
J. Fluid Mech. (2021), vol. 924, A24, doi:10.1017/jfm.2021.646

Laminar flow-induced scission kinetics of
polymers in dilute solutions

Etienne Rognin1,†, Niamh Willis-Fox1, Tommy Z. Zhao1, Talal A. Aljohani2

and Ronan Daly1

1Institute for Manufacturing, Department of Engineering, University of Cambridge,
17 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
2National Centre for Corrosion Technology, King Abdulaziz City for Science and Technology,
P.O Box 6086, Riyadh 11442, Kingdom of Saudi Arabia

(Received 27 October 2020; revised 14 July 2021; accepted 16 July 2021)

Mechanical degradation of macromolecules in strong flows is encountered in many
industrial processes spanning from biopharmaceutics manufacturing to enhanced oil
recovery. In spite of extensive research, from molecular studies to large experiments,
unifying scaling laws and design rules to harness this phenomenon are still at an early
stage. Some of the current modelling approaches predict the onset of flow-induced
degradation only, leaving out quantitative calculations of scission events, while others are
restricted to a particular process or the materials they have been empirically developed
for. In this work we re-examine a previously published constitutive equation for the
scission kinetics of polymers and implement the model using the finite volume library
OpenFoam. We test and validate this model using experimental degradation measurements
of aqueous poly(ethylene oxide) solutions flowing through narrow constrictions. Three
polymer molecular weights and three constriction geometries are investigated. For each
molecular weight, experimental degradation data of one geometry is used to calibrate the
model. Following this calibration step, the level of polymer degradation as a function
of flow rate can be predicted for the two other geometries, suggesting that mechanisms
linking single molecule scission to macroscopic chemical reaction rate are accurately
captured by the model. Although the focus of this work is on flexible linear polymers
in dilute concentrations and laminar flow conditions, we discuss how to alleviate these
assumptions and extend the applicability of the model to a broader range of materials and
industrially relevant flow conditions.
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1. Introduction

High molecular weight polymers in solution can break in strong extensional flows.
Industrial and research-scale fluidic systems are prone to this effect whenever they feature
high flow rates of macromolecule solutions through pipes, constrictions or porous media.
For example, polymers used for drag reduction purposes or in enhanced oil recovery fluids
are mechanically degraded over time (Seright 1983; Al-Shakry et al. 2018; Soares 2020).
Large biopharmaceuticals can break or lose their activity when processed through narrow
channels (Lengsfeld & Anchordoquy 2002; Rathore & Rajan 2008; Cook, Wang & Derby
2010; Hawe et al. 2012). Long polymers incorporated in inkjet inks can be degraded in the
jetting flow or recirculation circuit, changing the functional properties or the printability
of the fluid (A-Alamry et al. 2010; McIlroy, Harlen & Morrison 2013). On the other hand,
extensional forces in flows can be used on purpose to fragment DNA in next generation
sequencing technologies (Shui et al. 2011), or more broadly to activate force-sensitive
compounds in the context of polymer mechanochemistry (May & Moore 2013; Willis-Fox
et al. 2018, 2020).

Although extensive research has been done on flow-induced polymer scission, advanced
modelling and simulations mainly focus on the molecular scale. Bond rupture can be
simulated via quantum chemistry (Stauch & Dreuw 2016), bond angles motion and
short chains bending via all-atoms molecular dynamics (Ribas-Arino & Marx 2012),
and unravelling of long chains of polymers via coarse-grained molecules in implicit
solvent, such as bead-spring or bead-rod models (Knudsen, Martínez & Torre 1998;
Maroja et al. 2001; Hsieh, Park & Larson 2005; Sim, Khomami & Sureshkumar 2007).
Some approaches to model polymer degradation at continuum scale have been focused on
predicting the onset of chain scission rather than the complete description of the reaction
kinetics. For turbulent flows at high Reynolds numbers, experiments have revealed that
the onset of degradation is a function of the Reynolds number and physico-chemical
parameters of the polymer–solvent system only, so that the exact geometry of the ducts
as well as the detailed patterns of the flow are irrelevant to the problem (Nguyen
& Kausch 1991; Vanapalli, Ceccio & Solomon 2006). In the field of enhanced oil
recovery fluids, models have been developed to predict the time evolution of the polymer
average molecular weight (Sorbie & Roberts 1984; Brakstad & Rosenkilde 2016; Lohne
et al. 2017), but have remained largely empirical, because the degradation mechanism
is modelled by macroscopic averaged quantities, and not at pore scale. In a recent work
Garrepally et al. (2020) used multiple passes though a microfluidic constriction to study
polymer degradation via pressure losses. They found scaling behaviours and could predict
polymer degradation for a range of flow rates. However, it is not clear how their findings
would translate directly to other constriction geometries or other types of flow fields.

On the other hand, efforts to model polymer degradation in terms of local reaction
kinetics and velocity fields have been limited so far. López Cascales & García de la Torre
(1992) used coarse-grained molecular models to study the kinetics of rupture of large
ensembles of chains in a sudden elongational flow. They found two steps in the degradation
process: a first period of time without damage, corresponding to the unravelling of the
molecules, and a second step with damage well described by first-order reaction kinetics.
Although the scission rate was analysed in terms of the strain rate of the flow and
molecular lengths, the model was not generalized to arbitrary flows in a form suitable
for computational fluid dynamics (CFD). More recently, Pereira, Mompean & Soares
(2018) presented a series of simulations of polymer degradation in turbulent flows. In
their approach, the contour length of the polymer is not a constant parameter but a
scalar field convected by the flow. Degradation is simulated by an arbitrary geometric
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criterion: the local contour length (or molecular weight) is reduced by a small amount as
soon as the average conformation reaches an extensibility threshold. The viscoelastic stress
is computed based on the local polymer length, and the turbulent flow is solved by a Direct
Navier–Stokes (DNS) approach. Although this work is an interesting proof of concept that
a local modelling of chain scission is achievable even in the case of turbulent flows, the
underpinning scission model was not derived from mechanochemical principles, and the
generalization and predictive ability of this approach is still to be confirmed.

However, with the move to integrate mechanically activated functional macromolecules
into materials and processes, it is critical to develop a quantitative model that can predict
the rate of chain scission while being geometry agnostic and integrated within a CFD
analysis. For example, such elaborate models exist for the specific case of worm-like
micellar solutions, for which closed-form chemical kinetics for scission and recombination
of the micelles have been developed (Carl, Makhloufi & Kröger 1997; Vasquez, McKinley
& Cook 2007; Germann, Cook & Beris 2013; Dutta & Graham 2018).

