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Abstract. In this article, we will provide a new proof of the fact that for any convex body K ⊆ Rn ,

(2n
n )

nn
n∫

∞

0
rn−1voln(K ∩ (ren + K))dr ≤ (voln(K))n+1

(voln−1(Pe⊥n (K)))n
,

where (e i)n
i=1 denotes the canonical orthonormal basis in R

n , Pe⊥n (K) denotes the orthogonal
projection of K onto the linear hyperplane orthogonal to en , and volk denotes the k-dimensional
Lebesgue measure. This inequality was proved by Gardner and Zhang and it implies Zhang’s
inequality. We will use our new approach to this inequality in order to prove discrete analogs of this
inequality and of an equivalent version of it, where we will consider the lattice point enumerator
measure instead of the Lebesgue measure, and show that from such discrete analogs we can recover
the aforementioned inequality and, therefore, Zhang’s inequality.

1 Introduction and notation

Given a convex body K ⊆ R
n , i.e., a compact convex set with non-empty interior, the

quantity given by

∥x∥ = ∥x∥2voln−1(Px⊥(K)), x ∈ Rn ,

defines a norm in R
n as a consequence of Cauchy’s projection formula [12, Equation

(A.45)]. Here, ∥ ⋅ ∥2 denotes the Euclidean norm, whose closed unit ball in R
n will be

denoted by Bn
2 , volk(A) denotes the k-dimensional volume (Lebesgue measure) of a

set contained in a k-dimensional affine subspace, and Px⊥(K) denotes the orthogonal
projection of K onto the linear hyperplane orthogonal to x. The closed unit ball of this
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2 D. Alonso-Gutiérrez et al.

norm is a convex body, called the polar projection body of K, which will be denoted
by Π∗K.

As a direct consequence of [12, Theorem 4.1.5], for any convex body K ⊆ R
n , the

quantity (voln(K))n−1voln(Π∗K) is an affine invariant, i.e., for any non-degenerate
affine map T , we have that

(voln(T(K)))n−1voln(Π∗T(K)) = (voln(K))n−1voln(Π∗K).

It was proved in [18] that among all n-dimensional convex bodies, the affinely invariant
quantity (voln(K))n−1voln(Π∗K) is maximized if and only if K is an ellipsoid,
obtaining the following inequality, which is known as the Petty projection inequality
and is stronger than the isoperimetric inequality:

(voln(K))n−1voln(Π∗K) ≤ ( voln(Bn
2 )

voln−1(Bn−1
2 ))

n

.

In [21], Zhang proved a reverse Petty projection inequality, showing that among all
n-dimensional convex bodies, the same affinely invariant quantity is minimized if and
only if K is a simplex (i.e., the convex hull of n + 1 affinely independent points). Thus,
for any convex body K ⊆ R

n ,

(2n
n )

nn ≤ (voln(K))n−1voln(Π∗K).(1.1)

Several proofs and extensions of this inequality have been given in the last decades.
See, for instance [4, 13], where this inequality is shown to be extremely related
to the covariogram function; [3], where the inequality is extended to (and can be
recovered from) the setting of log-concave functions; or [15], where this inequality
is extended to different measures other than the Lebesgue measure. Let us recall here
that the covariogram function is defined as gK(x) = voln(K ∩ (x + K)) and that it is
supported on the difference body K − K, which is the Minkowski sum of K and its
reflection with respect to the origin, −K.

In this article, we will focus on the approach to this inequality given by the authors
in [13], which was also considered in [2] to provide a different proof of Zhang’s
inequality in the setting of log-concave functions. Our motivation is to obtain an
approach to Zhang’s inequality in the discrete setting, where we will consider discrete
measures instead of the Lebesgue measure. In this approach, the authors defined for
a convex body K ⊆ R

n and every p > −1, the radial p-th mean body of K, which we
denote by Rp(K). It is defined by its radial function for every p ∈ (−1,∞)/{0},

ρp
Rp(K)(θ) = 1

voln(K) ∫K
(vol1(K ∩ {x + λθ ∶ λ ≥ 0}))pdx ∀θ ∈ Sn−1(1.2)

and if p = 0, it is defined by ρ0(θ) ∶= limp→0 ρRp(K)(θ). Let us recall at this point that
a set L with 0 ∈ L is called a star set with center 0 if for every x ∈ L and every λ ∈ [0, 1],
one has λx ∈ L. The radial function of a star set L with 0 as a center is defined for every
θ ∈ Sn−1, the unit sphere in R

n , as ρL(θ) = sup{r ≥ 0 ∶ rθ ∈ L}. For any two compact
star sets L1 , L2 with 0 as a center, L1 ⊆ L2 if and only if ρL1(θ) ≤ ρL2(θ) for every θ ∈
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A discrete approach to Zhang’s projection inequality 3

Sn−1. In particular, for any convex body K ⊆ R
n , we have that ρΠ∗K(θ) = 1

voln−1(Pθ⊥(K))
for every θ ∈ Sn−1.

The authors showed in [13, Theorem 5.5] that if −1 < p ≤ q then

(n + q
n

)
1
q

Rq(K) ⊆ (n + p
n

)
1
p

Rp(K).(1.3)

Furthermore, the authors showed in [13, Lemmas 2.1 and 3.1] that the integral defining
the radial function of Rp(K) in (1.2) can also be written as an integral on Pθ⊥(K) and
as an integral on the interval [0,∞). More precisely, on the one hand, the authors
proved in [13, Lemma 2.1] that for every p > −1 and every θ ∈ Sn−1, if we denote by ⟨θ⟩
the one-dimensional linear subspace spanned by θ, then

ρp
Rp(K)(θ) = 1

voln(K)(p + 1) ∫Pθ⊥(K)
(vol1(K ∩ (y + ⟨θ⟩)))p+1d y.

Therefore, when p → (−1)+ and q = n, we obtain the following inclusion relation:

(2n
n
)

1
n

Rn(K) ⊆ nvoln(K)Π∗(K),(1.4)

where the right-hand side appears since, for any θ ∈ Sn−1,

lim
p→(−1)+

(n + p
n

)
1
p

ρRp(K)(θ)

= lim
p→(−1)+

( Γ (1 + n + p)
Γ (1 + n) Γ (1 + p) (p + 1)voln(K) ∫Pθ⊥(K)

(vol1(K ∩ (y + ⟨θ⟩)))p+1d y)
1
p

= lim
p→(−1)+

( Γ (1 + n + p)
Γ (1 + n) Γ (2 + p) voln(K) ∫Pθ⊥(K)

(vol1(K ∩ (y + ⟨θ⟩)))p+1d y)
1
p

=( (n − 1)!
n!voln(K)voln−1(Pθ⊥(K)))

−1

= nvoln(K)
voln−1(Pθ⊥(K)) = nvoln(K)ρΠ∗(K).

On the other hand, the authors also showed in [13, Lemma 3.1] that if p > 0 then

ρp
Rp(K)(θ) = p

voln(K) ∫
∞

0
rp−1voln(K ∩ (rθ + K))dr

and then Rp(K) coincides with the p-th Ball body of the covariogram function of
K, which we will denote by Kp(gK), since this expression is precisely the one that
defines the radial function of the p-th Ball body of the covariogram function of K (see
Section 2.5). Therefore, the inclusion relation (1.4) reads

(2n
n )

nn n∫
∞

0
rn−1voln(K ∩ (rθ + K))dr ≤ (voln(K))n+1

(voln−1(Pθ⊥(K)))n ∀θ ∈ Sn−1 ,(1.5)

which is equivalent to the main inequality that we consider in this article (see
Theorem 1.1). Besides, since Kn(gK) = Rn(K),

ρn
Kn(gK)(θ) = n

voln(K) ∫
∞

0
rn−1voln(K ∩ (rθ + K))dr ∀θ ∈ Sn−1 ,(1.6)
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4 D. Alonso-Gutiérrez et al.

and (1.4) can also be written in terms of the n-th Ball body of the covariogram function
as

(2n
n
)

1
n

Kn(gK) ⊆ nvoln(K)Π∗(K).(1.7)

We would like to point out that if we denote by (e i)n
i=1 the canonical orthonormal

basis inR
n , by considering orthogonal transformations of a convex body, proving (1.5)

for any convex body K ⊆ R
n and any θ ∈ Sn−1 is equivalent to proving the following

inequality, which we state as a theorem, for every convex body.

Theorem 1.1 Let K ⊆ R
n be a convex body. Then,

(2n
n )

nn n∫
∞

0
rn−1voln(K ∩ (ren + K))dr ≤ (voln(K))n+1

(voln−1(Pe⊥n (K)))n .

More precisely, given a convex body K ⊆ R
n and θ ∈ Sn−1, applying Theorem 1.1

to U(K) for any orthogonal map U such that U t(en) = θ and taking into account
that voln(U(K) ∩ (ren +U(K))) = voln(K ∩ (rU t(en) + K)) and that Pe⊥n (U(K)) =
P(U t(en))⊥(K) we obtain (1.5). Integration in polar coordinates provides Zhang’s
inequality (1.1) (see Corollary 3.6).

Throughout the whole text, dGk will denote the measure on R
k given by the

lattice point enumerator, Gk(A) = ∣A∩Z
k ∣ for any Borel set A ⊆ R

k , where we denote
by ∣ ⋅ ∣ the cardinality of a set, and dmk will denote the Lebesgue measure on R

k .
Whenever A ⊆ R

n is contained in the affine subspace x0 + span{e1 , . . . , ek} for some
x0 ∈ span{e1 , . . . , ek}⊥, we will denote Gk(A) = Gn(A− x0). We will denote by dμ
the measure on R

n = R
n−1 ×R given by dμ = dGn−1 ⊗ dm1. That is, for every Borel

set A ⊆ R
n ,

μ(A) = ∑
y∈e⊥n∩Zn

vol1(A∩ (y + ⟨en⟩)) = ∑
y∈Pe⊥n

(A)∩Zn

vol1(A∩ (y + ⟨en⟩)),(1.8)

where the sum is understood as 0 if Pe⊥n (A) ∩Z
n = ∅. Such measure is constructed

so that, when considering it in R
n+1, i.e., dμ = dGn ⊗ dm1, then for any Borel set A ⊆

R
n , we have that Gn(A) coincides with the measure μ of the hypograph of χA, the

characteristic function of A:

Gn(A) = μ ({(x , t) ∈ Rn+1 ∶ 0 ≤ t ≤ χA(x)}) .

Moreover, for any Borel measurable f ∶ Rn → [0,∞), we have that if dμ = dGn ⊗ dm1
is the measure μ considered in R

n+1, we have that

∫
Rn

f (x)dGn(x) = ∫
hyp( f )

dμ(x , t),

where hyp( f ) is the hypograph of f

hyp( f ) ∶= {(x , t) ∈ Rn+1 ∶ 0 ≤ t ≤ f (x)}.
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A discrete approach to Zhang’s projection inequality 5

We will also denote by Ck the set Ck ∶= (−1, 1)k × {0}n−k ⊆ R
n = R

k ×R
n−k , which

is a k-dimensional open (in the topology induced in R
k × {0}n−k by the standard

topology in R
n) cube. The group of orthogonal matrices of order n will be denoted

by O(n) and the Steiner symmetrization of a bounded convex set K with respect to
the hyperplane e⊥n (see Section 2.2) will be denoted by Sen(K).

Let us also point out that the authors proved in [13, Theorem 5.5] the inclusion
relation (1.3) by applying Berwald’s inequality (see Theorem 2.3 below) to the concave
function fθ(x) = vol1(K ∩ {x + λθ ∶ λ ≥ 0}). In order to obtain the inclusion relation
(1.7) or, equivalently (1.5) and then, Zhang’s inequality, Berwald’s inequality in the
whole range of parameters −1 < p < q = n (and not just 0 < p < q = n) was needed.

The first aim of this article is to give a different proof of Theorem 1.1. The main
difference between this new proof and the one in [13] is that we will only make use of
Berwald’s inequality in the range 0 < p < q. Since a version of Berwald’s inequality
in this range was proved in the discrete setting in [5], under the condition that
the involved concave function attains its maximum at 0, we will be able to use this
approach in the discrete setting as well, obtaining the following theorem.

