C).
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On the other hand, the condition

(12 o((Se — ¢SX,Y) =0

for any tangent vector fields X and Y of M was considered by M. Kimura [9], [10] for
c>0andU.-H. Kiand Y. J. Suh [6] for c < 0.

Now, let us define adistribution T, by T, = {X € T\M|X L&y} of areal hypersurface
M of Mn(c), ¢ # 0, which is orthogonal to the structure vector field £ and holomorphic
with respect to the structure tensor . If we restrict the properties (1.1) and (1.2) to the
orthogonal distribution Ty, then for any vector fields X and Y in Ty the Ricci tensor S of
M satisfies the following conditions

(1.3) (VXY = pug(¥X,Y)§
and
1.4) (Sp — X = 0(X)¢

for a 1-form 0 defined on T, where p is a constant. Thus the above conditions (1.3) and
(1.4) are weaker than the conditions (1.1) and (1.2), respectively and it is natural to study
real hypersurfaces of Mp(c), ¢ # 0O, under these conditions.

We show the following

THEOREM. Let M be areal hypersurfaceof My(c), ¢ # 0, n > 3. If it satisfies (1.3)
and (1.4) for any vector fields X and Y in Ty, then M is locally congruent to one of the
following:

(1) IncaseMy(c) = Py(C)

(a) ahomogeneousreal hypersurfacewhich lieson a tube of radiusr over a
totally geodesic P«(C)(1 <k <n—1),where0 <r < I,

(b) a homogeneousreal hypersurfacewhich lies on a tube of radiusr over a
complex quadric Qn—1, where0 < r < 7/4and cot?2r = n— 2,

(c) a homogeneous real hypersurface which lies on a tube of radiusr over
P1(C) X Pg_1),2(C), where 0 < r < m/4, cot?2r = 1/(n— 2), and
n(> 5) isodd,

(d) a homogeneousreal hypersurface which lies on a tube of radiusr over
a complex Grassmann G, 5(C), where0 < r < /4, cot?2r = 3/5and
n=9,

(e) ahomogeneousreal hypersurfacewhich lies on a tube of radiusr over a
Hermitian symmetric space SO(10) /U(5), where0 < r < 7/4, cot? 2r =
5/9andn = 15,

(f) anonhomogeneousreal hypersurfacewhichlieson atube of radiusr over
ak-dimensional Kaehler submanifold N on which the rank of each shape
operator isnot greater than 2 with nonzero principal curvaturesnot equal
to i\/(Zk —1)/(2n— 2k — 1) and cot?r = (2k—1)/(2n—2k—1), where
k=1,...,n—1.
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(2) IncaseMy(c) = H,(C)
(Ag) ahorospherein H,(C), i.e. a Montiel tube,
(A1) atube of atotally geodesic hyperplane Hy(C)(k = O or n — 1),
(A2) atubeof atotally geodesic H(C)(1 <k < n-—2).

ReEMARK. Real hypersurfaces of the complex space forms My(c), ¢ # 0O, under the
conditions (VxA)Y = —20(¢X, Y)¢ and (Ap — pA)X = 6(X)¢, for any vector fields
X, Y € To, where Aisthe shapeoperator, havebeeninvestigated by U.-H. Ki and Y. J. Suh
in[7].

2. Preliminaries. LetM bearea hypersurface of an n(> 3)-dimensional complex
space form Mp(c) of constant holomorphic sectional curvature c(c # 0) and let N be a
unit normal vector field on aneighborhood of apoint x in M. We denote by J the almost
complex structure of M (c). For alocal vector field X on the neighborhood of xin M, the
transformations of X and N under J can be represented as

IX=pX+nX)N, JIN=—¢,

where ¢ definesaskew-symmetric transformation on the tangent bundle TM of M, while
n and ¢ denote a 1-form and a vector field on a neighborhood of x in M, respectively.
Then it is seen that g(¢, X) = 1(X), where g denotes the Riemannian metric tensor on
M induced from the metric tensor on M(c). The set of tensors (¢, &, 1, @) is an amost
contact metric structure on M:

2.1) X =—X+n(X)¢, () =1, p¢=0.
Furthermore, the covariant derivatives of the structure tensors are given by
(2.2) (Vxp)Y = n(NAX — g(AX, Y)§,  Vx€§ = pAX

for any vector fields X and Y on M, where V is the Riemannian connectionon M and A
is the shape operator of M. Since the ambient spaceis of constant holomorphic sectional
curvature ¢, the equations of Gauss and Codazzi are respectively obtained:

R(X,Y)Z = E{Q(Y, X —g(X, )Y +g(¢Y, D)X — g(¢X, 2)¢Y
—20(0X, Y)pZ} + g(AY, Z)AX — g(AX, 2)AY,
(VXAY = (TyAX = Z{(2Y = (V)X — 20(¢X, )¢}
By (2.1), (2.2) and (2.3) we get
2.4) X = g {(2n+ )X — 35(X)¢} + hAX — AZX

(2.3)

c
(Vx9Y = Z{ —39(pAX, Y)§ — 3n(Y)pAX} + (Xh)AY
+(hl — A)(VxA)Y — (VxA)AY
where h = traceA, Sisthe Ricci tensor of type (1,1) on M, and | isthe identity map.
Now we recall without proof the following propositions, which were proved by

M. Kimura [9], [10] and U.-H. Ki and Y. J. Suh [6], inthecasec > Oandc < O,
respectively.

(2.5)
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PrROPOSITION A [9], [10]. Let M be a real hypersurface of P,(C)(n > 3). Then
the Ricci tensor of M commutes with the almost contact structure p of M induced from
Pn(C), ¢ isprincipal and the focal map has constant rank on M if and only if M islocally
congruent to one of the following :

(a) a homogeneousreal hypersurfacewhich lies on a tube of radiusr over a totally
geodesic P (C)(1 <k <n-—1),where0 <r < 3,

(b) a homogeneousreal hypersurfacewhich lies on atube of radiusr over a complex
quadric Qn—1, where0 < r < 7/4 and cot?2r=n—2,

(c) a homogeneousreal hypersurface which lies on a tube of radius r over P1(C) x
P(n-1),2(C), where0 < r < m/4, cot® 2r = 1/(n — 2), and n(> 5) is odd,

(d) ahomogeneousreal hypersurfacewhich lies on atube of radiusr over a complex
Grassmann G,5(C), where0 < r < 7/4, cot?2r = 3/5andn = 9,

(e) ahomogeneousreal hypersurfacewhich liesonatubeof radiusr over a Hermitian
symmetric space SO(10) /U(5), where0 < r < /4, cot?2r = 5/9and n = 15,

(f) a nonhomogeneous real hypersurface which lies on a tube of radius r over a
k-dimensional Kaehler submanifold N on which the rank of each shape operator is not
greater than 2 with nonzeroprincipal curvaturesnot equal to i\/ (2k—1)/(2n— 2k — 1)
and cot?r = (2k — 1) /(2n— 2k — 1), wherek = 1,...,n— 1.

PROPOSITION B [6]. Let M beareal hypersurface of H,(C)(n > 3). Then the Ricci
tensor of M commutes with the almost contact structure ¢ of M induced from H,(C) if
and only if M islocally congruent to one of the following;:

(Ag) ahorospherein H,(C), i.e. a Montiel tube,
(A1) atube of atotally geodesic hyperplane Hy(C)(k = Oor n— 1),
(A2) atubeof atotally geodesic Hi(C)(1 <k <n—2).

3. Certainlemmas. For our purpose we need the next two lemmas obtained from
the restricted conditions (1.3) and (1.4).

LemmA 3.1. Let M beareal hypersurface of My(c), ¢ # 0. If M satisfies (1.3) and
(1.4), then we have

() OYA(AX, vZ) + (¢ Y)9(AX, Z) + 0(Z)9(AX, ¢Y) + 8(»Z)g(AX, Y) = 0
forany X,Y,Z € To.

ProOOF.  For vector fields X, Y and Z orthogonal to &, the condition (1.4) implies that
9((Sp — ¢9)Y,Z) = 0. Differentiating this equation covariantly in the direction of X,
we get
9((Vx9Y.0Z) +9((VxSZ ¢Y) +g((Sp — ¥, VxZ)

+9((Vxp)Y, KZ) +9((Vx¢)Z, SY) +9((Sp — #9Z, VxY) = 0
By using (2.2) and (1.4) we get g(VxY, &) = —0(pAX,Y) and (X) = g(&, ¢X). Now
using (1.4) we obtain

9((Sp — ¥9Y, VxZ) = 9((Sp — Y. £)9(VxZ, €) = d(AX, p2)(Y).