In this work we validate through experimental results a continuum mechanochemical
model of polymer chain scission containing a minimal number of parameters. We
introduce a set of partial differential equations inspired by rheological constitutive
equations and molecular simulations previously reported (Rognin et al. 2018). The
equations are implemented and solved with the open source CFD library OpenFOAM. The
model is validated using a series of scission experiments of high molecular weight polymer
solutions flowing through narrow constrictions. Linear poly(ethylene oxide) (PEO) in
water solutions are used for this validation. Provided that near-equilibrium properties
(zero-shear viscosity, Zimm relaxation time) can be measured beforehand with standard
lab tools, the present mechanochemical model needs only two parameter fits for a given
polymer–solvent system: the first one is a critical strain rate calibrating the amount of chain
scission, and the second one is a maximum extensional viscosity impacting the pressure
loss and viscoelastic flow pattern.

The paper is organised as follows: in the next section we present the modelling
framework; then the experimental method is reported, followed by an introduction to the
simulation work. Experimental results and simulations are then compared and discussed.
Final remarks and the potential impact across disciplines and applications are presented in
the conclusion.

2. Model

An abundant literature partly cited above has shown that polymer backbone mechanical
scission depends on three main components. The first one is the strength of the bond
itself, usually expressed as a critical force (in nanoNewtons). The second component is the
amount of strain rate in the fluid, as this sets the tension in polymer chains, imparted by
the solvent through viscous friction. The third component is the conformation state of the
polymer molecules, as significant tension can only build up in long straight segments. Our
model, first presented in Rognin et al. (2018), includes those three aspects in a way that is
summarised below.

2.1. Mechanochemical model
We consider an initially monodisperse population of polymer chains in dilute solution. The
conformation state of the linear molecules is described by the second tensorial moment C
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of the end-to-end vectors R, C = 〈RR〉, with the evolution equation

DC

Dt
= (∇u)T · C + C · ∇u −

(
7
2

− 3tr(C)

2L2

) �∇u : C�
L2 C −

C − R2
EE
3

I

τZ
, (2.1)

where D/Dt is the Lagrangian time derivative, u is the fluid velocity field, L is the polymer
contour length, REE is the root mean square end-to-end distance of the unperturbed chains,
I is the unit tensor and τZ is the relaxation time for the coil-stretch transition (Zimm
time, usually). The brackets �·� indicate that only positive values of the product ∇u : C
are kept in the evolution equation. This introduces a hysteresis behaviour describing the
far-from-equilibrium stretching dynamics of flexible polymers, known as kink dynamics
(Larson 1990; Hinch 1994). When ∇u : C > 0, chains are stretching but in a non-affine
manner with respect to the fluid because of their various folding states. In addition,
this formulation naturally yields a finite extensibility of the polymer chains, with tr(C)

always smaller than L2. By contrast, when ∇u : C < 0, chains are contracting along their
principal axis and no significant mechanism can prevent an affine recoiling. Hence, the
term involving ∇u : C < 0 should vanish.

A normalised and more suitable form of this equation for numerical purposes is obtained
by dividing C by L2,

DA

Dt
= (∇u)T · A + A · ∇u − 7 − 3λ

2
�∇u : A� A −

A − 1
3ξ2 I

τZ
, (2.2)

where A = C/L2, λ = tr(A) is the normalised mean square polymer extension and ξ =
L/REE is the polymer extensibility. By monitoring the conformation of intact polymer
chains only, ξ and τZ remain constant throughout the flow. How viscoelastic stress is
affected by chain scission will be described in § 2.3.

Let c be the mass concentration field of intact polymer chains (i.e. chains of initial
molecular weight). The flow-induced scission is modelled by a first-order reaction,

Dc
Dt

= −kc, (2.3)

where k is the reaction rate, and where polymer diffusivity and shear-induced migration
are neglected with respect to advection (Graham 2011). Neglecting diffusivity is a safe
assumption where chains break since the shear rate is already strong enough to overcome
fast internal recoiling mechanisms. We define the local degradation field, ϕ, ranging from
0 to 1, 1 being the case of complete degradation, by

ϕ = 1 − c
c0

, (2.4)

where c0 is the initial mass concentration intact polymers.
In our previous study we obtained a closed form for k inspired by molecular simulations

(Rognin et al. 2018). Although the original expression depends on Lagrangian time
derivatives, here, we suggest the following simplified form:

k =
⎧⎨
⎩

0 if �∇u : A� /λ < ε̇c,

α
�∇u : A�2

ε̇cλ
otherwise.

(2.5)

Here α is a coefficient of the order of unity, ε̇c is a critical strain rate and �∇u : A�/λ is
a measure of the strain rate in the direction of polymer elongation. The first line of (2.5)
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describes the cut-off case where the strain rate is lower than the critical value. From a
theoretical point of view, if the strain rate is exactly ε̇c then the scission rate should tend
towards the rate at which chains approach their fully unravelled state, because scission
events then occur only in stretched conformation. The second line of (2.5) describes this
threshold rate as tending towards αε̇c when λ→ 1. Free-draining bead-rod models give
α ≈ 0.5, which is the value adopted in this work, but it can be anticipated that, for real
chains, α would be lower because of the hydrodynamically hindered unravelling dynamics
(Hsieh & Larson 2004). If the strain rate is higher than ε̇c then scission can occur even in
non-fully stretched chains, and at a rate which depends quadratically on the strain rate.

Note that the scission rate falls back to zero instantaneously when the flow is switched
off. For this to be valid, the scission rate should be smaller than the relaxation rate of
mechanical tension. If the Zimm time, τZ , is considered as the longest relaxation time,
then tension relaxation driven by segmental diffusion at short times should happen at a
fraction of τZ . More specifically, because the number of segments scales as ξ2, segmental
relaxation time should scale as ξ−3τZ for a Zimm chain in theta solvent, or be even
smaller for free-draining chains. We will see in the following experimental section that,
for the range of molecular weights studied here, ε̇cτZ ∼ 10. Therefore, our assumption
holds provided that ξ3 	 10, which is straightforward for long flexible molecules (here,
ξ ≥ 19).

