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ABSTRACT. A three-dimensional thermomechanically coupled ice-sheet model
including calculation of the first-order stress gradients is developed to perform numerical
studies on the effects of stress components neglected in the zeroth-order shallow-ice approxi-
mation. Steady-state solutions are obtained with both a shallow-ice and a first-order ice-
sheet model for several idealistic, radially symmetric ice-sheet configurations. The results
show that the effects of the normal deviatoric-stress gradients on ice thickness are generally
small, but the influence onbasal temperatures andage profiles at an ice divide is significant.

1. INTRODUCTION

There are several three-dimensional numerical ice-sheet
models with thermodynamical coupling (Huybrechts, 1990;
Ritz and others, 1997; Budd and others, 1998; Greve and
others, 1998; Payne, 1999; Marshall and others, 2000). All of
them are based on the shallow-ice approximation (SIA),
which assumes that driving stress balances basal shear stress
and also that the horizontal gradient of longitudinal deviatoric
stress (not deviatoric stress itself) is negligibly small. This is
also called zeroth-order approximation (Colinge and Blatter,
1998; Pattyn, 2000). SIA is employed mainly for saving com-
putation time and easy development of numerical models. It
captures general features of large `̀grounded’’ ice sheets and
can represent present ice sheets well. However, this approxi-
mationbreaks down near ice divides, in narrow regions of ice
streams and near margin and shelf^sheet transition zones
(e.g. Abe-Ouchi,1993; Blatter,1995).

The inclusion of horizontal normal (longitudinal) devia-
toric stress and horizontal shear stress in the force-balance
equations is called first-order approximation (Colinge and
Blatter, 1998), or considered as an incomplete second-order
approximation (Baral and others, 2001), which is hereafter
referred to as first-order approximation (FOA). There have
been several two-dimensional numerical ice-sheet models
including the first- (or second-)order mechanics (Dahl-
Jensen,1989a; Blatter,1995; Colinge and Blatter,1998; Pattyn
2000). Dahl-Jensen (1989a) demonstrated that longitudinal
deviatoric stress has the same order of magnitude as vertical
shear stress for plane flow along the flowline of an ice sheet,
and that neither of them can be neglected. She also showed
that inclusion of longitudinal deviatoric stress yields good
ice-divide solutions. Blatter (1995) presented an efficient algo-
rithm for three-dimensional calculation of the first-order
mechanics and applied it to an ideal isothermal ice sheet.
Pattyn (1996, 2000) and Pattyn and Decleir (1998) applied a
two-dimensional full stress model with thermomechanical

coupling to Shirase drainage basin, Dronning Maud Land,
Antarctica, including Dome Fuji. They concluded that,
among other things, changes in the dynamic behaviour of
the coastal ice stream (Shirase Glacier) hardly influence the
age^depth profile at Dome Fuji.

Hitherto, there has been no three-dimensional model
with thermomechanical coupling that includes the compu-
tation of the first-order stress field. In this work, such a
model is presented and is applied to a simple, radially sym-
metric geometry in order to investigate the effect of the first-
order stress terms in comparison with a shallow-ice model.
Comparisons are made for steady-state shape (thickness
distribution), temperature distribution and vertical profiles
of age at an ice divide.

An ice divide or dome is a special place for deep core drill-
ing. A divide is the region where vertical shear stress is almost
zero, and horizontal normal stress dominates, and where flow
characteristics cannotbe expressed by the SIA. Interpretation
of core data requires the depth^age relation, and numerical
models are useful for this purpose.The age of ice is a function
of flow, which changes through time in response to climatic
forcing such as glacial/interglacial cycles. Dating by numeri-
cal models is therefore expected to be effective.