Theorem 1.2 Let K ⊆ R
n be a convex body satisfying maxy∈e⊥n vol1(K ∩ (y + ⟨en⟩)) =

vol1(K ∩ ⟨en⟩). Then,

(2n
n )

nn n∫
∞

0
rn−1 μ(K ∩ (ren + K))dr ≤ (μ(Sen(K) + Cn−1))n+1

(Gn−1(Pe⊥n (K)))n .

Remark 1.3. Notice that, even though the condition maxy∈e⊥n vol1(K ∩ (y + ⟨en⟩)) =
vol1(K ∩ ⟨en⟩) does not imply that K ∩Z

n ≠ ∅ (take, for instance, K = (0, 1
2) +

1
4 B2

2 ⊆ R
2), it implies that 0 ∈ Pe⊥n (K). Thus, under this assumption, we have

Gn−1(Pe⊥n (K)) ≥ 1.
Besides, this condition means that the concave function f ∶ Pe⊥n (K) → [0,∞) given

by f (y) = vol1(K ∩ (y + ⟨en⟩)) attains its maximum at 0, which is a condition that
will be needed in order to apply the discrete version of Berwald’s inequality (see
Theorem 2.4).

Remark 1.4. Let us point out that, if Gn−1(Pe⊥n (K)) = 1, by means of Lemma 4.3
below, we have that Pe⊥n (K) ∩Z

n = {y0} for some y0 ∈ Zn ∩ e⊥n and

n∫
∞

0
rn−1 μ(K ∩ (ren + K))dr = 1

n + 1
vol1(K ∩ (y0 + ⟨en⟩))n+1

= (μ(Sen(K)))n+1

(Gn−1(Pe⊥n (K)))n .

In such case, Theorem 1.2 does not provide a better estimate than this identity.

The measure dμ = dGn−1 ⊗ dm1 is closely related to the measure dGn (see
Lemma 4.2). As a consequence of this relation, we can obtain the following corollary,
which gives a version of Theorem 1.1 involving only the lattice point enumerator. This
version still implies Theorem 1.1.
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6 D. Alonso-Gutiérrez et al.

Corollary 1.5 Let K ⊆ R
n be a convex body satisfying maxy∈e⊥n vol1(K ∩ (y + ⟨en⟩)) =

vol1(K ∩ ⟨en⟩). Then,

(2n
n )

nn n∫
∞

0
rn−1Gn(K ∩ (ren + K))dr ≤

(2n
n )

nn ρn
K−K(en)Gn−1(Pe⊥n (K))

+
(Gn(Sen(K) + Cn−1) +Gn−1(Pe⊥n (K) + Cn−1))n+1

(Gn−1(Pe⊥n (K)))n .

Theorem 1.1 can also be written (see Lemma 3.1 below) in the following way.

Theorem 1.6 Let K ⊆ R
n be a convex body. Then,

(2n
n )

nn 2n ∫
Sen (K)

∣⟨x , en⟩∣ndx ≤ (voln(K))n+1

(voln−1(Pe⊥n (K)))n .

Let us point out that this theorem also follows from [11, Theorem 3] (see also [17,
Corollary 2.7] for a proof in the centrally symmetric case). We will consider a discrete
version of Theorem 1.6 in which all the measures involved are given by the lattice
point enumerator. We will prove the following theorem where, for any m > 0 and p ≥ 1,
Bm(p) denotes the number

Bm(p) =
⌊m⌋

∑
k=0

p
m
(1 − k

m
)

n−1
( k

m
)

p−1
,(1.9)

convening that 00 = 1.

Theorem 1.7 Let K ⊆ R
n be a convex body with 0 ∈ Pe⊥n (K). Let us assume

that maxy∈Pe⊥n
(K)∩Zn G1(Sen(K) ∩ (y + ⟨en⟩)) = G1(Sen(K) ∩ ⟨en⟩). There exists

m0 ≥ M ∶= maxx∈Sen (K)∩Zn ⟨x , en⟩ such that m0 > 1

(n + 1)Bm0(n + 1)−1

Bm0(1)−(n+1) 2n ∫
Sen (K)

∣⟨x , en⟩∣ndGn(x) ≤

≤
(Gn(Sen(K) + Cn−1) +Gn−1(Pe⊥n (K) + Cn−1))

n+1

(Gn−1(Pe⊥n (K)))n .

Remark 1.8. Notice that the condition 0 ∈ Pe⊥n (K) implies that Pe⊥n (K) ∩Z
n ≠ ∅ and

Se⊥n (K) ∩Z
n ≠ ∅. In fact, Pe⊥n (K) ∩Z

n ≠ ∅ if and only if Se⊥n (K) ∩Z
n ≠ ∅. Notice that

this condition also implies that G1(Sen(K) ∩ ⟨en⟩) ≥ 1.

Remark 1.9. Since the integral on the left-hand side is 0 if M = 0, in such case, we
can choose any m0 > 1 and the left-hand side is well-defined and equal to 0. Thus, the
inequality in Theorem 1.7 is trivial if M = 0.

Remark 1.10. It will be seen in Corollary 5.7 that Theorem 1.7 also implies Theo-
rem 1.6 which, by Lemma 3.1, is equivalent to Theorem 1.1.

Finally, motivated by the fact that Theorem 1.1 provides an upper bound for the
radial function of the n-th Ball body of the covariogram function gK of a convex body
K in the direction en , and the discrete version of it given by Corollary 1.5 provides an
upper bound for the radial function of the n-th Ball body of the discrete covariogram
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A discrete approach to Zhang’s projection inequality 7

function g̃K(x) = Gn(K ∩ (x + K)) of a convex body K in the direction en , we initiate
the study of the family of the p-th Ball bodies of the discrete covariogram function. We
will show that, even though they might be non-convex, the convex hull of the p-th Ball
body of g̃K is included in a homothetic copy of the p-th Ball body of g̃K+Cn . We will
also prove an inclusion relation similar to the one given by (1.3), whenever 0 < p < q.

The article is organized as follows: In Section 2, we will introduce some known
preliminary results on which our proofs will rely. In Section 3, we will provide our
new proof of Theorem 1.1. In Section 4, we will prove Theorem 1.2. In order to do that,
we will follow the approach used in this new proof of Theorem 1.1. In Section 5, we will
prove Theorem 1.7. Finally, in Section 6, we will introduce the family of the p-th Ball
bodies of the discrete covariogram function and study their convexity and inclusion
relations.

2 Preliminaries

In this section, we will introduce some well-known results that will be used in our
proofs.

2.1 The lattice point enumerator

Let us recall that the lattice point enumerator measure, dGk , is the measure on R
k

given, for any Borel set A ⊆ R
k , by

Gk(A) = ∣A∩Z
k ∣,

where ∣ ⋅ ∣ denotes the cardinality of a set. Whenever A ⊆ R
n is contained in the affine

subspace x0 + span{e1 , . . . , ek} for some x0 ∈ span{e1 , . . . , ek}⊥, we denote Gk(A) =
Gn(A− x0).

Remark 2.1. The measure dGn satisfies (see [20, Lemma 3.22] and [5, Section 3.1])
that for any convex body K ⊆ R

n and any bounded set M containing the origin

lim
r→∞

Gn(rK + M)
rn = voln(K).(2.1)

In particular, taking M = {0}, for any convex body K ⊆ R
n , we have

lim
r→∞

Gn(rK)
rn = voln(K).(2.2)

Moreover, for any f ∶ K → R, which is Riemann-integrable on K, we have that

lim
r→∞

1
rn ∫rK

f (x
r
) dGn(x) = lim

r→∞

1
rn ∑

x∈K∩( 1
r Z

n)

f (x) = ∫
K

f (x)dx ,(2.3)

where the first identity follows from the definition of the measure dGn . The second
identity can be obtained by extending the function f to a rectangle containing K as
f (x) = 0 for every x /∈ K, which is Riemann-integrable on the rectangle, and applying
[10, Proposition 6.3], which is valid for Riemann-integrable functions on the rectangle.
Notice that ∑x∈K∩( 1

r Z
n) f (x) is a Riemann sum of the extension of f to the rectangle,
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8 D. Alonso-Gutiérrez et al.

corresponding to the partition given by the rectangle intersected with cubes with
vertices on 1

rZ
n .

As a consequence of Remark 2.1, many continuous inequalities can be recovered
from discrete inequalities (see, for instance, [5, Section 3.1]). We will see in this article
how Theorem 1.2 implies Theorem 1.1 or how Theorem 1.7 implies Theorem 1.6.

The measure given by the lattice point enumerator satisfies the following discrete
version of the Brunn–Minkowski inequality, which was proved in [14, Theorem 2.1],
and from which one can recover the classical one [19, Theorem 7.1.1]. It reads as follows.

Theorem 2.2 Let λ ∈ (0, 1) and let K , L ⊂ R
n be non-empty bounded sets. Then,

Gn ((1 − λ)K + λL + Cn)
1
n ≥ (1 − λ)Gn(K) 1

n + λGn(L) 1
n .

2.2 Steiner symmetrization

Given a bounded convex set K ⊆ R
n , the Steiner symmetrization of K with respect to

the hyperplane e⊥n is defined as

Sen(K) = {y + t1 − t2

2
en ∶ y ∈ Pe⊥n (K), y + t1en ∈ K , y + t2en ∈ K} .(2.4)

That is, Sen(K) is the set that we obtain by first, shifting all the segments given by
K ∩ (x + ⟨en⟩) in the direction parallel to ⟨en⟩ until their centers lie in the hyperplane
e⊥n , and second, leaving such segments closed if they were closed and open otherwise.
If K is compact then Sen(K) can be written as

Sen(K) = {(y, t) ∈ Rn−1 ×R ∶ y ∈ Pe⊥n (K), ∣t∣ ≤ vol1(K ∩ (y + ⟨en⟩))
2

} .(2.5)

The Steiner symmetrization preserves convexity and volume. Moreover, for every y ∈
Pe⊥n (K), we have that Sen(K) ∩ (y + ⟨en⟩) is an interval centered at y, which has the
same length as K ∩ (y + ⟨en⟩). Besides, from the definition of Sen(K), if K ⊆ R

n is a
convex body then

Sen(K) ∩ {x ∈ Rn ∶ ⟨x , en⟩ ≥ 0}

is the hypograph of the function f ∶ Pe⊥n (K) → [0,∞) given by

f (y) = vol1(K ∩ (y + ⟨en⟩))
2

,

which is concave by Brunn’s principle (see, for instance, [9, Theorem 1.2.2]). It is also
known that for any convex set K and any λ ≥ 0, we have that Sen(λK) = λSen(K) and
that for any two convex sets K , L ⊆ R

n , one has that

Sen(K) + Sen(L) ⊆ Sen(K + L).(2.6)

A list of basic properties of the Steiner symmetrization of convex bodies can be found
in [6, Sections 1.1.7 and A.5]. Let us point out that for any bounded convex set,
since Pe⊥n (K) = Sen(K) ∩ e⊥n , then Sen(K) ∩Z

n ≠ ∅ if and only if Pe⊥n (K) ∩Z
n ≠ ∅,

as mentioned in Remark 1.8.
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2.3 Berwald’s inequality

Berwald’s inequality provides a reverse Hölder’s inequality for Lp norms of positive
concave functions defined on convex bodies. It is stated in the following theorem.

Theorem 2.3 (Berwald’s inequality) Let K ⊆ R
n be a convex body and let f ∶ K →

[0,∞) be a concave function. Then, for any −1 < p ≤ q, we have that

⎛
⎝

(n+q
n )

voln(K) ∫K
f q(x)dx

⎞
⎠

1
q

≤
⎛
⎝

(n+p
n )

voln(K) ∫K
f p(x)dx

⎞
⎠

1
p

.(2.7)

Berwald’s inequality was proved in [8, Satz 7] whenever the parameters in the
statement satisfy 0 < p < q (see also [1, Theorem 7.2] for an English translation). It
was extended to the whole range −1 < p < q in [13, Theorem 5.1].