In addition, this model is distinct from other flow-induced scission models reported in
the literature. First, it contrasts with the original simulation work of López Cascales &
García de la Torre (1992) on short polymers, and current models of flow-induced scission
of worm-like micelles such as the Vasquez–Cook–McKinley (VCM) model (Vasquez et al.
2007; Dutta & Graham 2018), where the strain rate dependence is linear. We can explain
this difference by noting that the strain rate plays a double role in long coiled molecule
dynamics, first by setting the friction force along the body as in the case of micelles,
but also as the rate of unravelling and growth of long straight segments – negligible for
micelles and short polymers. The present model also contrasts with the thermally activated
bond scission (TABS) theory, where the first-order scission rate can be cast in the form

kTABS = k0 exp
(

ε̇

k1

)
, (2.6)

where k0 is the degradation rate without flow, ε̇ is the strain rate and k1 is a parameter
depending on polymer properties (Odell, Keller & Muller 1992). In the TABS model
the mechanical tension, which is assumed to be proportional to the strain rate, acts
to reduce the activation barrier of thermally induced bond scission. Nevertheless, the
averaging of the TABS kinetics, motivated by physical arguments at the bond scale, to
a population of unravelling chains experiencing different tensions due to their own folding
states, is not trivial until all chains are completely unravelled. Stretching dynamics can
be partly introduced by letting k1 be proportional to λ−1, as internal tension would then
be assumed proportional to 〈R2〉ε̇. Yet, for a single-pass constriction flow, k0 would be
very small compared with the inverse characteristic residence time. Therefore, to observe
any scission, the multiplication factor exp(ε̇/k1) would need to be large in some parts
of the flow, which because of its exponential nature, would impart a dramatic change in
scission rate as the strain rate smoothly increases. The resulting overall kinetics is that of
a thresholding, where one part of the flow experiences negligible scission while all chains
break up instantaneously in the remaining part of higher strain rates.
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We will assess the differences between these models in the discussion section. To
summarise, the flow-induced scission model proposed in this study has the following
expected properties.

(i) Straining time before rupture depends on initial configuration of individual chains,
where chains that are already aligned with the elongation axis break first while
chains having the most complex kinks and unravelling configuration take more time.
This property is given by the first-order kinetics of (2.3).

(ii) Scission occurs only above a certain strain rate threshold corresponding to a critical
tension in an fully stretched chain ((2.5), condition 1).

(iii) The scission is faster when the strain rate is larger (influence of ∇u) or when the
chains are on average unravelled (influence of A) as given by (2.5), condition 2.

(iv) We also assume that there is no recombination of broken chains.

2.2. Viscoelastic model
Since the present experiments are carried out at dilute but finite concentrations,
viscoelastic effects are expected to play a role in elongational flow patterns. The total
fluid stress, σ , is decomposed into

σ = −p I + τ s + τ p, (2.7)

where p is the pressure, τ s is the viscous stress due to the solvent and τ p is the viscoelastic
stress due to the polymer. The solvent is Newtonian and assumed incompressible, so that

τ s = ηs
(∇u + (∇u)T)

, (2.8)

where ηs is the solvent viscosity. As for the polymer stress, the model has to be consistent
with the evolution equation (2.2) of the conformation tensor, where the finite extensibility
and non-affine deformation of the chains is expressed through the friction term ∇u : A.
Although this approach is common for suspensions of rigid rods in strong flows, few
options have been studied for long flexible chains (Larson 1990; Hinch 1994; Rallison
1997; Verhoef, van den Brule & Hulsen 1999, see also § 5.5.3 in Larson 1988). Here we
select the form

τ p =
(

ηp(ϕ)
3ξ2

τZ
+ ηE(ϕ) �∇u : A�

)
A, (2.9)

where ηp(ϕ) is the additional zero-shear viscosity due to the polymer and ηE(ϕ) is a
maximum extensional viscosity. Both ηp and ηE are functions of the local degradation
to account for the fact that chain scission induces a decrease in polymeric viscoelasticity.
The selected functional forms will be described in the next subsection. The first term
of the stress accounts for the viscoelasticity at small shear rate where polymer chains
are close to equilibrium, while the second term accounts for the dissipative dynamics of
chains being unravelled. This second term is in fact a viscous term of fourth rank tensorial
viscosity 2ηEAijAkl. With this approach, and contrary to most finite extensible nonlinear
elastic (FENE) models, the geometric extensibility (ξ ) is decoupled from the extensional
viscosity. The behaviour of this viscoelastic stress model (2.9) and the FENE-P model
(FENE with Peterlin closure) commonly used for dilute polymer solutions (Larson & Desai
2015) are compared in more detail in § 1 of the supplementary material (SM) available at
https://doi.org/10.1017/jfm.2021.646. We will discuss further the influence of viscoelastic
stresses on polymer degradation in § 5.6.
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Laminar flow-induced scission kinetics of polymers

2.3. Mixture properties
The stress model takes into account degraded polymeric viscosities due to chain scission.
Regarding the zero-shear viscosity, we assume that the Mark–Houwink–Sakurada law
applies, which for the initial (i.e. non-degraded) solution gives

ηp0 = c0[η]0ηs = c0KMa
0ηs, (2.10)

where ηp0 is the added polymeric viscosity of the initial solution, c0 is the mass
concentration of polymers, [η]0 is the initial intrinsic viscosity, M0 is the initial polymer
molecular weight, and K and a are parameters depending on the polymer–solvent system
and temperature. Assuming perfect halving of the chains, the Mark–Houwink–Sakurada
law would give an added viscosity divided by 2a for a completely degraded solution.
Therefore, for a mixture of both initial and degraded polymer, we have

ηp(ϕ) = ϕ
ηp0

2a + (1 − ϕ) ηp0. (2.11)

In addition, according to a simple free-draining bead-rod model, the maximum extensional
viscosity should be divided by four if the chains are halved (molecular contribution divided
by eight, molar concentration doubled); therefore,

ηE(ϕ) = ϕ
ηE0

4
+ (1 − ϕ) ηE0, (2.12)

where ηE0 is the maximum extensional viscosity of the initial solution.
A complete mixture model would also account for changes in relaxation time and

extensibility. Indeed, shorter chains should relax faster than the original ones, and they
would require higher strain rates to undergo coil-stretch transition. However, we assume
that these changes would not be significant here, as we are modelling single stretching
events (single-pass contraction flow).

The next section describes the experimental system used to validate this choice of
modelling approach and equations.

3. Experiments

3.1. Fluidic system
In this study a single pass of polymer solutions through narrow constrictions is considered.
The fluidic system is presented in figure 1. A glass syringe (SGE Gas Tight) mounted
on a syringe pump (KDS) is used to push the polymer solution at a specified flow rate
inside stainless steel tubings (Valco fittings), and through one of the following two kinds
of constriction.

(i) The first kind of constriction is a fused glass capillary nozzle (hereinafter referred
to as fuse capillary, made from a straight capillary (Microcaps 1-000-0090, 480 μm
internal diameter) and fused in a capillary puller (Narishige PC-10) for 75 s. The
capillary is mounted on a stainless steel filter (Valco fittings and 2 microns screen).
The flow through this constriction can be monitored by a camera mounted on a
microscope objective.

(ii) The second kind of constriction is a sharp bore through a thin plate (Edmund Optics
stainless steel pinholes). In this study two different nominal diameters 25 μm and
50 μm are used (referred to as pinhole 25 and pinhole 50). The pinhole is stacked
together with an inlet filter (Valco 2 micron stainless steel frit), a support washer
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Pressure sensor

Syringe pump Sample collection

Inlet Outlet

Filter

Support
Pinhole

PTFE seals

Capillary

Sample collection

Filter

Constriction

Glass capillary

Pinhole

Figure 1. Experimental set-up and nozzle assembly.

and custom made PTFE rings, inside a filter holder (Millipore 13 mm diameter).
The effect of in-line filters on degradation measurements is negligible for the vast
majority of flow rates, as analysed in SM.