Ice fabrics and their mechanical properties are also pro-
vided by deep core drilling (Azuma and others,1999; Hondoh
and others,1999; Miyamoto and others,1999). Different fabrics
cause different characteristics of deformation, and, conversely,
fabrics depend much on the deformation and stress history.
This is thought to influence the dating of an ice core by a
flow model of the ice-sheet dynamics. Azuma (1994) and
Goto-Azuma (1996) suggest a flow law for anisotropic ice-
sheet ice, expressed in terms of the strain-rate, stress and
geometric factor tensors.They demonstrate goodagreement
with observations and experimental results. Miyamoto and
others (1999) performed mechanical tests on samples of the
Greenland Icecore Project (GRIP) ice core. They found
that the ice-flow enhancement factor against vertical shear

Annals of Glaciology 37 2003
# International Glaciological Society

166
https://doi.org/10.3189/172756403781815645 Published online by Cambridge University Press

https://doi.org/10.3189/172756403781815645


rates shows a gradual increase with depth, becoming 420
times larger than for isotropic ice at about 2000 m depth.
Because of their locations, interpretation of such fabric
profiles requires higher-order stress contributions, which
are not explicitly incorporated in the SIA model.

In the present paper, we focus on the divide and the
effect of the horizontal longitudinal deviatoric stress. The
horizontal shear stress is not discussed. This is the first
attempt at developing the three-dimensional problem, and
just the first application of higher-order three-dimensional
ice-sheet models.

2. MODEL DESCRIPTION

The zeroth-order (SIA) ice-sheet model used in this study
largely corresponds to the models described in detail in Payne
and others (2000); the model in the FOA deviates from these
models mainly in the computation of the flow field and the
strain heating. The models contain two prognostic equations
for the temperature and the surface, which depend on time t,
and steady-state equations for stress and flow fields.The hori-
zontal spatial variables are x and y and the vertical variable
is z; the ice thickness H ˆ H…x; y† ˆ h…x; y† ¡ b…x; y†,
where h and b are the ice surface and base, respectively. In
this section, only the differences between the FOA and the
SIA are presented. The SIA models used in the European
Ice-Sheet Modelling Initiative (EISMINT) model intercom-
parison are described in Payne and others (2000); a compre-
hensive description of the SIA is given in Greve (1997). The
FOA model in the present work is based on Blatter (1995)
and Colinge and Blatter (1998). It differs from the SIA
models mainly in the computation of the velocity field and
the strain heating.

The first-order force balance (Huybrechts, 1992; Abe-
Ouchi,1993; Blatter,1995) is:
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where ¼0
xx denotes the normal deviatoric-stress components

in the corresponding directions, ¼ij denotes the correspond-
ing shear-stress components, and »I and g are the density of
ice and the acceleration of gravity, respectively. The FOA
force balance contains not only the gradients of vertical
shear-stress components (¼xz; ¼yz), but also the normal
deviatoric-stress and horizontal shear-stress components
(¼0

xx; ¼0
yy; ¼xy).

The first-order constitutive equations (Glen’s flow law)
are:
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where u, v are the horizontal velocity components in the x
and y directions, respectively, m is an enhancement factor,

T is temperature and A is a temperature-dependent rate
factor (Blatter, 1995). The horizontal gradients of vertical
velocity component are neglected in Equations (2c) and
(2d) because they are of the second order.

The second invariant of the deviatoric-stress tensor, ½e,
in the first-order approximation (Huybrechts,1992) is:
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Velocity fields are calculated with surface and bedrock
topography by the method of Blatter (1995) with Equations
(1^3).Then the local horizontal mass flux is obtained by ver-
tical integration of the velocity fields, from which the evolu-
tion of the local ice thickness is determined.

The computation of the transient temperature field fol-
lows the method of the EISMINT models and considers
horizontal and vertical ice advection but only vertical heat
diffusion,
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where cp and kI are the specific heat capacity and the
thermal diffusivity of ice.

The first-order strain-heating term (©) is:
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In the SIA, only the first two terms on the righthand side of
Equation (5) are included.