For any convex body K ⊆ R
n and any θ ∈ Sn−1, the function fθ ∶ K → [0,∞) given

by fθ(x) = vol1(K ∩ {x + λθ ∶ λ ≥ 0}) is concave, as a direct consequence of the
convexity of K and the Brunn–Minkowski inequality. Therefore, applying Berwald’s
inequality (2.7) for any −1 < p < q, we obtain the inclusion relation given by (1.3)
and, as explained in the introduction, applying inequality (2.7) to fen with parameters
−1 < p < q = n and taking limits as p → (−1)+, one obtains Theorem 1.1.

With the use of the discrete version of the Brunn–Minkowski inequality, Theo-
rem 2.2, an analog of Theorem 2.3 (in the range 0 < p < q) was proved in [5, Theorem
1.4], under the condition that the concave function attains its maximum at 0. Before
we state it, let us introduce the following notation: if K ⊆ R

n is a convex body and
f ∶ K → [0,∞) is a concave function, we denote f ◇ ∶ K + Cn → [0,∞) the function
given by

f ◇(x) = sup
u∈Cn

f (x + u),(2.8)

where f ∶ Rn → [0,∞) is the function given by

f (x) =
⎧⎪⎪⎨⎪⎪⎩

f (x) if x ∈ K
0 if x /∈ K .

The function f ◇ satisfies that it is a concave function whose hypograph is the closure
of the Minkowski sum of the hypograph of f and Cn × {0}.

With this notation, the discrete version of Berwald’s inequality reads as follows.

Theorem 2.4 Let K ⊆ R
n be a convex body containing the origin and let f ∶ K →

[0,∞) be a concave function such that maxx∈K f (x) = f (0). Then, for any 0 < p < q,
we have that

⎛
⎝
(n+q

n )
Gn(K) ∑

x∈K∩Zn
f q(x)dx

⎞
⎠

1
q

≤
⎛
⎝
(n+p

n )
Gn(K) ∑

x∈(K+Cn)∩Zn

( f ◇)p(x)dx
⎞
⎠

1
p

.

Let us point out that the discrete version of Berwald’s inequality, Theorem 2.4,
implies the continuous version of Berwald’s inequality, Theorem 2.3 in the range 0 <
p < q. For that matter, see [5, Theorem 4.5] taking into account that in the continuous
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version of Berwald’s inequality, Theorem 2.3, we can assume without loss of generality
that the concave function attains its maximum at 0.

2.4 The covariogram function

Given a convex body K ⊆ R
n , its covariogram function gK ∶ Rn → [0,∞) is defined

as

gK(x) = voln(K ∩ (x + K)).

The function gK is supported on the difference body of K, defined as

K − K = {x − y ∶ x , y ∈ K} = ⋃
x∈K

(x − K)

= {x ∈ Rn ∶ K ∩ (x + K) ≠ ∅}.(2.9)

It is clear that gK is an even function such that maxx∈Rn gK(x) = gK(0) = voln(K).
Moreover, as a consequence of the Brunn–Minkowski inequality, g

1
n
K is concave on

K − K and, by Fubini’s theorem,

∫
Rn

gK(x)dx = ∫
Rn ∫Rn

χK(y)χx+K(y)d ydx

= ∫
Rn ∫Rn

χK(y)χy−K(x)dxd y

= ∫
Rn

χK(y)voln(y − K)d y = (voln(K))2 .(2.10)

Notice also that, by (2.9), for any θ ∈ Sn−1, we have that

K ∩ (rθ + K) = ∅ for every r > ρK−K(θ).(2.11)

2.5 Ball bodies of log-concave functions

A log-concave function g ∶ Rn → [0,∞) is a function of the form g(x) = e−u(x) with
u ∶ Rn → (−∞,∞] a convex function. The family of log-concave functions plays an
extremely important role in the study of problems related to distribution of volume
in convex bodies since, as a consequence of the Brunn–Minkowski inequality, the
projection of the uniform Lebesgue measure on a convex body in R

n onto a k-
dimensional linear subspace is a measure with a log-concave density with respect to
the k-dimensional Lebesgue measure in that subspace.

Ball introduced in [7], for any measurable (not necessarily log-concave) function
g ∶ Rn → [0,∞), such that g(0) > 0, and for any p > 0, the set

Kp(g) ∶= {x ∈ Rn ∶ p∫
∞

0
rp−1 g(rx)dr ≥ g(0)} .(2.12)

Clearly 0 ∈ Kp(g), as ∫
∞

0 rp−1 g(0)dr = ∞. Besides, for every x ∈ Rn and every λ > 0,
we have that

p∫
∞

0
rp−1 g(rλx)dr = p

λp ∫
∞

0
sp−1 g(sx)ds.
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Therefore, for every x ∈ Kp(g) and every λ ∈ (0, 1], we have that

p∫
∞

0
rp−1 g(rλx)dr = p

λp ∫
∞

0
sp−1 g(sx)ds ≥ p∫

∞

0
sp−1 g(sx)ds ≥ g(0)

and λx ∈ Kp(g). Thus, Kp(g) is a star set with center 0 whose radial function is given,
for any θ ∈ Sn−1, by

ρKp(g)(θ) = sup{λ ≥ 0 ∶ p∫
∞

0
rp−1 g(rλθ)ds ≥ g(0)} .

If ∫
∞

0 sp−1 g(sx)ds = 0, then {λ ≥ 0 ∶ p ∫
∞

0 rp−1 g(rλθ)ds ≥ g(0)} = {0}, and
ρKp(g)(θ) = 0. Otherwise,

ρKp(g)(θ) = sup{λ ≥ 0 ∶ p∫
∞

0
rp−1 g(rλθ)ds ≥ g(0)}

= sup{λ > 0 ∶ p
λp ∫

∞

0
sp−1 g(sθ)ds ≥ g(0)}

=( p
g(0) ∫

∞

0
sp−1 g(sθ)ds)

1
p

.

In any case,

ρKp(g)(θ) = ( p
g(0) ∫

∞

0
sp−1 g(sθ)ds)

1
p

.(2.13)

The importance of these sets (Kp(g))p>0, which we will call p-th Ball bodies of g, in
the study of log-concave functions relies on the following two facts: First, whenever
g ∶ Rn → [0,∞) is an integrable log-concave function such that g(0) > 0, the star
set Kp(g) is a convex body for any p > 0 (see [9, Theorem 2.5.5, Lemma 2.5.6, and
Proposition 2.5.7]). As a particular case, notice that if K ⊆ R

n is a convex body with
0 ∈ K, then for any p > 0,

Kp(χK) = K .(2.14)

Second, for any homogeneous function h ∶ Rn → [0,∞) of degree 1 and any p >
−n, we have, by integration in polar coordinates (see [9, Proposition 2.5.3] for the
particular case when h is a norm on R

n), that

∫
Kn+p(g)

hp(x)dx = ∫
Rn

hp(x) g(x)
g(0) dx .

In particular, if g ∶ Rn → [0,∞) is an integrable log-concave function,
such that g(0) > 0, taking p = 0 (see [9, Lemma 2.5.6]), we obtain that
voln(Kn(g)) = ∫Rn

g(x)
g(0) dx.

The covariogram function gK of a convex body K ⊆ R
n satisfies that gK(0) =

voln(K) > 0, gK is integrable, and g
1
n
K is concave on its support. In particular, gK is

log-concave. Consequently, the radial function defined by (1.6) defines the n-th ball
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body of gK , which is a convex body whose volume is, by (2.10),

voln(Kn(gK)) = ∫
Rn

gK(x)
gK(0) dx = voln(K).(2.15)

Furthermore, for any integrable log-concave function g ∶ Rn → [0,∞) such that
g(0) > 0 the following inclusion relation between Ball bodies holds (see [9, Proposi-
tion 2.5.7]): if 0 < p < q then

1
Γ(1 + q)

1
q

Kq(g) ⊆ 1
Γ(1 + p)

1
p

Kp(g).

Moreover, since by [13, Lemma 3.1] for any p > 0, we have Rp(K) = Kp(gK), where
Rp(K) is defined by (1.2), the inclusion relation (1.3) shows that if 0 < p < q

(n + q
n

)
1
q

Kq(gK) ⊆ (
n + p

n
)

1
p

Kp(gK).(2.16)

This inclusion relation has been extended for the family of the p-th Ball bodies of α-
concave functions (i.e., functions such that f α is concave on its support) with α > 0 in
[16, Theorem 1.2]. We refer the reader to [9, Section 2.5] for more information on the
family of the p-th Ball bodies.

3 Another proof of Zhang’s inequality

In this section, we will provide a different proof of Theorem 1.1, which leads to Zhang’s
inequality. In the same way as the proof in [13], it is based on the use of Berwald’s
inequality (Theorem 2.3). However, the choice of the concave function will only
require the use of Berwald’s inequality with positive parameters. Since Theorem 2.4
provides a discrete version of Berwald’s inequality for positive parameters, we will
later be able to use the same approach in order to obtain Theorem 1.2, which provides
a discrete version of Theorem 1.1.

We begin with the following technical lemma. Part of its proof can be found in [13,
Lemmas 2.1 and 3.1]. Nevertheless, we will provide a complete proof for the sake of
completeness.

Lemma 3.1 Let K ⊆ R
n be a convex body and let p > 0. Then,

1
p + 1 ∫Pe⊥n

(K)
(vol1(K ∩ (y + ⟨en⟩)))p+1 d y = p∫

∞

0
rp−1voln(K ∩ (ren + K))dr

= 2p ∫
Sen (K)

∣⟨x , en⟩∣pdx .

Proof By Fubini’s theorem, for any p > 0, we have

p∫
∞

0
rp−1voln(K ∩ (ren + K))dr

= p∫
∞

0
rp−1 ∫

Pe⊥n
(K)

vol1(K ∩ (ren + K) ∩ (y + ⟨en⟩))d ydr
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= p∫
∞

0
rp−1 ∫

Pe⊥n
(K)

max{vol1(K ∩ (y + ⟨en⟩)) − r, 0}d ydr

= ∫
Pe⊥n
(K)

∫
vol1(K∩(y+⟨en⟩))

0
prp−1(vol1(K ∩ (y + ⟨en⟩)) − r)drd y

= ∫
Pe⊥n
(K)

((vol1(K ∩ (y + ⟨en⟩)))p+1 − p
p + 1

(vol1(K ∩ (y + ⟨en⟩)))p+1) d y

= 1
p + 1 ∫Pe⊥n

(K)
(vol1(K ∩ (y + ⟨en⟩)))p+1 d y,

which proves the first equality. Besides, we also have that

2p ∫
Sen (K)

∣⟨x , en⟩∣pdx = 2p ∫
Pe⊥n
(K)

∫
vol1(K∩(y+⟨en ⟩))

2

− vol1(K∩(y+⟨en ⟩))
2

∣t∣pdtd y

= 2p+1 ∫
Pe⊥n
(K)

∫
vol1(K∩(y+⟨en⟩))

2

0
t pdtd y

= 1
p + 1 ∫Pe⊥n

(K)
(vol1(K ∩ (y + ⟨en⟩)))p+1d y,

which proves the second equality. ∎

Remark 3.2. Notice that, by the equality between the last two quantities in the
statement of Lemma 3.1 with p = n, we obtain that Theorem 1.2 can be rewritten as
Theorem 1.6.

We are now ready to provide our proof of Theorem 1.1.

Proof of Theorem 1.1 Let f ∶ Pe⊥n (K) → [0,∞) be the function given by

f (y) = vol1(K ∩ (y + ⟨en⟩)),

which is concave by Brunn’s principle [9, Theorem 1.2.2]. Then, by Berwald’s inequality
(Theorem 2.3) applied on Pe⊥n (K) with p = 1 and q = n + 1, we have that

⎛
⎝

( 2n
n−1)

voln−1(Pe⊥n (K)) ∫Pe⊥n
(K)

f n+1(y)d y
⎞
⎠

1
n+1

≤ n
voln−1(Pe⊥n (K)) ∫Pe⊥n

(K)
f (y)d y.