A pressure sensor (Honeywell MLH series, wetted parts: stainless steel 304L and
Haynes 214 alloy) is used to monitor the pressure upstream of the constriction. For each
specified flow rate, the steady-state pressure is recorded for both pure water and polymer
solutions, and used to calibrate the simulated geometries and fluid properties, as we will
see in § 4.

3.2. Sample preparation and production
Poly(ethylene oxide) in solid beads form, of three molecular weights (1 MDa, 600 kDa
and 300 kDa nominal molecular weight, Sigma-Aldrich) are dissolved in water (analytical
reagent grade, Fisher, conductivity 1.5 μS cm−1). Water is poured on top of the beads and
the polymer is left to dissolve during two to four weeks giving a manual swirl several times.
Then the solutions are filtered through a 1.2 μm cellulose ester membrane (Millipore) and
their zero-shear viscosity measured with a cone-plate rheometer (Anton Paar MCR302,
shear rates ranging from 50 to 500 s−1). For each molecular weight, the concentration of
polymer is chosen to be approximately a third of the overlap concentration. In particular,
this is achieved when there is a 33 % increase in viscosity from the original pure solvent
due to the presence of polymer. The viscosity-average molecular weight, M, of each
polymer is measured by first measuring the intrinsic viscosity of (unfiltered) solutions.
Using the Mark–Houwink–Sakurada law (2.10), M is then back calculated. The PEO
standards of known molecular weight (1 MDa, 500 kDa and 200 kDa nominal value,
polydispersity indices of 1.10, 1.05 and 1.08, respectively, Agilent) are used to measure
the Mark–Houwink–Sakurada parameters at 20 ◦C: K = 0.020 ± 0.007 ml g−1 (with M
in g mol−1), a = 0.695 ± 0.008. The value of a shows that water is a good solvent at
20 ◦C. Sample properties are summarised in table 2.
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Degradation experiments are carried out as follows. A nozzle is fitted on the fluidic
system. For each molecular weight, the system is rinsed first manually with 5 ml of the
solution (this includes a purge of the channel leading to the pressure sensor), then using
the syringe pump at low flow rate (10 ml h−1) with 2 ml. Then several flow rates are set
in increasing order. For each flow rate, the first 0.9 ml of the outlet solution is discarded
in order to let the pressure stabilise and to purge the fluid from the previous flow rate,
then 1.5 ml of solution is collected for viscosity measurement, and a new flow rate is set.
Three series are carried out for each polymer and each nozzle. Experiments are carried
out in an air-conditioned room at 20 ◦C, without additional control of the fluidic system
temperature.

3.3. Quantification of polymer degradation
In this study polymer degradation is assessed by measuring the decrease in zero-shear
viscosity of solutions after they flow through the constrictions. Neglecting polymer
adsorption in the system and assuming chain halving, the zero-shear added viscosity of
the collected solution, ηp, can be linked to the initial added viscosity according to (2.11),
so that

ηp = Φ
ηp0

2a + (1 − Φ) ηp0, (3.1)

where Φ is the overall proportion of broken chains in the collected sample. Here Φ is
found to be proportional to the decrease in zero-shear added viscosity ηp0 − ηp,

Φ = 2a

2a − 1
ηp0 − ηp

ηp0
. (3.2)

4. Simulations

4.1. Geometries characterisation and mesh generation
In a move to experimentally validate a model that can be generalized to arbitrary flows,
we have characterised the nozzles described in this report for integration into the model.
In each case, an axisymmetric geometry was assumed.

4.1.1. Fused glass capillary
To avoid refraction of visible light by the outer curvature of the capillary, X-ray imaging
(ZEISS Xradia Versa 520) is used to measure the inner profile of the constriction (see
figure 2(a i) and figure S4 in SM for a full size view). A surface line is interpolated with
Bezier curves and used to build the CFD mesh (figures S6). The minimum radius of the
constriction is left as an adjustable parameter of the mesh to fit experimental pressure
losses.

4.1.2. Pinholes
Scanning electron microscope (SEM) images of the pinholes inlet reveal a salient rim of
a few microns thick; see figures 2(b i) and 2(c i). Interferometry (Veeco NT3300) is used
to measure a three-dimensional shape of the nozzle inlet (figures S10a and S15a). An
axisymmetric-averaged profile is extracted from the surface map (figures S10b and S15b)
and used for the CFD mesh. The outlet is modelled as a sharp 90◦ corner, as no significant
polymer scission is expected at the outlet. The radius of the hole is an adjustable parameter
of the mesh to fit experimental pressure losses.

924 A24-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

64
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.646


E. Rognin, N. Willis-Fox, T.Z. Zhao, T.A. Aljohani and R. Daly
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Figure 2. Geometries and meshes convergence properties. (a) Fused capillary. (b) Pinhole 25. (c) Pinhole 50.

Constriction name Fused capillary pinhole 25 Pinhole 50

Nominal constriction diameter (μm) 30 25 50
Number of cells in reference mesh 5440 24911 22577
Pressure-fitted diameter (μm) 29.0 ± 0.1 25.2 ± 0.1 57.7 ± 0.1

Table 1. Mesh sizes and diameters fit.

4.1.3. Mesh resolution
To produce the final version of the meshes, the following method is applied for each
geometry.

(a) A first mesh refinement study is carried out by simulating the flow of water at high
flow rate (where boundary layers are expected to be the thinnest). The convergence
of the steady-state pressure drop is analysed upon mesh refinement. Convergence
is assumed if the pressure drop difference between two meshes falls under typical
experimental uncertainty (0.5 bar at high flow rate); see figures 2(a ii), 2(b ii) and
2(c ii). Reference mesh sizes are reported in table 1.

(b) The pressure drop through the constriction is simulated for the flow of water
at experimental flow rates, and the constriction radius is adjusted to match
experimental measurements; see figures S8, S13 and S18 in SM. Results of fitted
diameters are reported in table 1.

The convergence of the meshes regarding simulated degradation was not systematically
assessed, because of the computational cost of running the full model on finer meshes.
From our previous computational study on Newtonian flows (Rognin et al. 2018), we
expect that mesh resolution only affects cases with low overall degradation, because
polymer scission then occurs in a small number of cells. Nonetheless, a mesh resolution
convergence test was done for the degradation of PEO 1000k in the capillary geometry
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at 80 ml h−1 (43 % overall degradation). This test suggests that the span due to mesh
resolution is not negligible but remains of the order of magnitude of experimental
uncertainty. Results are reported in figure S19 in SM. A convergence test with respect to
time step size was also done for this case using the reference mesh, showing no significant
effect of the time step (figure S20 in SM).