The energy equation (4) is solved with prescribed sur-
face temperature and geothermal heat flux (¡) at the
bottom boundary,
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where Tpm is pressure-melting-point temperature.
The ice-stiffness (viscosity) coefficient, A ˆ A…T †,

strongly depends on ice temperature, and velocity fields
and temperature are coupled through this factor.The factor
A is incorporated using an Arrhenius relation as follows:

A…T 0† ˆ a exp ¡ Q

RT 0

³ ´
; …8†

where T 0 is absolute temperature corrected for the depend-
ence of melting point on pressure (Paterson, 1994). Param-
eters a and Q are given by the following relations (e.g.
Huybrechts,1992; Payne and others, 2000):

a ˆ 3:61 £ 10¡13 Pa¡3 s¡1

Q ˆ 1:73 £ 103 J mol¡1

¼
if T 0 < 263:15 K ; …9a†

a ˆ 6:0 £ 104 Pa¡3 s¡1

Q ˆ 13:9 £ 104 J mol¡1

¼
if T 0 ¶ 263:15K : …9b†

The computation of all other quantities corresponds to
that in the SIA models.
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3. EXPERIMENTS AND RESULTS

The present work focuses on the effects of the horizontal
normal deviatoric stress. The experiments in this work are
performed using the framework of the EISMINT model
intercomparison experiments (Payne and others, 2000). The
quadratic model domain spans150061500km.The grid reso-
lution is 25 km in both horizontal coordinate directions (cor-
responding to 616 61 grids). Surface mass balance Ms (ice
accumulation/ablation rate) and surface temperature Ts are
given as a function of the horizontal distance to the summit
position alone:

Ms…x; y†

ˆ min Mmax; Sb Rel ¡
�������������������������������������������
…x ¡ x0†2 ‡ …y ¡ y0†2

q³ ´µ ¶
; …10†

Ts…x; y† ˆ Tmin ‡ ST

�������������������������������������������
…x ¡ x0†2 ‡ …y ¡ y0†2

q
; …11†

where …x0; y0† ˆ (0 km, 0 km) is the position of the summit,
Tmin and ST are the surface temperature at the summit and
the radial surface temperature gradient, respectively, and
Mmax, Sb, and Rel are a given upper limit for the accumu-
lation rate, the radial mass-balance gradient and the radial
distance of the equilibrium line from the summit, respect-
ively. All the experiments in this work use flat-bed topog-
raphy as the bottom boundary, and the effects of isostasy
are ignored. Basal sliding is also neglected.The steady-state
shape of this ideal ice sheet assumes radial symmetry, and
the effect of horizontal shear stress is small, so the compari-
son between steady states of the FOA and SIA models pri-
marily shows the effects of the longitudinal stress gradient.

The enhancement factor is m ˆ1through all the experi-
ments in this work. Parameters Tmin, ST, Sb, Rel and
geothermal heat flux ¡ are set at 238 K, 1.67610^2 K km^1,
10^2 m a^1 km^1, 450 km and 42 mW m^2, respectively,
through all the experiments. All experiments are performed
with both the SIA and FOA models. Experiments with the
SIA model are labelled with suffix 0, and experiments with
the FOA model with 1.The initial condition is no ice except

where specified. All the experiments are run for at least
200 kyr. The time-step is 5 years for dynamics and 20 years
for the temperature equation. It takes about a day to finish a
200 kyr calculation using the FOA model on a Hitachi
SR8000 supercomputer, and about half an hour using the
SIA model.

3.1. Thermomechanically uncoupled (isothermal)
model

The experiments are performed using the same boundary
conditions as for the corresponding experiment A in Payne
and others (2000); and stand for FOA and SIA, respect-
ively. The only difference is that the experiments are per-
formed for A in Equation (2) set constant at 1.0610^16 Pa^3

a^1, such that the computed temperature field does not affect
the viscosity of the ice.The parameter Mmax is set at 0.5 m a^1,
the same as in experiment A in Payne and others (2000).