Equivalently, taking into account that 1
n (

2n
n−1) =

1
n+1(

2n
n ) and that, by Fubini’s theorem,

∫Pe⊥n
(K) f (y)d y = voln(K), we obtain

(2n
n )

nn
1

n + 1 ∫Pe⊥n
(K)

f n+1(y)d y ≤ (voln(K))n+1

(voln−1(Pe⊥n (K)))n .

By Lemma 3.1, this inequality is equivalent to

(2n
n )

nn n∫
∞

0
rn−1voln(K ∩ (ren + K))dr ≤ (voln(K))n+1

(voln−1(Pe⊥n (K)))n . ∎
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Remark 3.3. The main difference between our proof of Theorem 1.1 and the one
in [13] is the concave function on which we apply Berwald’s inequality (Theorem 2.3).
In [13], the authors applied Berwald’s inequality to the function fen ∶ K → [0,∞)
given by fen(x) = vol1(K ∩ {x + λen ∶ λ ≥ 0}) while we considered the function f ∶
Pe⊥n (K) → [0,∞) given by f (y) = vol1(K ∩ (y + ⟨en⟩)). With this choice, we do not
need to take negative exponents when applying Berwald’s inequality in order to prove
Theorem 1.1. The same approach will lead to Theorem 1.2 by means of Theorem 2.4.

An application of Berwald’s inequality (2.7) to the same function f ∶ Pe⊥n (K) →
[0,∞) given by f (y) = vol1(K ∩ (y + ⟨en⟩)) with exponents p + 1 < q + 1 for any
0 ≤ p < q provides the following theorem, which extends Theorem 1.1.

Theorem 3.4 Let K ⊆ R
n be a convex body. For any 0 ≤ p < q, we have

(n+q
n )

1
q+1 (nvoln(K))

1
q+1

(voln−1(Pe⊥n (K)))
1

q+1
ρ

q
q+1
Kq(gK)

(en) ≤
(n+p

n )
1

p+1 (nvoln(K))
1

p+1

(voln−1(Pe⊥n (K)))
1

p+1
ρ

p
p+1
Kp(gK)

(en).

In particular, taking p = 0, for every q > 0,

(n+q
n )

1
q+1 (nvoln(K))

1
q+1

(voln−1(Pe⊥n (K)))
1

q+1
ρ

q
q+1
Kq(gK)

(en) ≤
nvoln(K)

voln−1(Pe⊥n (K))

or, equivalently,

(n+q
n )

nq q∫
∞

0
rq−1voln(K ∩ (ren + K))dr ≤ (voln(K))q+1

(voln−1(Pe⊥n (K)))q .

Remark 3.5. By considering rotations of a convex body K ⊆ R
n , the last two inequal-

ities in Theorem 3.4 being true for every convex body K are also equivalent to the
inclusion relation

(n + q
n

)
1
q

Kq(gK) ⊆ n voln(K)Π∗(K),

for any q > 0, which is stated in (1.3). More precisely, given a convex body K ⊆ R
n

and θ ∈ Sn−1, applying the last inequality in Theorem 3.4 to U(K) with U ∈ O(n)
such that U t(en) = θ and taking into account, as mentioned in the introduction,
that voln(U(K) ∩ (ren +U(K))) = voln(K ∩ (rU t(en) + K)) and that Pe⊥n (U(K)) =
P(U t(en))⊥(K) we obtain an inequality between ρKq(gK)(θ) and ρΠ∗(K)(θ), which
gives the latter inclusion relation. However, the relation between the convex bodies
Kq(gK) and Kp(gK) whenever 0 < p < q given by the first inequality in Theorem 3.4
is different from the inclusion relation given by (1.3), as we do not obtain an inequality
between radial functions raised to the same power, which would provide an inclusion
relation.

Finally, we show how Theorem 1.1 implies Zhang’s inequality (1.1).

Corollary 3.6 Let K ⊆ R
n be a convex body. Then,

(2n
n )

nn ≤ (voln(K))n−1voln(Π∗K).
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Proof By Theorem 1.1 we have that for any U ∈ O(n),

(2n
n )

nn n∫
∞

0
rn−1voln(U(K) ∩ (ren +U(K)))dr ≤ (voln(U(K)))n+1

(voln−1(Pe⊥n (U(K))))n .

Equivalently, taking into account that Pe⊥n (U(K)) = P(U t(en))⊥(K), voln(U(K) ∩
(ren +U(K))) = voln(K ∩ (rU t(en) + K)), and that voln(U(K)) = voln(K),

(2n
n )

nn n∫
∞

0
rn−1voln(K ∩ (rU t(en) + K))dr ≤ (voln(K))n+1

(voln−1(P(U t(en))⊥(K)))n .

Therefore, since for every θ ∈ Sn−1 there exists U ∈ O(n) such that U t(en) = θ, we
have that for every θ ∈ Sn−1,

(2n
n )

nn n∫
∞

0
rn−1voln(K ∩ (rθ + K))dr ≤ (voln(K))n+1

(voln−1(Pθ⊥(K)))n .

Taking into account (1.6) and that ρΠ∗K(θ) = 1
voln−1(Pθ⊥(K))

for every θ ∈ Sn−1, we have

(2n
n
)

1
n

ρKn(gK)(θ) ≤ nvoln(K)ρΠ∗(K)(θ) ∀θ ∈ Sn−1 ,

which is equivalent to the inclusion relation

(2n
n
)

1
n

Kn(gK) ⊆ nvoln(K)Π∗(K)

given by (1.7). Taking volumes and using (2.15), we obtain the result. ∎

4 A discrete approach to Zhang’s inequality

In this section, we are going to prove Theorem 1.2, which involves the measure
dμ = dGn−1 ⊗ dm1. As stated in (1.8), for every Borel set A ∈ Rn ,

μ(A) = ∑
y∈e⊥n∩Zn

vol1(A∩ (y + ⟨en⟩)) = ∑
y∈Pe⊥n

(A)∩Zn

vol1(A∩ (y + ⟨en⟩)),

where the sum is understood as 0 if Pe⊥n (A) ∩Z
n = ∅.

Notice that there exist convex bodies K ⊆ R
n such that K ∩Z

n = ∅ and μ(K) > 0,
as the example K = [−2, 2] × [ 1

3 , 1
2 ] ⊆ R

2 shows. This occurs since, even though
K ∩Z

n = ∅, we have Pe⊥n (K) ∩Z
n ≠ ∅ (and therefore Sen(K) ∩Z

n ≠ ∅).
Notice also that there exist convex bodies K ⊆ R

n such that K ∩Z
n ≠ ∅ and

μ(K) = 0, as K = ( 1
2 , 0) + 1

2 B2
2 ⊆ R

2 shows. However, if K ⊆ R
n is a convex body

with μ(K) = 0 and K ∩Z
n ≠ ∅, then necessarily every x ∈ K ∩Z

n belongs to ∂K.
Furthermore, every such x ∈ K ∩Z

n satisfies that K ∩ (x + ⟨en⟩) = {x}.
Recall that for every bounded convex set K ⊆ R

n , from the definition of the Steiner
symmetrization (2.4), we have that Pe⊥n (K) ∩Z

n ≠ ∅ if and only if Sen(K) ∩Z
n ≠ ∅

and that Pe⊥n (K) ∩Z
n ⊆ Sen(K) ∩Z

n . Besides, vol1(K ∩ (y + ⟨en⟩)) = vol1(Sen(K) ∩
(y + ⟨en⟩)) for every y ∈ Pe⊥n (K). Therefore, if Pe⊥n (K) ∩Z

n ≠ ∅, in the same way as
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voln(K) = voln(Sen(K)), we have that μ(K) = μ(Sen(K)) since

μ(K) = ∑
y∈Pe⊥n

(K)∩Zn

vol1(K ∩ (y + ⟨en⟩)) = μ(Sen(K)).

If Pe⊥n (K) ∩Z
n = ∅, then trivially μ(K) = 0 = μ(Sen(K)). In any case, μ(K) =

μ(Sen(K)).
Let us also point out that this measure μ allows to write the right-hand side of

the inequality in Theorem 1.2 interchanging K by its Steiner symmetrization Sen(K),
providing a smaller upper bound for the integral in the left-hand side, since for every
convex body K ⊆ R

n , we have that μ(Sen(K) + Cn−1) ≤ μ(K + Cn−1), as we show in
the following lemma.

Lemma 4.1 Let K ⊆ R
n be a bounded convex set. Then, μ(Sen(K)) = μ(K) and

μ(Sen(K) + Cn−1) ≤ μ(K + Cn−1).

Proof On the one hand, if Pe⊥n (Sen(K) + Cn−1) = ∅ then μ(Sen(K) + Cn−1) = 0 and
the inequality is trivial. Let us assume that Pe⊥n (Sen(K) + Cn−1) ≠ ∅. Notice also
that since Cn−1 is contained in the hyperplane e⊥n , we have that Sen(Cn−1) = Cn−1.
Therefore, by (2.6), we have that

Sen(K) + Cn−1 = Sen(K) + Sen(Cn−1) ⊆ Sen(K + Cn−1).

Since μ(Sen(L)) = μ(L) for every bounded convex set L ⊆ R
n , we have that

μ(Sen(K) + Cn−1) ≤ μ(Sen(K + Cn−1)) = μ(K + Cn−1). ∎
Let us recall (see Remark 2.1) that the measure dGn satisfies that for any convex

body K ⊆ R
n and any bounded set M containing the origin

lim
r→∞

Gn(rK + M)
rn = voln(K).

We continue this section by relating dμ and dGn with an error which is controlled by
the term Gn−1(Pe⊥n (K)) for any convex body K. This will imply that the measure dμ
behaves in the same way as the measure dGn in the limit considered above.

Lemma 4.2 Let K ⊆ R
n be a bounded convex set. Then,

Gn(K) −Gn−1(Pe⊥n (K)) ≤ μ(K) ≤ Gn(K) +Gn−1(Pe⊥n (K)).

Consequently, for any convex body K ⊆ R
n and any bounded set M containing the origin

lim
r→∞

μ(rK + M)
rn = voln(K).

Proof First of all, notice that if Pe⊥n (K) ∩Z
n = ∅, then K ∩Z

n = ∅. Thus, Gn(K) = 0,
Gn−1(Pe⊥n (K)) = 0 and μ(K) = 0 and both inequalities hold. Let us assume that
Pe⊥n (K) ∩Z

n ≠ ∅. Since K is bounded and convex, for every y ∈ Pe⊥n (K) ∩Z
n , if

G1(K ∩ (y + ⟨en⟩)) = k(y), then, if k(y) ≥ 1, we have K ∩ (y + ⟨en⟩) contains a seg-
ment of length k(y) − 1 (see figure 1 below) and then

vol1(K ∩ (y + ⟨en⟩)) ≥ G1(K ∩ (y + ⟨en⟩)) − 1,
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1 2 k(y)

1 2 k(y)

1 2 k(y)

Figure 1: From top to bottom, we represent the segment of length k(y) − 1 contained in
K ∩ (y + ⟨en⟩), the segment K ∩ (y + ⟨en⟩), and the segment of length k(y) + 1 containing
K ∩ (y + ⟨en⟩).

while if k(y) = 0, then the latter inequality is trivial. Furthermore, independently of
whether k(y) = 0 or k(y) ≥ 1, there exists a segment of length k(y) + 1 containing
k(y) + 2 points in Z

n , which contains (see figure 1 below) K ∩ (y + ⟨en⟩). Then,

vol1(K ∩ (y + ⟨en⟩)) ≤ G1(K ∩ (y + ⟨en⟩)) + 1.

Therefore, summing in y ∈ Pe⊥n (K) ∩Z
n , from the definition (1.8) of μ, we obtain

that

μ(K) = ∑
y∈Pe⊥n

(K)∩Zn

vol1(K ∩ (y + ⟨en⟩))

≥ ∑
y∈Pe⊥n

(K)∩Zn

G1(K ∩ (y + ⟨en⟩)) −Gn−1(P⊥en
(K) ∩Z

n)

and

μ(K) = ∑
y∈Pe⊥n

(K)∩Zn

vol1(K ∩ (y + ⟨en⟩))

≤ ∑
y∈Pe⊥n

(K)∩Zn

G1(K ∩ (y + ⟨en⟩)) +Gn−1(P⊥en
(K) ∩Z

n).