(3.2)
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Finally from this, (2.2), (1.3) and (3.2) we obtain (3.1).

In the study of real hypersurfaces of My(c), ¢ # 0, it isa crucia condition that the
structure vector ¢ is principal. In fact in proofs of many known results it seemsthat the
most difficult part isto show that £ is principal under acertain condition. For this reason,
the next lemma s important.

LEMMA 3.2. Let M beareal hypersurface of My(c), ¢ # 0. If M satisfies (1.3) and
(1.4), then the structure vector field £ is principal.

PROCF. In order to prove thislemma, let us suppose that thereis a point where € is
not principal. Then there exists a neighborhood U of this point, on which we can define
aunit vector field U orthogonal to ¢ in such away that

(3.3 A = al+5U

where 3 denotes the length of vector field A¢ — ¢ and 3(X) # 0 for any point x in U.
Hereafter, unlessotherwise stated, let us continue our discussion on thisneighborhood U.
LetV = V. Then, from this together with (2.2) and (3.3) it follows V = pA{ = SpU

and n(V) = 0.
PuttingX=Y=V,Z=¢pVorX=V,Y=2Z=¢Vin(3.1) weget
(34) O(V)9(AV,V) — 8(pV)9(AV, pV) = 0

0(¢V)9(AV, V) + 0(V)9(AV, ¢V) = 0

We distinguish two cases: () g(AV, V) # 0and (1) g(AV, V) =0
(1) Letg(AV,V) #£ 0.
From (3.4) we get (V) = 6(¢V) = 0. Now puttingZ = VorZ = ¢V in (3.1) we
obtain
(3:5) 0(PY)AV +0(MAPV = —F0(Y)é
ONAV — 0(oVApV = F26(Y)E

Therefore (0(Y)? + 0(»Y)?)AV = 0 and since AV # 0 we have §(Y) = 0, namely
(Sp — ¢9Y = O for any vector field Y € To.

Now, from §(X) = 0, (1.4) and (2.4), we obtain hi(AX) — (A?X) = Ofor any X € To.
This, by using (3.3), implies

(3.6) AU = (h— a)U + 3¢

Thisand (3.3) give A%¢ = (a? + 3%)¢ + hgU. Consequently, from (2.4) we take S¢ = k¢
withk = §(n—1) +ah— o — 2. Thus (Sp — ¢S)¢ = 0 and finally from (1.3) we have

(3.7) Sp = ¢S
Now, from (1.3 ) and (2.5) we get
— 20a(eAX,Y) + (XN)GAY, €) + hg((VxA)Y, )
— 9(A(VXA)Y, ) — 9((VxAAY, €) = ng(eX, Y).

(3.9)
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This, for Y = U, gives

_gcg((pAX, U) — g((VXA)Ur af + BU)

(3.9) +(Xh)B + hg(Vx(at +BU) — ApAX, U)
— g(Vx(ag +BU) — ApAX, (h— a)U + 3¢)
= ng(pX, V).
By using (2.2) and (3.6) we obtain from (3.9)

%cg(AapU,X) = —pg(¢U, X), for any X € To.
Also by using (3.3) we take n(ApU) = g(pU, A¢) = 0. Thus

4u
3.10 ApU = ——= »U.
(3.10) @ e

Now, from (2.4) by using (3.6) we calculate SU = pU, with p = $(2n+1)+ah—a?— 32
Now (3.7) impliesSpU = ppU. Differentiating this equation covariantly in thedirection
of U, we get

(Vu9pU + SVup)U + SpVyU = (Up)eU + p(Vye)U + ppVyU.

Taking the inner product of this with ¢ and using (1.3) we get © = —%’c(h — a). Now
from SpU = peU, (2.4) and (3.10) we obtain 3 = 0, which is a contradiction.