Figure 1 shows the difference in the steady-state surface
elevations of the experiment. The effect of the first-order
stress on surface elevation (or thickness) is small. Most of
the interior parts are thicker by about 10 m in the FOA
(0.1^0.6% of the total ice thickness), whereas near the mar-
gin the ice is thinner by 20 m or more (¹4%). It should be
emphasized that the use of a coarse grid for numerical
models leads to inaccuracy at some places such as the mar-
gin. EISMINTand the present paper serve as a comparison
of different numerical methods and may not provide the
correct solution. Therefore it cannot be concluded that the
FOA is better than the SIA; this paper only discusses the
differences between them.

Vertical profiles of flow or stress components near a
divide and elsewhere are discussed by Raymond (1983),
Reeh (1988) and Dahl-Jensen (1989a,b). Similar results are
obtained in this work. Figure 2 shows the vertical profiles
of the horizontal velocity component at half a grid distance
away from the ice divide (note that staggered grids are used
for calculation of the horizontal velocity) by experiments
and .The horizontal velocity of is larger than that of

Fig. 1. Steady-state results of the isothermal experiments ( )
for difference in surface elevation between the FOAand the cor-
responding SIA model.The x axis gives the distance from the
centre point along the diagonal of the quadratic model domain.

Fig. 2. Vertical profiles of radial velocity (u) at (12.5 km,
0 km) (half-grid from the divide).The y axis gives the height
normalized with ice thickness. Thick and thin lines are the
results of and , respectively.
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near the surface, and smaller near the bed. However, the
horizontal ice flux of the steady-state solutions at the same
point must be equal in both experiments, because the
boundary condition of surface mass balance in the present
work is explicitly a function of the distance from the ice
divide, independent of thickness. The smaller velocity of
at deeper layers dominates the effect of the faster upper
layers, so the vertically integrated velocity of is smaller
than that of . As a result, the FOA ice thickness is larger
than the SIA ice thickness. The difference between the two
experiments at one grid further away from the ice divide is
similar to, but smaller than, that at the first grid.

The difference in vertical profiles of horizontal velocity

between the two models can be explained qualitatively in
terms of stress profiles. Figure 3 shows the vertical profile
of stress components one grid away from the ice divide. As
discussed by Raymond (1983), Reeh (1988) and Dahl-Jensen
(1989a, b), this profile is qualitatively similar for the entire
interior region. The FOA force-balance Equation (1a) in
two dimensions becomes
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In the SIA, the second term on the righthand side is neglected.
Near the dividewhere the surface gradient is negative, the gra-
dient of longitudinal deviatoric stress is positive (divergence
flow).Thus,
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which corresponds to Figure 3. The constitutive Equation
(2c) in two dimensions is
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At the bed, where ¼0
xx ˆ 0, Equation (14) becomes
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which is equivalent to the SIA formulation. At the bed, the
horizontal velocity in the FOA is smaller than in the SIA
(Fig. 2), because ¼xz of is smaller than that of at the
bed.

Near the surface, where ¼xz ! 0, Equation (14) becomes

@u

@z
/ ¼0

xx
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¼xz : …16†

Since the SIA neglects the ¼0
xx term in Equation (16), @u=@z

approaches zero faster in the SIA than in the FOA. Thus,
near the surface, the vertical profile of horizontal velocity
is steeper in the SIA than in the FOA (Fig. 2).

In spite of minor differences in surface elevation, basal
temperatures differ substantially near the divide. Figure 4
shows the difference in basal temperatures (in terms of tem-
perature below local pressure-melting point) between the

Fig. 3. Vertical profiles of stress components (¼xz; ¼
0
xx) at

(25 km, 0 km).The y axis gives the height normalized with ice
thickness.Thick and thin lines are the result of and , respect-
ively. Solid and dashed lines for each thickness are ¼xz and ¼0

xx

respectively. Note that for ; ¼0
xx is neglected and set to 0.

Fig. 4. Steady-state results of the isothermal experiments ( )
for difference in basal temperatures between the FOA and the
SIA model.The x axis gives the distance from the centre point
along the diagonal of the quadratic model domain.