Since ∑y∈Pe⊥n
(K)∩Zn G1(K ∩ (y + ⟨en⟩)) = Gn(K), we obtain that

Gn(K) −Gn−1(Pe⊥n (K)) ≤ μ(K) ≤ Gn(K) +Gn−1(Pe⊥n (K)).

Finally, taking into account (2.1) for any bounded set M containing the origin, we
obtain that for any convex body K ⊆ R

n ,

lim
r→∞

Gn−1(Pe⊥n (rK + M))
rn = lim

r→∞

1
r

Gn−1(rPe⊥n (K) + Pe⊥n (M))
rn−1 = 0

and then

lim
r→∞

μ(rK + M)
rn = lim

r→∞

Gn(rK + M)
rn = voln(K). ∎

The following lemma is the analog of Lemma 3.1 when the measure μ, instead of
the Lebesgue measure, is considered. It is proved in the same way, since both dmn =
dmn−1 ⊗ dm1 and dμ = dGn−1 ⊗ dm1 are product measures on R

n = R
n−1 ×R, where
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the second factor in both measures is the one-dimensional Lebesgue measure. We
include the proof here for the sake of completeness.

Lemma 4.3 Let K ⊆ R
n be a convex body and p > 0. Then,

1
p + 1 ∑

y∈Pe⊥n
(K)∩Zn

(vol1(K ∩ (y + ⟨en⟩)))p+1 = p∫
∞

0
rp−1 μ(K ∩ (ren + K))dr

= 2p ∫
Sen (K)

∣⟨x , en⟩∣pdμ(x).

Proof First of all, notice that if Pe⊥n (K) ∩Z
n = ∅, then μ(K) = 0, and therefore,

for every r ≥ 0, we have that μ(K ∩ (ren + K)) = 0. In such case, we also have
Pe⊥n (Sen(K)) ∩Z

n = ∅ and μ(Sen(K)) = 0. Thus, all the identities are trivial. Let us
assume that Pe⊥n (K) ∩Z

n ≠ ∅. From the definition of μ given in (1.8), we have that for
any r ≥ 0,

μ(K ∩ (ren + K)) = ∑
y∈Pe⊥n

(K)∩Zn

vol1(K ∩ (ren + K) ∩ (y + ⟨en⟩))

= ∑
y∈Pe⊥n

(K)∩Zn

max{vol1(K ∩ (y + ⟨en⟩)) − r, 0}.

Then, for any p > 0, we have

p∫
∞

0
rp−1 μ(K ∩ (ren + K))dr

= p∫
∞

0
rp−1 ∑

y∈Pe⊥n
(K)∩Zn

max{vol1(K ∩ (y + ⟨en⟩)) − r, 0}dr

= ∑
y∈Pe⊥n

(K)∩Zn
∫

vol1(K∩(y+⟨en⟩))

0
prp−1(vol1(K ∩ (y + ⟨en⟩)) − r)dr

= ∑
y∈Pe⊥n

(K)∩Zn

((vol1(K ∩ (y + ⟨en⟩)))p+1 − p
p + 1

(vol1(K ∩ (y + ⟨en⟩)))p+1)

= 1
p + 1 ∑

y∈Pe⊥n
(K)∩Zn

(vol1(K ∩ (y + ⟨en⟩)))p+1 ,

which proves the first identity. Finally, notice that

2p ∫
Sen (K)

∣⟨x , en⟩∣pdμ(x) = 2p ∑
y∈Pe⊥n

(K)∩Zn
∫

vol1(K∩(y+⟨en⟩))
2

− vol1(K∩(y+⟨en ⟩))
2

∣t∣pdt

= 2p+1 ∑
y∈Pe⊥n

(K)∩Zn
∫

vol1(K∩(y+⟨en ⟩))
2

0
t pdt

= 1
p + 1 ∑

y∈Pe⊥n
(K)∩Zn

(vol1(K ∩ (y + ⟨en⟩)))p+1 ,

which proves the second identity. ∎
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Before proving Theorem 1.2, let us recall that if K ⊆ R
n is a convex body and f ∶ K →

[0,∞) is a concave function, the function f ◇ ∶ K + Cn → [0,∞), defined in (2.8), is
the concave function whose hypograph is the closure of the Minkowski sum of the
hypograph of f and Cn × {0}.

Proof of Theorem 1.2 Let K ⊆ R
n be a convex body satisfying

max
y∈e⊥n

vol1(K ∩ (y + ⟨en⟩)) = vol1(K ∩ ⟨en⟩),

and let

K1 = Sen(K) ∩ {x ∈ Rn ∶ ⟨x , en⟩ ≥ 0}

= {(y, t) ∈ Rn−1 ×R ∶ y ∈ Pe⊥n (K), 0 ≤ t ≤ vol1(K ∩ (y + ⟨en⟩))
2

} .

Notice that K1 is the hypograph of the concave function f ∶ Pe⊥n (K) → [0,∞) given by

f (y) = vol1(K ∩ (y + ⟨en⟩))
2

.

By Theorem 2.4 applied on Pe⊥n (K) with p = 1 and q = n, we have

⎛
⎜
⎝

( 2n
n−1)

Gn−1(Pe⊥n (K)) ∑
y∈Pe⊥n

(K)∩Zn

f n+1(y)
⎞
⎟
⎠

1
n+1

≤ n
Gn−1(Pe⊥n (K)) ∑

y∈(Pe⊥n
(K)+Cn−1)∩Zn

f ◇(y).

Equivalently, taking into account that 1
n (

2n
n−1) =

1
n+1(

2n
n ), we obtain that

(2n
n )

nn ∑
y∈Pe⊥n

(K)∩Zn

vol1(K ∩ (y + ⟨en⟩))n+1

n + 1

≤ 1
Gn−1(Pe⊥n (K))n

⎛
⎜
⎝

∑
y∈(Pe⊥n

(K)+Cn−1)∩Zn

2 f ◇(y)
⎞
⎟
⎠

n+1

.

On the one hand, by Lemma 4.3,
1

n + 1 ∑
y∈Pe⊥n

(K)
vol1(K ∩ (y + ⟨en⟩))n+1 = n∫

∞

0
rn−1 μ(K ∩ (ren + K))dr.

On the other hand, notice that the hypograph of f ◇ is the closure of

L1 ∶= K1 + Cn−1 = Sen(K) ∩ {x ∈ Rn ∶ ⟨x , en⟩ ≥ 0} + Cn−1

= (Sen(K) + Cn−1) ∩ {x ∈ Rn ∶ ⟨x , en⟩ ≥ 0},

and then

∑
y∈(Pe⊥n

(K)+Cn−1)∩Zn

2 f ◇(y) = 2μ(L1) = μ(Sen(K) + Cn−1).
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Therefore,

(2n
n )

nn n∫
∞

0
rn−1 μ(K ∩ (ren + K))dr ≤ (μ(Sen(K) + Cn−1))n+1

(Gn−1(Pe⊥n (K)))n . ∎

Remark 4.4. Let us recall that in Theorem 1.1 the direction en does not play any
special role and, as mentioned in the introduction, having Theorem 1.1 for any convex
body is equivalent to having inequality (1.5) for any convex body and any direction
θ ∈ Sn−1. However, in the discrete case, the coordinate direction en plays a special
role since, at the core of the proof of the discrete version of Berwald’s inequality
(Theorem 2.4), it is essential that Pe⊥nZ

n can be identified with Z
n−1 in order to apply

the discrete version of Brunn–Minkowski inequality (Theorem 2.2) in e⊥n identified
with R

n−1. However, this is not the case for Pθ⊥Z
n with a generic θ ∈ Sn−1. The

special role of the direction en is also reflected in the definition of the measure μ as
dμ = dGn−1 ⊗ dm1, which depends on the choice of the direction en . If we chose a
different direction θ, a definition of the measure μ analog to the one given by (1.8)
(or even with the sum in y ∈ Pθ⊥(K ∩Z

n)) would not be identified with a product
measure where the first factor is dGn−1, since Pθ⊥Z

n would not be identified with
Z

n−1. This fact would not allow the use of the discrete version of Brunn–Minkowski
inequality (Theorem 2.2) in e⊥n identified with R

n−1.

Remark 4.5. Let us also point out that, even though the direction en plays a special
role in the definition of the measure μ, by Lemma 4.2, the measure dμ is closely related
to the discrete measure dGn , which is the counting measure on Z

n and, taking into
account Remark 2.1, we will be able to recover Theorem 1.1 from Theorem 1.2.

Let us now obtain Corollary 1.5, where the only measures involved are the ones
given by the lattice point enumerator.

Proof of Corollary 1.5 Let K ⊆ R
n be a convex body satisfying

maxy∈e⊥n vol1(K ∩ (y + ⟨en⟩)) = vol1(K ∩ ⟨en⟩). By Theorem 1.2, we have that

(2n
n )

nn n∫
∞

0
rn−1 μ(K ∩ (ren + K))dr ≤ (μ(Sen(K) + Cn−1))n+1

(Gn−1(Pe⊥n (K)))n .

On the one hand, by Lemma 4.2, we have that

μ(Sen(K) + Cn−1) ≤ Gn(Sen(K) + Cn−1) +Gn−1(Pe⊥n (Sen(K) + Cn−1))
= Gn(Sen(K) + Cn−1) +Gn−1(Pe⊥n (K) + Cn−1).

On the other hand, by (2.11), we have that K ∩ (ren + K) = ∅ if r > ρK−K(en).
Therefore, using Lemma 4.2 and the fact that K ∩ (ren + K) ⊆ K , we have

n∫
∞

0
rn−1 μ(K ∩ (ren + K))dr = n∫

ρK−K(en)

0
rn−1 μ(K ∩ (ren + K))dr

≥ n∫
ρK−K(en)

0
rn−1(Gn(K ∩ (ren + K)) −Gn−1(Pe⊥n (K ∩ (ren + K))))dr
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≥ n∫
ρK−K(en)

0
rn−1(Gn(K ∩ (ren + K)) −Gn−1(Pe⊥n (K)))dr

= n∫
ρK−K(en)

0
rn−1Gn(K ∩ (ren + K))dr − ρn

K−K(en)Gn−1(Pe⊥n (K))

= n∫
∞

0
rn−1Gn(K ∩ (ren + K))dr − ρn

K−K(en)Gn−1(Pe⊥n (K)). ∎
Finally, we are going to see that Theorem 1.2 implies Theorem 1.1 and therefore, as

seen in the proof of Corollary 3.6, Zhang’s inequality (1.1).

Corollary 4.6 (Theorem 1.1) Let K ⊆ R
n be a convex body. Then,

(2n
n )

nn ∫
∞

0
nrn−1voln(K ∩ (ren + K))dr ≤ voln(K)n+1

voln−1(Pe⊥n (K))n .

Proof Let K ⊆ R
n be a convex body. Since the inequality we want to prove

is invariant by translations, we can assume without loss of generality that
maxy∈Pe⊥n

(K) = vol1(K ∩ (y + ⟨en⟩)) = vol1(K ∩ ⟨en⟩). Then, for any λ > 0, we have
that

max
y∈Pe⊥n

(λK)
vol1(λK ∩ (y + ⟨en⟩)) = vol1(λK ∩ ⟨en⟩).

Thus, by Theorem 1.2 and Lemma 4.1, for any λ > 0,

(2n
n )

nn ∫
∞

0
nrn−1 μ(λK ∩ (ren + λK))dr ≤(μ(Sen(λK) + Cn−1))n+1

(Gn−1(Pe⊥n (λK)))n

≤ μ(λK + Cn−1)n+1

Gn−1(Pe⊥n (λK))n .

By Lemma 4.2, we have that for every r > 0,

μ(λK ∩ (ren + λK)) ≥ Gn(λK ∩ (ren + λK)) −Gn−1(Pe⊥n (λK ∩ (ren + λK)))
and that

μ(λK + Cn−1) ≤ Gn(λK + Cn−1) +Gn−1(λPe⊥n (K) + Cn−1).