4.2. Physical parameters
Solving evolution equations for the conformation tensor and the viscoelastic stress requires
setting values for the Zimm relaxation time (τZ), the polymer extensibility (ξ ), the initial
zero-shear polymeric added viscosity (ηp0) and the initial maximum elongational viscosity
(ηE0). The latter is fitted using pressure losses as we will see in the results section. At dilute
concentration, the Zimm time is usually defined by

τZ = ηs[η]M
RT

, (4.1)

where R is the ideal gas constant and T is the temperature. As already defined after (2.2),
the equilibrium polymer extensibility is the ratio of the contour length (stretched polymer
length), L, to the unperturbed root mean square end-to-end distance, REE. The polymer
contour length is calculated from the polymer structure, in particular, backbone bond
lengths and angles, i.e.

L = 0.84 	
M
M1

, (4.2)

where 	 = 4.4 Å is the cumulative length of backbone bonds in one PEO monomer, M1 =
44 Da is the monomer molecular weight, and where the coefficient 0.84 accounts for
length reduction due to typical bond angles. Unperturbed coil sizes are assessed via the
intrinsic viscosity with the notion of hydrodynamic volume (Teraoka 2002),

REE = 2.1
(

[η]M
NA

)1/3

, (4.3)

where NA is the Avogadro number. Combining with Mark–Houwink–Sakurada law (see
(2.10)), we have

REE = 2.1
(

KMa+1

NA

)1/3

. (4.4)

The zero-shear polymeric added viscosity (ηp0) is experimentally measured from initial
solutions, as described in § 3.2. Physical parameters are summarised in table 2.

4.3. Solver implementation
The viscoelastic model ((2.2) and (2.9)) and the mechanochemical model ((2.3) and (2.5))
were implemented using the OpenFOAM (version 6) package (Weller et al. 1998), by a
modification of the pimpleFoam algorithm. For each time step, the solver processes as
follows.

(1) Loop until convergence of the outer loop (convergence criterion on pressure
residual).
(i) Solve conformation tensor (2.2).
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Water-polyethylene oxide system (Source)

Solvent viscosity ηs (mPa s) 1.00 (Tabulated values)
Solvent density ρ (kg m−3) 998

Mark–Houwink–Sakurada constants K = 0.060 ± 0.007 ml g−1 (Measured)
a = 0.695 ± 0.008

Sample properties
Sample name PEO 300k PEO 600k PEO 1000k
Intrinsic viscosity [η] (l/g) 0.34 ± 0.02 0.51 ± 0.02 0.77 ± 0.02 (Measured)
Molecular weight M (kDa) 249 447 808 (Measured)
Concentration c0 (g/l) 0.998 0.799 0.505 (Measured)
Zimm time τZ (μs) 35.4 94.0 255 (Equation (4.1))
Contour length L (μm) 2.09 3.75 6.79 (Equation (4.2))
End-to-end distance (nm) 110 152 212 (Equation (4.3))
Extensibility ξ 19.0 24.6 32.0
Initial polymeric added viscosity ηp0

(mPa s)
0.33 ± 0.007 0.41 ± 0.02 0.34 ± 0.02 (Measured)

Table 2. Samples parameters (20 ◦C).

(ii) Update viscoelastic stress (2.9).
(iii) Update coefficient of the momentum equation.
(iv) Enter the velocity–pressure corrector loop (usually 2 iterations).

(a) Solve pressure equation.
(b) Update velocities.

(v) Update reaction rate (2.5).
(vi) Solve concentration (2.3).

A systematic study of the accuracy and consistency of the schemes used for the present
study is outside of our scope, and we rather focus here on the overall stability. Even
though Weissenberg numbers in excess of 500 are simulated here, a straightforward
implementation of the conformation tensor gives good stability provided that a limited
advection scheme is used (we employ the limitedLinear scheme for all variables, where the
interpolation is linear with a Sweby limiter). Also, a limited least squares gradient scheme
is employed for the computation of ∇u, although the limiter is not required in every case. It
is not necessary (again, in the scope of stability) to resort to change of variable techniques
such as log-conformation formulation. The resulting conformation field is smooth and
naturally bounded in regions of high extension since source terms depending on ∇u cancel
each other in these regions.

With the version of OpenFOAM used in this study, it is not possible to handle the
tensorial viscosity term of the polymeric stress in an implicit manner. Because of this,
a chequerboard pattern appears in the pressure field where the polymeric stress dominates
the momentum equation. This issue is largely documented for co-located finite volume
implementations, and several remedies have been published (Oliveira, Pinho & Pinto 1998;
Oliveira 2000; Favero et al. 2010; Matos, Alves & Oliveira 2010; Habla, Obermeier &
Hinrichsen 2013; Fernandes et al. 2017; Pimenta & Alves 2017; Niethammer et al. 2017).
In the present case, the only successful approach turned out to be the both-sides diffusion
(BSD) technique (Fernandes et al. 2017). A viscous term is added to both sides of the
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momentum equation as follows:

ρ

(
∂u
∂t

+ (u · ∇)u
)

− ∇ · (
ηs + η�

)∇u = −∇p + ∇ · (
τ p − η�∇u

)
. (4.5)

Here ρ is the fluid density and η� an artificial viscosity which will be discussed below.
The left-hand side is treated implicitly by the solver and the right-hand side is an explicit
source term. The implicit discretisation stencil of the Laplacian is smaller than its explicit
counterpart, resulting in the addition of a fourth-order diffusion term which smoothes
out high spatial frequency variations of the velocity, and whose action vanishes upon
mesh refinement. The choice of the artificial viscosity depends on the constitutive model,
however, for the BSD technique to be efficient, τ p and η�∇u should be of the same order
of magnitude. Many formulations have been tested in the present study and the following
gives the most stable result while minimising unwanted diffusivity:

η� = ηEλnT
f · A · nf . (4.6)

Here η� is computed at cell faces, and nf is the face normal. This expression includes
three advantageous features: η� depends on A, which is, as mentioned above, a smooth
and bounded field.

(i) For extended polymers, η� allows diffusion of the momentum in the direction of
the polymer strands only. In addition, when the face normal and the direction of the
polymer strands are aligned, A ∼ λnf nf , and, therefore, the traction vector, nT

f · τ p,
is also normal. Since in that case, nT

f · τ p · nf ∼ η�nT
f · ∇u · nf , the BSD terms are

acting to make the traction vector fully implicit.
(ii) In regions where the polymer conformation is near equilibrium, λ2 is very small,

and so is η∗. Therefore, the BSD correction is switched on only in regions where the
chequerboard pattern is likely.