Fig. 5.Vertical profiles of vertical velocity (w) below the divide.
The y axis gives the height normalized with ice thickness.Thick
and thin lines are the results of and , respectively.
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two experiments. Inclusion of the first-order stress gradients
produces a warmer base below the summit by1K because of
the differences in vertical advection (Fig. 5). Note that the
result shows clearly that a `̀ hot spot’’ (Dahl-Jensen, 1989a)
below the divide is produced by the first-order model.

In these experiments, thermomechanical coupling is not
performed, and the temperature differences do not affect
the softness of ice. If the flow parameter A is made tempera-
ture-dependent, warmer ice than in the above experiments
may cause higher velocities, and the ice may become thin-
ner. In section 3.2, the effects of thermodynamic coupling
are discussed.

3.2. EISMINTexperiments

In this subsection, series experiments are performed using
the same boundary conditions as for the corresponding EIS-
MINT experiments A in Payne and others (2000). Now
thermomechanical coupling is applied. It may be concluded
that the effects of inclusion of the first-order stress gradients do
not changemuch in comparisonto the isothermal experiments.

Figure 6 shows the difference in basal temperatures
between the steady-state results of and along the diag-
onal section. It can be divided into three regions based on
the different effects of the first-order stress gradients: (1)
basal temperatures of are higher near the ice divide; (2)
they are lower away from the divide (50 < d µ 300 km); and
(3) they are equal in the region at the pressure-melting point
(300 km < d). The behaviour near the ice divide can be
explained by the difference in the vertical advection term,
as in the series (`̀ hot spot’’).

The behaviour away from the divide is more complex. In
this case, the difference in strain heating between and is
large compared to the difference in strain heating of experi-
ments , though the effect of first-order stress gradients is
qualitatively the same. The reason for this large difference in
basal strain heating seems to be positive feedback of tempera-
ture and strain, which occurs only in thermomechanical
coupling: a decrease of strain heating causes a decrease in

temperature, which in turn leads to harder ice. The harder
ice further leads to smaller strain rates, which further reduce
strain heating. There is a slight difference for regions with
basal pressure melting. The melting region of is narrower
by about 30 km.

For some regions, the large difference in basal strain
heating has a more complicated explanation. It derives
mainly from the difference in basal shear stress in the two
models. Figure 7 shows the difference in basal shear stress
components between and . Except for the region near
the area of the pressure-melting point (0 < d <¹150 km), the
basal shear stress of is smaller than that of . Since strain
heating is the product of stress and strain rate, strain heating
is reduced in this region. However, the region is character-
ized by higher shear stress as well as lower strain heating.
The temperature is low enough that shear strain rate
becomes small enough to cancel the effect of higher shear
stress for strain heating. Further detailed analysis is required
to clarify the feedback loop of thermomechanical coupling
in this area. It may be due to the (small) difference in tem-
perature advection from upper layers.

The steady-state surface elevation is affected by a tem-
perature difference. However, the effect of the first-order
stress gradients on the steady-state shape is small. Figure 8
shows the difference in surface elevation between and .
The effect of the first-order stress on surface elevation is gen-
erally the same as in the isothermal experiment .There is a
slightly different behaviour near the divide, where the sur-
face elevation is lower in the FOA than in the SIA, due to
thermomechanical coupling (see section 3.1). Warmer ice
near the divide results in softer ice, ice flow becomes faster,
and consequently the ice sheet becomes thinner.

3.3. Diagnosis of age profiles below a steady-state
summit

The vertical age profile at the ice divide (horizontal velocity
ˆ 0) of the steady-state ice sheet is computed by integrating

Fig. 6. Steady-state results of experiment for difference in
basal temperature between result of and that of .The x
axis gives the distance from the centre point along the diagonal
of the quadratic model domain.