Then, we obtain that

(2n
n )

nn ∫
∞

0
nrn−1(Gn(λK ∩ (ren + λK)) −Gn−1(Pe⊥n (λK ∩ (ren + λK))))dr

≤
(Gn(λK + Cn−1) +Gn−1(λPe⊥n (K) + Cn−1))n+1

Gn−1(λPe⊥n (K))n .

Therefore, dividing the latter inequality by λ2n = λn(n+1)

λn(n−1) , we obtain that for any λ > 0,
the quantity

(2n
n )

nn
1

λ2n ∫
∞

0
nrn−1(Gn(λK ∩ (ren + λK)) −Gn−1(Pe⊥n (λK ∩ (ren + λK))))dr

(4.1)
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is bounded above by

(Gn(λK + Cn−1) +Gn−1(λPe⊥n (K) + Cn−1))n+1

λ2nGn−1(λPe⊥n (K))n ,

which equals

(Gn(λK+Cn−1)
λn +

Gn−1(λPe⊥n
(K)+Cn−1)

λn )
n+1

(
Gn−1(λPe⊥n

(K))
λn−1 )

n .(4.2)

On the one hand, we are going to prove that

lim
λ→∞

1
λ2n ∫

∞

0
nrn−1Gn(λK ∩ (ren + λK))dr

=
(2n

n )
nn ∫

∞

0
nrn−1voln(K ∩ (ren + K))dr(4.3)

and that

lim
λ→∞

1
λ2n ∫

∞

0
nrn−1Gn−1(Pe⊥n (λK ∩ (ren + λK)))dr = 0.(4.4)

As a consequence, we will obtain that (4.1) converges, as λ →∞, to

(2n
n )

nn ∫
∞

0
nrn−1voln(K ∩ (ren + K))dr.

On the other hand, we have that, by (2.2),

lim
λ→∞

Gn−1(λPe⊥n (K))
λn−1 = voln−1(Pe⊥n (K))

and, by (2.1) (with M = Cn−1),

lim
λ→∞

(Gn(λK + Cn−1)
λn +

Gn−1(λPe⊥n (K) + Cn−1)
λn )

= voln(K) + 0 ⋅ voln−1(Pe⊥n (K)) = voln(K).

Therefore, (4.2) converges to voln(K)n+1

voln−1(Pe⊥n
(K))n as λ →∞. As a consequence, we will

obtain

(2n
n )

nn ∫
∞

0
nrn−1voln(K ∩ (ren + K))dr ≤ voln(K)n+1

voln−1(Pe⊥n (K))n .
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Let us prove (4.3): By (2.11), λK ∩ (ren + λK) = ∅ for every r > ρλ(K−K)(en).
Therefore, changing variables r = λs, for any λ > 0, we have

1
λ2n ∫

∞

0
nrn−1Gn(λK ∩ (ren + λK))dr =

= 1
λ2n ∫

ρλ(K−K)(en)

0
nrn−1Gn (λ (K ∩ ( r

λ
en + K))) dr

= ∫
ρK−K(en)

0
nsn−1 Gn(λ(K ∩ (sen + K)))

λn ds.

For any s ∈ [0, ρK−K(en)], we have by (2.2) that

lim
λ→∞

Gn(λ(K ∩ (sen + K)))
λn = voln(K ∩ (sen + K)).

Also by (2.2),

lim
λ→∞

Gn(λK)
λn = voln(K).

Thus, given ε0 > 0, there exists λ0 > 0 such that if λ > λ0

nsn−1 Gn(λ(K ∩ (sen + K)))
λn ≤ nsn−1 Gn(λK)

λn ≤ nsn−1(voln(K) + ε0).

The function f (s) = nsn−1(voln(K) + ε0) is integrable in [0, ρK−K(en)]. Thus, by the
dominated convergence theorem and using again that, by (2.11), K ∩ (sen + K) = ∅ if
s > ρK−K(en), we obtain

lim
λ→∞

1
λ2n ∫

∞

0
nrn−1Gn(λK ∩ (ren + λK))dr

= ∫
ρK−K(en)

0
nsn−1voln(K ∩ (sen + K))ds

= ∫
∞

0
nsn−1voln(K ∩ (sen + K))ds,

which, renaming s as r, proves (4.3).
Let us now prove (4.4): Again, by (2.11), we have that λK ∩ (ren + λK) = ∅ if r >

ρλ(K−K)(en) and then, for any λ > 0, we have

0 ≤ 1
λ2n ∫

∞

0
nrn−1Gn−1(Pe⊥n (λK ∩ (ren + λK)))dr

= 1
λ2n ∫

ρλ(K−K)(en)

0
nrn−1Gn−1(Pe⊥n (λK ∩ (ren + λK)))dr

≤
Gn−1(λPe⊥n (K))

λ2n ∫
ρλ(K−K)(en)

0
nrn−1dr =

Gn−1(λPe⊥n (K))ρn
λ(K−K)(en)

λ2n

= 1
λ

Gn−1(λPe⊥n (K))
λn−1 ρn

K−K(en).
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Since by (2.2),

lim
λ→∞

1
λ

Gn−1(λPe⊥n (K))
λn−1 ρn

K−K(en) = 0 ⋅ voln−1(Pe⊥n (K))ρn
K−K(en) = 0,

we have that

lim
λ→∞

1
λ2n ∫

∞

0
nrn−1Gn−1(Pe⊥n (λK ∩ (ren + λK)))dr = 0.

Now that we have proved (4.3) and (4.4), the proof is complete. ∎

5 A different discrete approach to Zhang’s inequality

In this section, we are going to prove Theorem 1.7. This gives a discrete version of
Theorem 1.6. Let us recall that, as mentioned in Remark 3.2, Theorem 1.6 is equivalent
to Theorem 1.1. The proof will follow the lines of the proof of Theorem 2.4, which
was given in [5]. For any convex body K ⊆ R

n such that Pe⊥n (K) ∩Z
n ≠ ∅, the role

of the function f in Theorem 2.4 will be played by the function f1 ∶ Pe⊥n (K) → [0,∞)
given by f1(y) = 1

2 vol1(K ∩ (y + ⟨en⟩)), whose hypograph will be Sen(K) ∩ {x ∈ Rn ∶
⟨x , en⟩ ≥ 0}. Therefore, the hypograph of the function f ◇1 , defined as in (2.8), is
the closure of (Sen(K) + Cn−1) ∩ {x ∈ Rn ∶ ⟨x , en⟩ ≥ 0}. The role of the binomial
coefficient in Theorem 2.4 will now be played by the inverse of the number, defined in
(1.9) as

Bm(p) =
⌊m⌋

∑
k=0

p
m
(1 − k

m
)

n−1
( k

m
)

p−1
,

for a certain m = m0(p) > 1, whose existence (depending on a fixed parameter p ≥ 1)
needs to be proved. Once the existence of such m0(p) is proved, we will be able to
construct an appropriate 1

n−1 -affine function (i.e., a function gp such that g
1

n−1
p is affine

on its support), given by

gp(x) =
⎧⎪⎪⎨⎪⎪⎩

(1 − x
m0(p))

n−1
Gn−1(Pe⊥n (K)) if 0 ≤ x ≤ m0(p)

0 if x > m0(p).
(5.1)

This function gp which will have a crossing point r0(p) (see Lemma 5.5 below for the
precise definition of such crossing point) with the function f̃ given by

f̃ (r) = Gn−1((Sen(K) + Cn−1) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r}), r ≥ 0,(5.2)

which is a modification of the function given by

f (r) = Gn−1(Sen(K) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r}), r ≥ 0.(5.3)

The function f counts, for every r ≥ 0, the number of integer points in the projection
onto {x ∈ Rn ∶ ⟨x , en⟩ = 0} of the intersection of Sen(K) with the hyperplane {x ∈
R

n ∶ ⟨x , en⟩ = r}.
Besides, such function gp will satisfy that, the value of

( Bm(q)−1

Gn−1(Pe⊥n
(K)) ∑

∞
k=0 qkq−1 gp(k))

1
q

will be independent of q and will depend only on
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the fixed parameter p. For every q ≥ 1, we will have (See equations (5.9) and (5.10)
below and Lemma 5.5 for the precise definition of the function gp)

( Bm(q)−1

Gn−1(Pe⊥n (K))
∞

∑
k=0

qkq−1 gp(k))
1
q

= ( Bm(p)−1

Gn−1(Pe⊥n (K))
∞

∑
k=0

pkq−1 f̃ (k))
1
q

,

Making use of the fact that gp will have a crossing point with f̃ , we will be able to prove
that

( Bm(q)−1

Gn−1(Pe⊥n (K))
∞

∑
k=0

qkq−1 gp(k))
1
q

≥ ( Bm(q)−1

Gn−1(Pe⊥n (K))
∞

∑
k=0

qkq−1 f (k))
1
q

,

obtaining in this way the proof of Theorem 1.7.
Let us point out that, from the definition of Bm(p), we have that if p > 1, then

Bm(p) = 0 for every m ∈ (0, 1) and if p = 1, then Bm(1) = 1
m for every m ∈ (0, 1), since

we convene that ( 0
m )

1−1 = 1. For any p ≥ 1 and m > 1, we have that Bm(p) > 0.
Notice that Berwald’s inequality, (2.7), applied in e⊥n identified with R

n−1 to a
concave function h defined on Pe⊥n K, shows that the quantity

⎛
⎝

(n−1+p
n−1 )

voln−1(Pe⊥n (K)) ∫Pe⊥n
(K)

hp(x)dx
⎞
⎠

1
p

is non-increasing in p ∈ (−1,∞).
The following lemma shows that, as m tends to ∞, the value of Bm(p) converges

to the inverse of (n−1+p
n−1 ), which is the binomial coefficient in this quantity.

Lemma 5.1 For any n ≥ 2 and any p ≥ 1, we have that

lim
x→∞

Bx(p) = lim
x→∞

⌊x⌋

∑
k=0

p
x
(1 − k

x
)

n−1
( k

x
)

p−1
= (n − 1 + p

n − 1
)
−1

.

Proof Let f ∶ [0, 1] → R be the function f (x) = p(1 − x)n−1x p−1, which is Riemann-
integrable in [0, 1] with

∫
1

0
f (x)dx = (n − 1 + p

n − 1
)
−1

.

Since the norm of the partition of the interval [0, 1] given by Px = {0, 1
⌊x⌋ ,

2
⌊x⌋ , . . . , 1}

tends to 0 as x tends to ∞, and
⌊x⌋

∑
k=0

p
⌊x⌋ (1 − k

⌊x⌋)
n−1

( k
⌊x⌋)

p−1

=
⌊x⌋−1

∑
k=0

p
⌊x⌋ (1 − k

⌊x⌋)
n−1

( k
⌊x⌋)

p−1

is a Riemann sum of f associated with Px , we have that

lim
x→∞

⌊x⌋

∑
k=0

p
⌊x⌋ (1 − k

⌊x⌋)
n−1

( k
⌊x⌋)

p−1

= (n − 1 + p
n − 1

)
−1

.
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Moreover, as limx→∞
⌊x⌋
x = 1, we obtain that

lim
x→∞

Bx(p) = lim
x→∞

⌊x⌋

∑
k=0

p
x
(1 − k

x
)

n−1
( k

x
)

p−1
= (n − 1 + p

n − 1
)
−1

. ∎

From now on, we will consider convex bodies satisfying some hypotheses. We will
say that a convex body K satisfies the hypotheses (H) if it satisfies
a) maxy∈Pe⊥n

(K)∩Zn G1(Sen(K) ∩ (y + ⟨en⟩)) = G1(Sen(K) ∩ ⟨en⟩);
b) M ∶= maxx∈Sen (K)∩Zn ⟨x , en⟩ ≥ 1.

In the following lemma, we prove under the hypotheses (H), for any p ≥ 1, the
existence of the number m0(p) that we will need in order to construct the 1

n−1 -affine
defined in (5.1), which will have one crossing point with the function f̃ defined in (5.2).
Before stating the lemma, let us make the following remark regarding the supports of
the functions f and f̃ .