The effect of the BSD terms on simulated degradation and pressure loss is assessed in
figure S21 in SM.

The pressure at the inlet and the flux of reacted species at the outlet are monitored,
and simulation is advanced until they reach a steady state (or fluctuates around a steady
average).

4.4. Quantification of polymer degradation
For a steady constriction flow, we can define a steady-state global degradation, Φ, either
by integrating the flux of degraded polymer at the outlet, or by integrating the scission rate
over the whole simulation volume,

Φ =

∫∫
outlet

ϕu · dS

Q
=

∫∫∫
k (1 − ϕ) dV

Q
, (4.7)

where Q is the outlet flow rate. The second expression is preferred because it requires
less time steps to converge to a steady-state value. At large flow rates, Φ might be
fluctuating because of flow instabilities, and a pseudo-steady-state value is computed by
time averaging. This computed value will be compared with the experimental degradation
defined in (3.2).
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5. Results and discussion

5.1. Experimental results
Polymer degradation of the three molecular weights is shown in figure 3 for each
constriction. As expected from literature, the common behaviour of the three geometries
is an increase in degradation with increasing flow rate and increasing molecular weight.
Degradation indices higher than 100 % can be seen in figure 3(b). They correspond to a
situation where the measured zero-shear viscosity is lower than the one predicted by the
Mark–Houwink–Sakurada law for a complete halving of polymer chains. In this scenario,
it is likely that some of the chains undergo multiple scission events, leading to more than
halving of the initial average molecular weight.

For most of the data series, error bars are usually of 5 to 10 percentage points. This
can be attributed to the consistency limit of the rheometer, assessed from pure water
measurements throughout the whole study, as being approximately 0.02 mPa s. It can
be considered as a maximum systematic error between series measured on different
days. Going back to (3.2), an error of 0.02 mPa s in the viscosity loss would lead to a
15 percentage points error in the degradation index. For PEO 1000k through the capillary
geometry, the error at low flow rates can be larger than 20 percentage points. This
particularly large span was linked to the presence of initial contaminant particles seen
during the first series. A large error is also noted for PEO 300k through the capillary at
large flow rates, but the reason is unknown.

The direct consequence of large error bars is that it is not possible to define a critical
flow rate (and, therefore, a global critical strain rate) for the onset of degradation, which is
the value typically reported in the literature (Islam, Vanapalli & Solomon 2004; Vanapalli
et al. 2006). This is less important in this reported work because the focus is to model
the level of degradation rather than its onset point. Besides, the critical strain rate used in
the model (2.5) has to be viewed as a molecular property, and there is no need a priori to
deduce it from an experimental flow rate where the detailed flow gradient is heterogeneous.

As suggested by Nguyen & Kausch (1991), in order to assess the influence of the
geometry of the constriction, the degradation of PEO 1000k in each constriction is plotted
against several characteristic variables of the flow (see figure 4): the flow rate, which is the
parameter controlled during the experiments (figure 4a); the Reynolds number (figure 4b)
defined by

Re = ρQ
π

4
ηsD

, (5.1)

where Q is the flow rate, and D is the constriction diameter; the average velocity at the
constriction, U (figure 4c), defined by

U = Q
π

4
D2

; (5.2)

the nominal strain rate, ε̇ (figure 4d), defined by

ε̇ = U
D

= Q
π

4
D3

; (5.3)

and the power loss through the system, Ẇ (figure 4e), defined by

Ẇ = Q
p, (5.4)
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Figure 3. Polymer degradation as a function of flow rate. Experiments are run in triplicate: points are
averaged values, filled areas show extrema. (a) Fused capillary. (b) Pinhole 25. (c) Pinhole 50.
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Figure 4. Degradation of PEO 1000k for each constriction geometry, as a function of various characteristic
parameters of the flow. (a) Flow rate (ml h−1). (b) Reynolds number. (c) Velocity in constriction (m s−1).
(d) Nominal strain rate (106 s−1). (e) Power loss (mW).

where 
p is the measured pressure loss. Degradation curves for PEO 300k and PEO 600k
are similar and reported in SM. The following few remarks can be made from reviewing
these plots.

(i) None of these rescaling quantities are able to collapse the degradation curves into a
single master curve.

(ii) Degradation as a function of rescaled quantities is higher overall with the pinhole
geometries than with the fused capillary. We can explain this difference by
noting that the pinholes produce essentially an extensional flow upstream of the
constriction, while a shearing component is more present in the flow through the
capillary. It is indeed expected that polymer chains are less prone to scission in a
shear flow because of their tumbling motion (Odell et al. 1992).

(iii) For a given flow rate (figure 4a), degradation is higher with the narrower pinhole, but
similar with the fused capillary and the larger pinhole. The same observation applies
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Sample name Critical strain rate (ε̇c, s−1)
Maximum extensional viscosity

(ηE0, Pa s)

PEO 300k 1.3 × 105 5.0
PEO 600k 6.5 × 104 13
PEO 1000k 4.5 × 104 14

Table 3. Results of parameters fit with the fused capillary geometry.

for the Reynolds number (figure 4b) and the power loss (figure 4e). In particular, the
suggestion that polymer scission would be essentially governed by the global energy
input is not true in our case (Nguyen & Kausch 1991).

(iv) Rescaling by average velocity in the constriction (figure 4c) yields overlapping
degradation curves for the two pinholes, but the curve is still lower for the fused
capillary.

(v) The nominal strain rate does not recapitulate the degradation phenomenon
(figure 4d), even when comparing the two pinholes (this is not true for PEO 300k
where the results from the two pinholes overlap).

To conclude, it is clear that the geometry of the constriction and equally the detailed
pattern of the flow have a strong influence under the present experimental conditions.
Therefore, a detailed CFD approach is necessary to model polymer scission. We now
turn our attention to the results of the simulations and a comparison with the reported
experiments.

5.2. Model calibration with the fused capillary geometry
Polymer scission is simulated in the fused capillary in order to fit the two parameters of the
model, ε̇c and ηE0, for each molecular weight. The choice of using the smooth geometry of
the capillary for calibration is motivated by the relatively small effect of viscoelasticity on
the flow pattern. Indeed, the pressure loss can be accurately described by the simulation
when fitting ηE0. The result of the fit is given in table 3, and the resulting degradation and
pressure loss curves are compared with experiments in figure 5. A ±10 % variation on each
parameter is also shown with dotted lines: an increase in ε̇c leads to a lower degradation
curve, and an increase in ηE0 leads to a higher pressure curve.

It can be seen from figure 5 that after calibration the model is able to describe both
polymer degradation and pressure loss as a function of flow rate within experimental
uncertainty.