Fig. 7. Difference in basal vertical shear stress between steady-
state solutions of experiments and .The x axis gives the
distance from the centre point along the diagonal of the quad-
ratic model domain.
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the reciprocal of the vertical velocity component along the
vertical axis to the surface:

A ˆ
Zh

z

dz0

w
: …17†

In a steady state, the downwarddistance an ice particle moves
in 1year is equal to vertical velocity, w; thus Equation (17) is
obtained. It is assumed that the surface mass balance remains
unchanged throughout the time integration. The region near
the bed, where vertical velocity approaches zero (its recipro-
cal becomes infinite), is not considered. In this subsection,
series experiments are performed using the same boundary
conditions as in the corresponding experiments A in Payne
and others (2000) except that the accumulation is reduced to
10% of the accumulation in experiments .

Figure 9 shows the results of age calculations at the ice
divide of experiments and . The differences gradually
increase toward deeper parts. The accumulation of experi-
ment is 50 cm a^1, a typical value for Greenland drilling
sites, andthe accumulationof experiment is 5 cm a^1, a typi-
cal value forAntarctic drilling sites. At 2000m depth, the age
of the ice in experiment is130 kyr, while in is120 kyr.The
difference is as much as 10 kyr (¹10% of age). At 3000m
depth, the age of the ice in experiment is 18 kyr, while that
in experiment is 16 kyr. The difference is as much as 2 kyr
(¹10%). In this case, the vertical velocity components at both
surface and base boundaries must be the same for both
approximations because of the prescribed boundary condi-
tions. The largest difference occurs at middle depth where
the vertical velocity in the FOA is slower than that in the
SIA at the same depth (Fig. 5), as previously discussed in
Raymond (1983), Reeh (1988) and Dahl-Jensen (1989a).

This is the case for such an idealized configuration. In
the case of realistic ice sheets with surface elevation, velocity
profiles and surface accumulation changing through time,
the difference in the calculated age of the ice may be con-
siderably larger.

4. CONCLUSION AND PROSPECTS

In the present work, a three-dimensional numerical ice-
sheet model with thermodynamic coupling including the
first-order mechanics is presented. The model is applied to
an idealized ice sheet with radial symmetry to investigate
the effects of the normal deviatoric-stress gradients on ice
thickness, basal temperature and age distribution.Themain
conclusions of the present work are as follows:

The difference in age profiles below the steady-state
summit between the FOA and the SIA reaches as much
as 10% of total age near the base.

Basal temperature differs as much as §1K between the
FOA and the SIA, due either to the difference in the ver-
tical advection (near the divide) or to the difference in
strain heating (away from the divide).

The difference in surface elevation of steady states
between the FOA and the SIA models is generally small
(only a few tens of metres).

The insignificant differences between the results obtained

Fig. 8. Steady-state results for difference in surface elevation
between and . The horizontal axis gives the distance
from the centre point along the diagonal of the quadratic model
domain.

Fig. 9.Vertical profiles of age of the ice below the ice divide of
experiments (a) and (b).The y axisgives the depth below
the ice surface.Thick and thin lines are the results of the FOA
and SIA models, respectively.
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by the FOA and SIA models are due to the simple configura-
tion of the experiments. Because of the flat bed and the radial
symmetry, the role of higher-order stress components is
expected to be small in almost the whole domain.The impli-
cations of the present work are limited, and it cannot be con-
cluded from the present result alone that the FOA model is
better than the SIA model. However, careful interpretation
of the simulated flow and geometry of ice sheets is required
in certain cases, because of the different characteristics of
the two models.

In additionto the idealized study presented, several appli-
cations of the first-order model developed in the present work
are planned for the future. Firstly, the presented FOA model
can be used for dating. Secondly, it can be an effective tool to
connect ice microphysics to large-scale ice-sheet behaviour.
Thirdly, it canbe used to study ice-stream dynamics. In addi-
tion, basal sliding, which is also important for ice-stream
dynamics, may present different behaviour in the two
approximations, due to the difference between the basal
shear traction, used in FOA models, and the driving stress,
used in SIA models, to parameterize sliding. Therefore,
studies on the stability of marine ice sheets such as the West
Antarctic ice sheet require the applicationof the FOA model;
this is a planned future application of the presented model.
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