Remark 5.2. Let us point out that, since Sen(K) ⊆ Sen(K) + Cn−1, we have that
f (r) ≤ f̃ (r) for every r ∈ [0,∞) and then

supp( f ) ⊆ supp( f̃ ).

Notice also that, from the definition of M, there exists y ∈ Pe⊥n (K) ∩Z
n

such that y + Men ∈ Sen(K) ∩Z
n . Besides, Sen(K) ∩Z

n ∩ {x ∈ Rn ∶ ⟨x , en⟩ =
M + 1} = ∅. Therefore, since M + 1 ∈ N, we have that f (M + 1) = 0 and
[0, M] ⊆ supp( f ) ⊆ [0, M + 1). Nevertheless, even though f (M + 1) = 0, it
is possible for any integer k > M that f̃ (k) > 0, as the example given by
K = Sen(K) = conv{(0,±1) , ( 1

2 ,±k) , (1,±1)} ⊆ R
2 shows.

Notice also that if r > 1
2 maxy∈Pe⊥n

vol1(K ∩ (y + ⟨en⟩)), since Cn−1 ⊆ e⊥n , we have

Sen(K) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r} = ∅

and

(Sen(K) + Cn−1) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r} = ∅,

and then f (r) = f̃ (r) = 0. Therefore,

supp( f ) ⊆ supp( f̃ ) ⊆
⎡⎢⎢⎢⎣

0, 1
2

max
y∈Pe⊥n

vol1(K ∩ (y + ⟨en⟩))
⎤⎥⎥⎥⎦

.

Lemma 5.3 Let K ⊆ R
n be a convex body with 0 ∈ Pe⊥n (K) satisfying the hypothe-

ses (H):
a) maxy∈Pe⊥n

(K)∩Zn G1(Sen(K) ∩ (y + ⟨en⟩)) = G1(Sen(K) ∩ ⟨en⟩);
b) M ∶= maxx∈Sen (K)∩Zn ⟨x , en⟩ ≥ 1.
Then, for any p ≥ 1, there exists m0(p) ≥ M such that m0(p) > 1 and

m0(p)pBm0(p)(p) = 1
Gn−1(Pe⊥n (K))

∞

∑
k=0

pkp−1 f̃ (k),
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where f̃ ∶ [0,∞) → N ∪ {0} is given by

f̃ (r) = Gn−1((Sen(K) + Cn−1) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r}).

Proof Let K ⊆ R
n be a convex body with 0 ∈ Pe⊥n (K) satisfying the hypotheses (H)

and let f ∶ [0,∞) → R be the function given by

f (r) = Gn−1(Sen(K) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r}).

By Remark 5.2, f satisfies that f (r) ≤ f̃ (r) for every r ≥ 0. Besides, since M ≥ 1, we
have that f (1) ≥ 1. For any p ≥ 1, let also hp ∶ (0,∞) → [0,∞) be the function given
by

hp(x) = x pBx(p) =
⌊x⌋

∑
k=0

p(1 − k
x
)

n−1
kp−1 .(5.4)

Our purpose is to prove the existence of some m0(p) ≥ M such that m0(p) > 1 and

hp(m0(p)) = 1
Gn−1(Pe⊥n (K))

∞

∑
k=0

pkp−1 f̃ (k).

Notice that for any p ≥ 1, hp is clearly continuous at any x0 ∈ (0,∞)/N. If x0 = k0 ∈ N
then

lim
x→x−0

hp(x) = lim
x→k−0

k0−1
∑
k=0

p(1 − k
x
)

n−1
kp−1 =

k0−1
∑
k=0

p(1 − k
k0
)

n−1
kp−1

=
k0

∑
k=0

p(1 − k
k0
)

n−1
kp−1 = hp(k0)

and

lim
x→x+0

hp(x) = lim
x→k+0

k0

∑
k=0

p(1 − k
x
)

n−1
kp−1 =

k0

∑
k=0

p(1 − k
k0
)

n−1
kp−1

= hp(k0).

Thus, for any p ≥ 1, hp is continuous at x0 = k0 and then hp is continuous on (0,∞).
Besides, since for every p ≥ 1, the function hp is defined as hp(x) = x pBx(p) for every
x ∈ (0,∞), we have that for any p ≥ 1, Lemma 5.1 implies that

lim
x→∞

hp(x) = ∞.(5.5)

Let us now distinguish two cases, depending on whether p > 1 or p = 1: Assume
first that p > 1. Since Bx(p) = 0 for every x ∈ (0, 1], we have that for every x ∈ (0, 1],

hp(x) = 0.(5.6)

Since, by definition, M is a non-negative integer and, by b), we are assuming that
M ≥ 1, we have that f̃ (1) ≥ f (1) ≥ 1 > 0 and then

1
Gn−1(Pe⊥n (K))

∞

∑
k=0

pkp−1 f̃ (k) ≥ p f̃ (1)
Gn−1(Pe⊥n (K)) > 0.
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By the continuity of hp on (0,∞), (5.6) and (5.5), there exists m0(p) > 1 such that

hp(m0(p)) = 1
Gn−1(Pe⊥n (K))

∞

∑
k=0

pkp−1 f̃ (k) > 0.

Let us assume now that p = 1. Then, Bx(1) = 1
x for every x ∈ (0, 1] and, since for

every x ∈ (0,∞), the function h1 is defined as h1(x) = xBx(1), we have that for every
x ∈ (0, 1],

h1(x) = xBx(1) = 1.(5.7)

Since by b), we are assuming that M ≥ 1,

1
Gn−1(Pe⊥n (K))

∞

∑
k=0

pkp−1 f̃ (k) = 1
Gn−1(Pe⊥n (K))

∞

∑
k=0

f̃ (k) ≥ f̃ (0) + f̃ (1)
Gn−1(Pe⊥n (K)) > 1,

where we have used that f̃ (1) ≥ 1 and that, from the definition of f̃ ,

f̃ (0) = Gn−1(Pe⊥n (K) + Cn−1) ≥ Gn−1(Pe⊥n (K)).

By the continuity of h1 on (0,∞), (5.7) and (5.5), there exists m0(1) > 1 such that

h1(m0(1)) = 1
Gn−1(Pe⊥n (K))

∞

∑
k=0

pkp−1 f̃ (k) > 0.

In both cases, since m0(p) > 1, such m0(p) satisfies that Bm0(p)(p) > 0 and

m0(p)p = ∑∞k=0 pkp−1 f̃ (k)
Gn−1(Pe⊥n (K))Bm0(p)(p) .

Let us now see that m0(p) ≥ M. Assume that m0(p) < M. By a), we are assuming

max
y∈Pe⊥n

(K)∩Zn
G1(Sen(K) ∩ (y + ⟨en⟩)) = G1(Sen(K) ∩ ⟨en⟩).

Thus, from the definition of M = maxx∈Sen (K)∩Zn ⟨x , en⟩, together with the hypotheses
(H), we have that Men ∈ Sen(K) ∩ {x ∈ Rn ∶ ⟨x , en⟩ ≥ 0}. Consequently, the convex
hull of Pe⊥n (K) and the point m0(p)en is contained in Sen(K) ∩ {x ∈ Rn ∶ ⟨x , en⟩ ≥ 0}.
Therefore, for every 0 ≤ k ≤ ⌊m0(p)⌋,

Sen(K) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = k} ⊇ (1 − k
m0(p))Pe⊥n (K) × {k}.

Thus,

(Sen(K) + Cn−1) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = k} ⊇ ((1 − k
m0(p))Pen(K) + Cn−1) × {k}.

We obtain, as a consequence of the discrete Brunn–Minkowski inequality (Theo-
rem 2.2), that

f̃
1

n−1 (k) ≥ (1 − k
m0(p))Gn−1(Pe⊥n (K)) 1

n−1 + k
m0(p)Gn−1({0}) 1

n−1
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≥ (1 − k
m0(p))Gn−1(Pe⊥n (K)) 1

n−1 .(5.8)

Since ⌊m0(p)⌋ ≤ m0(p) < M and

f̃
1

n−1 (M) ≥ f
1

n−1 (M) ≥ 1 > 0,

we obtain that
M
∑
k=0

pkp−1 f̃ (k) >
⌊m0(p)⌋

∑
k=0

pkp−1 f̃ (k)

and then, as a consequence of (5.8) and using (5.4), that

m0(p)p = ∑∞k=0 pkp−1 f̃ (k)
Gn−1(Pe⊥n (K))Bm0(p)(p) ≥

∑M
k=0 pkp−1 f̃ (k)

Gn−1(Pe⊥n (K))Bm0(p)(p)

> ∑⌊m0(p)⌋
k=0 pkp−1 f̃ (k)

Gn−1(Pe⊥n (K))Bm0(p)(p) ≥
∑⌊m0(p)⌋

k=0 pkp−1 (1 − k
m0(p))

n−1

Bm0(p)(p)
= m0(p)p ,

which is a contradiction. Therefore, m0(p) ≥ M. ∎
Remark 5.4. Notice that we have obtained in the proof that, in any case, m0(p) > 1.
Therefore, Bm0(p)(q) > 0 for every p ≥ 1 and every q ≥ 1.

The following lemma shows that the 1
n−1 -affine function gp defined in (5.1), with

m0(p) the number obtained in Lemma 5.3, has a crossing point with the function f̃
defined in (5.2). Such function gp is constructed so that for every q > 0

∞

∑
k=0

qkq−1 gp(k) = m0(p)qBm0(p)(q)Gn−1(Pe⊥n (K)),(5.9)

with m0(p) provided by the previous lemma satisfying that
∞

∑
k=0

pkp−1 f̃ (k) = m0(p)pBm0(p)(p)Gn−1(Pe⊥n (K)).(5.10)

Lemma 5.5 Let K ⊆ R
n be a convex body with 0 ∈ Pe⊥n (K) satisfying the hypotheses

(H) and, for any p ≥ 1, let m0(p) be given by Lemma 5.3. Let f , f̃ ∶ [0,∞) → N ∪ {0}
be the functions given by
• f (r) = Gn−1(Sen(K) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r}),
• f̃ (r) = Gn−1((Sen(K) + Cn−1) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r})
and let gp ∶ [0,∞) → [0,∞) be the function defined in (5.1), given by

gp(x) =
⎧⎪⎪⎨⎪⎪⎩

(1 − x
m0(p))

n−1
Gn−1(Pe⊥n (K)) if 0 ≤ x ≤ m0(p)

0 if x > m0(p).

Then, there exists r0(p) ∈ [0,∞) such that

f̃ (k) ≥ gp(k)
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for every k ∈ N ∪ {0} with 0 ≤ k < r0(p) and

gp(k) ≥ f (k)

for every k ∈ N with k ≥ r0(p).

Proof Let K ⊆ R
n be a convex body with 0 ∈ Pe⊥n (K) satisfying the hypotheses (H)

and let f , f̃ , and gp be the functions defined in the statement. Let us denote, for every
r ≥ 0,

Dr = Sen(K) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r},

and

D̃r = (Sen(K) + Cn−1) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r} = Dr + Cn−1 .

Therefore, f (r) = Gn−1(Dr) and f̃ (r) = Gn−1(D̃r) for every r ≥ 0.
Notice that, as mentioned in Remark 5.2,

supp( f ) ⊆ supp( f̃ ) ⊆
⎡⎢⎢⎢⎣

0, 1
2

max
y∈Pe⊥n

vol1(K ∩ (y + ⟨en⟩))
⎤⎥⎥⎥⎦

and then, for every r > maxy∈Pe⊥n
(K)

1
2 vol1(K ∩ (y + ⟨en⟩)), we have

0 = f̃ (r) ≤ gp(r).

Therefore, we can define

r̃0(p) = inf{r ≥ 0 ∶ f̃ (r) ≤ gp(r)} ∈ [0,∞).

From the definition of r̃0(p), we trivially have that for every 0 ≤ r < r̃0(p),

f̃ (r) > gp(r).