One advantage of detailed CFD modelling is the ability to study the spatial distribution
of scission events. The maps of pressure, velocity norm, strain rate D = √

D : D with D =
(∇u + (∇u)T)/2, polymer square extension (λ), scission rate (kc/c0) and degradation (ϕ)
are shown in figure 6 for PEO 1000k at 140 ml h−1 (flow from left to right). The map
of the scission rate shows that scission events occur primarily just before the narrowest
part of the constriction and mainly towards the symmetry axis. There is scission also
computed downstream around the liquid jet, likely due to the shearing between the jet
and the low-velocity surrounding fluid, although the physical interpretation of this effect
is unclear. However, this contribution is small (a few %), and absent for flow rates below
80 ml h−1. The result of this spread in scission rate is a rather uniform jet where around
80 % of the chains have broken when exiting the constriction.
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Figure 5. Simulated polymer degradation (a) and pressure loss (b) in the fused capillary constriction, and
comparison with experiments. Similar pressure curves are obtained for PEO 600k and PEO 300k. Points show
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Figure 6. Simulation results for the flow of PEO 1000k solution at 140 ml h−1 through the fused glass
capillary geometry. Magnification from full computation mesh. Flow from left to right.

5.3. Simulation results for the pinhole geometry
We now investigate simulation results for the pinhole geometry. The parameters fitted
using the capillary geometry are employed for the two pinholes. Figure 7 shows maps
of velocity, scission rate and degradation of PEO 1000k at 40 ml h−1 through the pinhole
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Figure 7. Simulation results for the flow of PEO 1000k solution at 30 ml h−1 through the pinhole 25
constriction (a) and at 150 ml h−1 through the pinhole 50 (b,c). Magnification from full computation mesh.
Flow from left to right.
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Figure 8. Simulated polymer degradation (a) and pressure loss (b) in the pinhole 25 constriction, and
comparison with experiments.

25 (top images), and 150 ml h−1 through the pinhole 50 (bottom images). The reason
for comparing this combination is that, as reported in figure 4(c), the fluid velocity in the
constriction and total degradation should be similar. As shown in figure 7, the velocity field
is characterised by an upstream lip vortex as expected of viscoelastic flows through abrupt
constrictions (Boger 1987). As in the case of the fused capillary discussed above, the
maximum scission rate occurs mainly just before entering the constriction, but the effect
of the vortices is to stretch the scission zone far (many constriction diameters) upstream.
This contrasts with our Newtonian simulations reported previously where scission occurs
mainly close to the sharp entrance edge (Rognin et al. 2018). There is also a scission zone
downstream at the boundary of the jet, but it accounts likewise for less than a few % of the
total degradation. Once again, the degradation is rather uniform in the jet and similar for
both geometries at their respective flow rate.

Simulations at various flow rates are compared with experimental degradation curves
in figures 8 and 9 (pinhole 25 and pinhole 50, respectively). Regarding pinhole 25
(figure 8) and PEO 1000k, the model accurately predicts polymer degradation at high flow
rate (30 ml h−1 and above), but there is a non-negligible discrepancy at low flow rates
(20 ml h−1 and below). Note that by construction the model is unable to describe
experimental degradation over 100 % (multiple chain scission). Simulated values above
100 % are due to degradation downstream where the fully degraded jet mixes with fresh
solution and part of this fresh solution is also degraded in the mixing velocity gradient,
hence a sum larger than 100 % degradation with respect to the inlet flow. In practice,
the fresh solution would be flushed by fully degraded fluid over time. Because the error is
small (a few %), this behaviour is not simulated to spare computation time. Regarding PEO
600k, the discrepancy is large for the whole range of flow rates. Nevertheless, experimental
and simulated curves still intersect in the vicinity of 50 % degradation, showing that the
model is acceptable with respect to orders of magnitudes. Finally, regarding PEO 300k, the
simulated degradation is certainly inconsistent, and this issue will be investigated below.

In addition, simulated pressure loss shown in figure 8 for the case of PEO 1000k exceeds
experimental values, especially at highest flow rates. A similar trend is observed for the
other molecular weights.

Regarding pinhole 50 (figure 9), degradation of PEO 1000k is slightly underestimated,
while it is accurately predicted for PEO 600k. Once again, simulated degradation is
inconsistent for PEO 300k. Simulated pressure loss shows this time an underestimation
with respect to experimental measurements, contrasting with the simulated pressure in
pinhole 25. This suggests that the issue is not in fitting ηE0, but rather lies in the stress
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Figure 9. Simulated polymer degradation (a) and pressure loss (b) in the pinhole 50 constriction, and
comparison with experiments.
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Figure 10. Simulated polymer degradation compared with experiments. A new fit of ε̇c is used for PEO 300k.
(a) PEO 1000k. (b) PEO 600k. (c) PEO 300k.

model as a whole, which is not able to accurately describe the flow in this geometry. We
will come back to this point below where we discuss the limits of the model.

To summarise, the process of fitting the critical strain rate using the smooth fused
capillary geometry resulted in an accurate prediction of the degradation in the two pinholes
in the cases of PEO 1000k and PEO 600k. This can be seen by plotting simulation results
by molecular weight instead of by geometry, as shown in figures 10(a) and 10(b). This
process failed for PEO 300k, and it could be explained by the fact that degradation in the
capillary was too little (less than 20 % at highest flow rates) to provide a sound base for
parameters fitting. If instead we use pinhole 25 to fit the critical strain rate for PEO 300k,
the new value of 2.7 × 106 s−1 is found, and degradation can be reasonably predicted in
the pinhole 50 (figure 10c).

5.4. Analysis of fitted parameters
Critical strain rates (PEO 300k: value fitted using pinhole 25) are plotted against molecular
weights in figure 11. In the present model, ε̇c is a molecular parameter and should be
distinguished from global nominal strain rates such as defined by (5.3) which are typically
reported in the literature (see Garrepally et al. (2020) for a review of scaling laws with
respect to the nominal strain rate). If the dilute free-draining molecular theory holds here,
a −2 exponent is expected. A −1.52 ± 0.52 exponent if found in figure 11, which suggests
that, although the present values could be consistent with a molecular view, the error is too
large to provide a conclusive scaling law and a larger range of molecular weights would be
needed.
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Figure 11. Critical strain rates vs molecular weight.

Lastly, fitted values for the maximum elongational viscosity (ηE0) are more difficult to
interpret (see table 3). Values are only weakly dependent on molecular weight. From a
dilute theory, we would expect a scaling of ∝ ηp0ξ

2 and because the added shear viscosity
ηp0 is approximately the same for all samples, the scaling should be as ∝ ξ2 ∼ M1.1. The
data are too scattered to be conclusive. Also, we note that even if present solutions are
dilute with respect to zero-shear viscosity, this property can be questioned for unravelled
polymers (Clasen et al. 2006; Prabhakar et al. 2017). Therefore, concentration effects can
be expected to influence the scaling of the elongational viscosity. Finally, the stress model
can account for the pressure loss accurately in the smooth capillary geometry, but only
qualitatively in sharp constrictions. This suggests that the parameter ηE0 is an ad-hoc
parameter that could be related only qualitatively to a molecular property.