(1) Letg(AV,V)=0

In this case we have from (3.4)

(3.11) 0(eVIYAV, pV) =0, O(V)9(AV, V) = 0
Next, puttingY =V, X=Z=¢VorY=2Z=V, X = ¢Vin(3.1) we get
(3.12) HeV)IAPV, pV) =0, O(V)g(ApV, V) =0

Wewill provethat (V)2 + 6(¢V)? = 0.
Assume, for the moment, that 8(V)? + 6(¢V)? # 0. Then from (3.11) and (3.12) we
have g(AV, ¢V) = 0and g(ApV, ¢V) = 0. Now putting in (3.1) Z = V we get

B(pV)AY + 0(pY)AV + O(V)ARY +0(Y)ApV = of
Taking the inner product of this by V we obtain
(3.13) 0(pV)AV — 0(V)pAV = 0.

If we supposefor the moment that 8(»V) # 0, then AV = ApAV with A = 6(V) /6(¢V).
Thus, by using (1.4) and (2.4) we have 0(pV) = n(A2V) — hp(AV) = n(A%V) =
g(A()\(pAV), g) = A(pAV, o€ + sU) = —Ag(AV, V) = 0, which isa contradiction.
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Thus6(pV) = 0andso 6(V) # 0. Now we havefrom (3.13) pAV = 0, whichimplies
AV = 0.
Next, putting Y = Z = V in (3.1) we obtain ApV || £. Thus

ApV = g(ApV, )¢ = g(pV, AE = —F%¢.

Using thisrelation, and putting Z = »V in (3.1) we obtain AX || £ for any X € To.
Thus g(AX, £)¢ = g(X, A& = Bg(X, V)¢ for any X € Tp, which means that

AY =0, AU =3¢

for any Y € Ty orthogonal to U.
Hence, from (2.4) wetake S¢ = k¢ +3(h— a)U wheres = §(n— 1) +ah— o2 — 32
Therefore, from (1.4) we find that 6(U) = g((&p — 99U, 5) = 0, whichimplies

(3.14) SpU = pU.
Now from (2.4) we calculate
U= (G@n+1)— AU +5h— ), SpU=5(2n+1pU

Combining these, with (3.14), we take 3 = 0. This makes a contradiction and the asser-
tion §(V)? + 6(¢V)? # Oisfalse.

Now we have 8(V) = 0 and 8(¢V) = 0. From these we obtain g(AU,U) = h — «,
g(AV,U) = 0. Putting Z = V in (3.1), we find 8(p Y)AV + 6(Y)ApV = v, which gives
O()a(ApV,U) =0, or (h— a)d(Y) = 0.

We will provethat the assertionh — o # Oisfalse.

Assume, for the moment, that h — o # 0. Thus

(3.15) oY) =0, YYeT,.
Thisimpliesthat AU = (h — a)U + 3¢ and from (3.3) we get A%¢ = (a? + §2)¢ + ghU.
Hence the equation (2.4) gives &¢ = k¢, with x = $(n — 1) + ah — o — 2. Thisand
(3.15), by using (2.4), imply (3.7).

On the other hand, using (2.5) and (1.3), for Y = U, we obtain, asin relation (3.10)

g(%CA90U+uLpU,X) = 0,forany X € Tp. Thusweget ApU = —%@U,Which, together
with g(AV, V) = 0, impliesthat 4 = 0 and so
(3.16) ApU = 0.

Now, from (3.7) we get h(Ap — pAU = (A2 — oA2)U or ah — o? — 3% = 0. Thus
= 5(n—1). Now, from (1.3), since ;» = O, we get
0= g((VuSeU,¢)

= 9(@U, (VUS)E)

= g(pU, Vu(S) — SVi¢)

= rg(pU, pAU) — (h — a)g(pU, SpU)

3c
= -7 h—a).
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Thus ¢ = 0, which isimpossible.

Now, let uscontinuewith our discussionontheopenset U withh—a = 0, g(AV, U) =
0 and g(AU,U) = 0. Putting in (3.1) Z = V or Z = ¢V we obtain the relations (3.5),
whichgive (6(Y)*+6(¢Y)?)AV = 0and (6(Y)*+0(¢Y)?)ApV = —32(0(Y)*+0(Y)?)<.
Weclaimthat §(X) = Ofor any X € To. Indeed, if thereexists Y € T suchthat 6(Y) # 0,
then AV = Oand ApV = —32%¢. Thelast onegivesAU = 3¢. Now, from (2.4) we obtain
& = (§(n— 1) — 5?)¢, which combined with (1.4) implies 6(X) = 0for any X € To, a
contradiction.

Conseguently we have dways 6(X) = 0 for any X € To. Now, from (1.4) and (2.4)
we obtain AU = 3¢. Also, from (2.4) S¢ = k¢ with k = §(n— 1) — 3% and SU = pU,
with p = $(2n+1) — 2 Then,

p=9((Vu9eU,¢)
= g(vU, Vu(&) — SVu¢)
= rg(pU, pAU) — g(»U, SpAU)
=0.

Now, from (1.3) and (2.5) we get

0= g((Vx9U.¢)
=~ Za(pAX, U) + (XHIGAU, €) + g((hl — ATxA, €) — 5((TMAU, €)

3c

Finally we have ApU = 0.

Now, from Sy = ¢Swe obtain h(Ay — pA)U = (A2p — pA?)U and so 3 = 0. This
resultsin a contradiction.

The set U should be empty. Thus there does not exist such an open neighborhood U
in M, which meansthat the structure vector field ¢ is principal.

4. Proof of the Theorem. Let M be areal hypersurfacein a complex space form
Mn(c), ¢ # 0, n > 3 under the assumptions (1.3) and (1.4). According to Lemma 3.2
the structure vector field ¢ is principal. Namely A¢ = «&. Thus from (2.4) we have
S = k¢ withk = §(n— 1) + ah — o®. Now, from (1.4) we obtain Sp = ¢S Then,
by using Propositions A and B of M. Kimura [9], [10] for ¢ > 0 and of U.-H. Ki and
Y. J. Suh [6] for ¢ < O we get our result.

ACKNOWLEDGMENT. The author heartily thanks Professors Sadahiro Maeda and
Young Jin Suh for their kind advice during the preparation of this paper. He also greatly
appreciates the referee’s valuabl e suggestions.

https://doi.org/10.4153/CMB-1997-031-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-031-5

REAL HYPERSURFACES 265

REFERENCES

1. J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine
Angew. Math. 395(1989), 132-141.
, Real hypersurfaces with constant principal curvatures in complex space forms, Geometry and
Topology of Submanifolds I1, Avignon 1988, 10-19, World Scientific, 1990.
3. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfacesin complex projective space, Trans. Amer.
Math. Soc. 269(1982), 481-499.
4. B. Y. Chen, Differential geometry of real submanifolds in a Kaehlerian manifold, Mh. Math. 91(1981),
257-274.
5. B. Y. Chen, G. D. Ludden and S. Montiel, Real submanifolds in a Kaehlerian manifold, Algebras Groups
Geom. 1(1984), 174-216.
6. U.-H. Ki and Y. J. Suh, On real hypersurfaces of a complex projective space, Math. J. Okayama Univ.
32(1990), 207-221.
, On a characterization of real hypersurfaces of type A in a complex space form, Canad. Math. Bull.
37(1994), 238-244.
8. M. Kimura, Real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 296(1986), 137—149.
9. , Some real hypersurfaces in a complex projective space, Saitama Math. J. 5(1987), 1-5.
10. , Correction to “ Some real hypersurfaces in a complex projective space”, Saitama Math. J. 10
(1992), 33-34.
11. M. Kimura and S. Maeda, Characterizations of geodesic hyperpheres in a complex projective space in
terms of Ricci tensors, Yokohama Math. J. 40(1992), 35-43.
12. , On real hypersurfaces of a complex projective space |11, Hokkaido Math. J. 22(1993), 63-78.
13. M. Kon, Pseudo-Einstein real hypersurfaces in complex space form, J. Differential Geom. 14(1979), 339—
354.
14. S. Maeda, Geometry of submanifolds which are neither Kaehler nor totally real in complex projective
space, Bull. Nagoya Inst. Tech. 45(1993), 1-50.
, Ricci tensors of real hypersurfaces in a complex projective space, Proc. Amer. Math. Soc. 122
(1994), 1229-1235.
16. S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37(1985), 515-535.
17. S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata
20(1986), 245-261.
18. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212
(1975), 355-364.
19. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10(1973),
495-506.
20. T. Taniguchi, Characterizations of real hypersurfaces of a complex hyperbolic space in terms of Ricci
tensor and holomorphic distribution, Tsukuba J. Math. 18(1994), 469-482

2.

7.

15.

Department of Mathematics
University of loannina
45110 loannina

Greece

e-mail; chaikou@cc.uoi.gr

https://doi.org/10.4153/CMB-1997-031-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-031-5