5.5. Comparison with other scission models
We now compare the model of scission rate used in this study (2.5) to the two other forms
of first-order rates mentioned in § 2.1. The first form is a linear function of the strain rate,
still retaining a cut-off at a critical strain rate, ε̇c lin,

klinear =
{

0 if �∇u : A� /λ < ε̇c lin,
1
2 �∇u : A� otherwise.

(5.5)

The second form is a TABS model,

kTABS = k0 exp
(�∇u : A�

k1

)
. (5.6)

Because we observed no significant change in viscosity over several months for samples
stored at room temperature, the no-flow degradation rate can be assessed to be lower than
10−7 s−1. The thresholding effect of the TABS model described in § 2.1 implies that an
exact value for k0 is not required as long as it is much lower than the inverse residence time
in the flow, which here is larger than the reciprocal second. Thus, setting k0 = 10−7 s−1,
only k1 needs to be fitted.

Parameters ε̇c lin and k1 are therefore fitted using polymer degradation of PEO 1000k
flowing through the capillary geometry. Results are reported in figure 12. The linear
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Figure 12. Simulated polymer degradation of PEO 1000k in the capillary geometry, comparing different
scission models. Fitted parameters: this paper (2.5): ε̇c = 4.5 × 104 s−1, linear model: ε̇c lin = 9.0 × 103 s−1,
TABS model: k1 = 2.7 × 103 s−1.

model can account for the degradation relatively well, although not as accurately as the
model used in this study. On the other hand, the TABS model produces a sharp transition
to degraded polymer above 80 ml h−1, which does not reflect experimental data. This
shows that the model used in this study, which is based on the unravelling dynamics of
polymer chains, is more appropriate to predict scission of long and flexible molecules in a
constriction flow.

5.6. Limits of the model and possible improvements
Although the model provides an accurate prediction of polymer scission for a large range
of experimental values, it gives only a reasonable order of magnitude in some cases. We
now investigate the limits of the model and suggest some possible improvements.

The first limit is probably given by the very large extensibility of the molecules. The
molecular weights investigated here are molecules that are several microns long when fully
stretched. With respect to the several tens of microns for the characteristic dimensions of
the constriction, the scission rate might cease to be a local variable, but could depend on
the velocity field over an extent of several microns. One option is to allow the scission
rate to depend on higher-order derivatives of the velocity field, similar to drag models of
immersed objects.

Another challenge relevant to both scission and stress models is how to provide an
accurate polymer physics in mixed flows, i.e. in flows that are neither purely Couette shear
nor purely extensional. A broad literature exists on these two types of standard flows,
but only a few studies focus on stretched polymers in mixed-type flows (Jain et al. 2015;
Prakash 2019). The models used here are relevant to purely extensional flow but could be
improved to be accurate in a broader range of flow fields. This would require additional
integration of molecular dynamics studies into continuum scale constitutive equations.

To further emphasise the importance of an accurate stress model, degradation of PEO
1000k was simulated using the critical strain rate of 4.5 × 104 s−1, but assuming a
Newtonian stress (limit of the infinite dilution). Results are shown in figure 13. The
change is small and within experimental uncertainty in the case of the capillary (smooth
constriction). By contrast, the shift is dramatic in the case of the sharp pinhole 50, and can
be related to the absence of lip vortices at the entrance of the constriction in Newtonian
simulations.
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Figure 13. Simulated polymer degradation of PEO 1000k, comparing a viscoelastic to a Newtonian stress
model.

Although concentration effects are already visible through the presence of a viscoelastic
stress, intermolecular interactions are not accounted for in this model. Yet it is clear that
even at dilution below the overlap concentration, polymer chains that are unravelled far
from equilibrium are likely to interact. This not only affects the macroscopic stress as
discussed above, but presumably influences the growth dynamics of molecular internal
tension and eventually bond rupture kinetics. Experimental studies of contraction flows
have shown that an increase in polymer concentration leads to a decrease in the global
critical strain rate (Nghe, Tabeling & Ajdari 2010). Yet it is challenging to decouple the
effect of intermolecular interactions from that of a changing flow pattern due to increased
elastic stress. Finite concentration molecular dynamics could help us understand better the
role of concentration in degradation kinetics.

Another limit of the present model is that it can account for only one scission event
per chain, even though multiple scissions can occur at highest strain rates in experimental
settings. This could be simulated by solving an additional concentration field (first scission
products) and solving scission for this lower molecular weight. More generally, a highly
polydispersed polymer population could be accounted for by using a discrete binning of the
molecular weights distribution, each bin having its set of physico-chemical properties and
evolution equations (Sorbie & Roberts 1984). Another approach following Pereira et al.
(2018) could be to simulate the evolution of the local average molecular weight, allowing
its decrease to a lower value than half of the original polymer. In both cases, a scaling
law for the critical strain rate with respect to molecular weight would have to be assumed
beforehand.

Finally, the model has been validated in laminar flow conditions with Reynolds numbers
below 2000 (figure 4b). Nevertheless, the constitutive equations are not bound to any
laminar assumption, and there is no presumption that the model would fail in turbulent
conditions provided the flow is fully resolved, for example, in DNS simulations. This point
applies to unsteady flows in general, and more work would be valuable to study the model
in transient flows such as those encountered in inkjet, spray or sputtering.

6. Conclusion

A continuum model for the flow-induced degradation kinetics of flexible polymers was
presented. The model was implemented in a finite volume CFD software and tested against
degradation experiments of dilute PEO solutions flowing through narrow constrictions.
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Alongside typical near-equilibrium properties such as polymer extensibility, relaxation
time and zero-shear polymeric viscosity, the model requires two far-from-equilibrium
parameters: a critical strain rate above which chain scission can occur and a maximum
extensional viscosity. The approach followed in this study was to calibrate the model
by fitting those two parameters using experimental degradation data obtained from a
smooth constriction flow. The model was then tested against experiments using two sharp
constrictions of different diameters. The approach provided an accurate prediction of
the polymer degradation, except for the lowest molecular weight for which only little
degradation had been observed in the first instance in the smooth capillary. A recalibration
for this low molecular weight using one sharp constriction led to a better fit for the other
constriction.

The model could be used to study the influence of flow and process designs on
degradation in fields where preservation of macromolecules is a concern. On the other
hand, because this degradation kinetics model is based on mechanical tension in polymer
chains, it is also relevant to the activation of mechanochemical compounds in fluid flows.
It should provide an efficient tool to design more adequate flow systems for these novel
flow-activated materials.

Supplementary material. Supplementary material and source code are available at https://doi.org/10.1017/
jfm.2021.646.
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