In particular, for every r = k ∈ N ∪ {0} with 0 ≤ k < r̃0(p), we have that

f̃ (k) > gp(k).

Notice also that M is defined in (H) as M = maxx∈Sen (K)∩Zn ⟨x , en⟩ and, as men-
tioned in Remark 5.2, supp( f ) ⊆ [0, M + 1). Then, for every k ∈ N such that k > M ,
we have

gp(k) ≥ f (k) = 0.

Therefore, if r̃0(p) > M, then we can take r0(p) = r̃0(p). Let us assume that
r̃0(p) ≤ M.

Let us assume first that r̃0(p) = M ∈ N. If f (M) ≤ gp(M), then we can take
r0(p) = r̃0(p). If, on the contrary, f (M) > gp(M), we have, by Remark 5.2,

f̃ (M) ≥ f (M) > gp(M)

and we can take any r0(p) > r̃0(p) = M.
Let us assume now that r̃0(p) < M. In such case, let us take r0(p) = r̃0(p) and let

us see that for every k ∈ N with r0(p) ≤ k ≤ M , we have that gp(k) ≥ f (k). Notice
that for every 0 ≤ r ≤ M, the set D̃r is a convex open (in the topology induced
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in R
n−1 × {r} by the standard topology in R

n) bounded set, and that Pe⊥n (D̃r1) ⊇
Pe⊥n (D̃r2) if r1 ≤ r2. Moreover, for any 0 ≤ r1 < maxy∈Pe⊥n

(K)
1
2 vol1(K ∩ (y + ⟨en⟩)), we

have ⋃r2>r1 Pe⊥n (D̃r2) = Pe⊥n (D̃r1). Therefore, the function f̃ is continuous from the
right at every 0 ≤ r1 < maxy∈Pe⊥n

(K)
1
2 vol1(K ∩ (y + ⟨en⟩)) and, from the definition of

r̃0(p) as an infimum, we obtain that if r0(p) = r̃0(p) < maxy∈Pe⊥n
(K)

1
2 vol1(K ∩ (y +

⟨en⟩)), then

f̃ (r0(p)) ≤ gp(r0(p))(5.11)

and

r0(p) = min{r ≥ 0 ∶ f̃ (r) ≤ gp(r)}.

Notice that, as explained in Remark 5.2,

[0, M] ⊆ supp( f ) ⊆ supp( f̃ ) ⊆
⎡⎢⎢⎢⎣

0, 1
2

max
y∈Pe⊥n

vol1(K ∩ (y + ⟨en⟩))
⎤⎥⎥⎥⎦

.

Thus, M ≤ maxy∈Pe⊥n
(K)

1
2 vol1(K ∩ (y + ⟨en⟩)) and, since r0(p) < M, then r0(p) sat-

isfies (5.11). If r0(p) < r ≤ M, then, taking λ = r0(p)
r ∈ [0, 1), we have, by the convexity

of Sen(K) + Cn−1, that

D̃r0(p) ⊇ (1 − λ)D̃0 + λD̃r = (1 − λ)D0 + λDr + Cn−1 .

By the discrete Brunn–Minkowski inequality (Theorem 2.2), we have

f̃
1

n−1 (r0(p)) ≥ Gn−1((1 − λ)D0 + λDr + Cn−1)
1

n−1

≥ (1 − λ) f
1

n−1 (0) + λ f
1

n−1 (r).

Taking into account that r0(p) < r ≤ M ≤ m0(p),

g
1

n−1
p (r0(p)) = (1 − r0(p)

m0(p))Gn−1(Pe⊥n (K)) 1
n−1

= (1 − λ)Gn−1(Pe⊥n (K)) 1
n−1 + λ (1 − r

m0
)Gn−1(Pe⊥n (K)) 1

n−1

= (1 − λ) f
1

n−1 (0) + λg
1

n−1
p (r).

Thus, by (5.11), we have that for every r0(p) < r ≤ M ,

(1 − λ) f
1

n−1 (0) + λg
1

n−1
p (r) = g

1
n−1
p (r0(p)) ≥ f̃

1
n−1 (r0(p)) ≥ (1 − λ) f

1
n−1 (0) + λ f

1
n−1 (r).

Therefore, for every r0(p) < r ≤ M,

gp(r) ≥ f (r).

By (5.11), this inequality also holds for r = r0(p). Therefore, if r̃0(p) = r0(p) < M, for
every k ∈ N such that r0(p) ≤ k ≤ M, we have that

gp(k) ≥ f (k). ∎

We are now able to prove the following theorem, which will give Theorem 1.7.
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Theorem 5.6 Let K ⊆ R
n be a convex body with 0 ∈ Pe⊥n (K) satisfying the hypotheses

(H). Let p ≥ 1 and m0(p) be given by Lemma 5.3. Then, for any p < q, we have that

(
Bm0(p)(q)−1

Gn−1(Pe⊥n (K))
∞

∑
k=0

qkq−1 f (k))
1
q

≤ (
Bm0(p)(p)−1

Gn−1(Pe⊥n (K))
∞

∑
k=0

pkp−1 f̃ (k))
1
p

,

where the functions f , f̃ ∶ [0,∞) → N ∪ {0} are given by
• f (r) = Gn−1(Sen(K) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r}),
• f̃ (r) = Gn−1((Sen(K) + Cn−1) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r}).

Proof Let K ⊆ R
n be a convex body with 0 ∈ Pe⊥n (K) satisfying the hypotheses (H)

and let p ≥ 1. By Lemma 5.3 and Remark 5.4, there exists m0(p) > 1 such that

m0(p)pBm0(p)(p) = 1
Gn−1(Pe⊥n (K))

∞

∑
k=0

pkp−1 f̃ (k) > 0.

Let also gp be the function defined in (5.1), given by

gp(r) =
⎧⎪⎪⎨⎪⎪⎩

(1 − r
m0(p))

n−1
Gn−1(Pe⊥n (K)) if 0 ≤ r ≤ m0(p)

0 if r > m0(p),

which, from the definition of Bm0(p)(q) for q > 0, satisfies (5.9). That is, for every
q > 0,

∞

∑
k=0

qkq−1 gp(k) = m0(p)qBm0(p)(q)Gn−1(Pe⊥n (K)).

Therefore, taking q = p,

∞

∑
k=0

kp−1 gp(k) =
⌊m0(p)⌋

∑
k=0

kp−1 gp(k) =
∞

∑
k=0

kp−1 f̃ (k).

Let now q > p. By Lemma 5.5, there exists r0(p) such that f̃ (k) ≥ gp(k) for every
k ∈ N ∪ {0} with 0 ≤ k < r0(p) and gp(k) ≥ f (k) for every k ∈ N with k ≥ r0(p).
Taking into account that f (k) ≤ f̃ (k) for every k ≥ 0, and understanding the first sum
as 0 if r0(p) = 0, we have

⌈r0(p)⌉−1

∑
k=0

kq−1 ( f̃ (k) − gp(k)) −
∞

∑
k=⌈r0(p)⌉

kq−1 (gp(k) − f (k))

=
⌈r0(p)⌉−1

∑
k=0

kq−p kp−1 ( f̃ (k) − gp(k)) −
∞

∑
k=⌈r0(p)⌉

kq−p kp−1 (gp(k) − f (k))

≤ r0(p)q−p
⌈r0(p)⌉−1

∑
k=0

kp−1 ( f̃ (k) − gp(k)) − r0(p)q−p
∞

∑
k=⌈r0(p)⌉

kp−1 (gp(k) − f (k))

= r0(p)q−p
⌈r0(p)⌉−1

∑
k=0

kp−1 ( f̃ (k) − gp(k)) + r0(p)q−p
∞

∑
k=⌈r0(p)⌉

kp−1 ( f (k) − gp(k))
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≤ r0(p)q−p
⌈r0(p)⌉−1

∑
k=0

kp−1 ( f̃ (k) − gp(k)) + r0(p)q−p
∞

∑
k=⌈r0(p)⌉

kp−1 ( f̃ (k) − gp(k))

= r0
q−p

∞

∑
k=0

kp−1 ( f̃ (k) − gp(k)) = 0.

Therefore, we have that
⌈r0(p)⌉−1

∑
k=0

kq−1 f̃ (k) +
∞

∑
k=⌈r0(p)⌉

kq−1 f (k) ≤
∞

∑
k=0

kq−1 gp(k)

and then, since f̃ (k) ≥ f (k) for every k ≥ 0,
∞

∑
k=0

kq−1 f (k) ≤
∞

∑
k=0

kq−1 gp(k).

Consequently, since m0(p) satisfies (5.10), gp satisfies (5.9), and Bm0(p)(q) > 0 for
every q ≥ 1, as mentioned in Remark 5.4,

(
Bm0(p)(q)−1

Gn−1(Pe⊥n (K))
∞

∑
k=0

qkq−1 f (k))
1
q

≤ (
Bm0(p)(q)−1

Gn−1(Pe⊥n (K))
∞

∑
k=0

qkq−1 gp(k))
1
q

= m0(p)

=
⎛
⎝

Bm0(p)(p)−1 ∑∞k=0 pkp−1 f̃ (k)
Gn−1(Pe⊥n (K))

⎞
⎠

1
p

.

∎
We can finally prove Theorem 1.7.

Proof of Theorem 1.7 Let K ⊆ R
n be a convex body with 0 ∈ Pe⊥n (K) such

that maxy∈Pe⊥n
(K)∩Zn G1(Sen(K) ∩ (y + ⟨en⟩)) = G1(Sen(K) ∩ ⟨en⟩) and let

M = maxx∈Sen (K)∩Zn ⟨x , en⟩. If M = 0 then, as mentioned in Remark 1.9, any
value of m0 > 1 gives the inequality, even though m0 is not defined by Lemma 5.3.
Let us assume that M ≥ 1. Therefore, K satisfies the hypotheses (H). Let p = 1,
f , f̃ ∶ [0,∞) → N ∪ {0} be defined as in Theorem 5.6 by
• f (r) = Gn−1(Sen(K) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r}),
• f̃ (r) = Gn−1((Sen(K) + Cn−1) ∩ {x ∈ Rn ∶ ⟨x , en⟩ = r}),
and let m0 = m0(1) > 1 be the number given by Lemma 5.3. Applying Theorem 5.6
with p = 1 and q = n + 1, we obtain that

( Bm0(n + 1)−1

Gn−1(Pe⊥n (K))
∞

∑
k=0

(n + 1)kn f (k))
1

n+1

≤ Bm0(1)−1

Gn−1(Pe⊥n (K))
∞

∑
k=0

f̃ (k).

Equivalently,

Bm0(n + 1)−1
∞

∑
k=0

(n + 1)kn f (k) ≤
(Bm0(1)−1 ∑∞k=0 f̃ (k))n+1

(Gn−1(Pe⊥n (K)))n .

From (2.5), Sen(K) is symmetric with respect to the hyperplane {x ∈ Rn ∶ ⟨x , en⟩ =
0} and then, from the definition of f and taking into account that for any y ∈ Zn−1
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and k ∈ N, we have (y, k) ≠ (y,−k) and that the term corresponding to k = 0 in the
following sum is 0, we obtain

∞

∑
k=0

kn f (k) = 1
2 ∑

x∈Sen (K)∩Zn

∣⟨x , en⟩∣n =
1
2 ∫Sen (K)

∣⟨x , en⟩∣ndGn(x).

In the same way, since Sen(K) + Cn−1 is also symmetric with respect to the hyperplane
{x ∈ Rn ∶ ⟨x , en⟩ = 0} and taking into account that for any y ∈ Zn−1 and k ∈ N,
we have (y, k) ≠ (y,−k), but (y, 0) = (y,−0) and the term corresponding to the
following sum is not 0, we obtain

∞

∑
k=0

f̃ (k) = 1
2
(Gn(Sen(K) + Cn−1) +Gn−1(Pe⊥n (K) + Cn−1)) .

Therefore,

(n + 1)Bm0(n + 1)−1

Bm0(1)−(n+1) 2n ∫
Sen (K)

∣⟨x , en⟩∣ndGn(x) ≤

≤
(Gn(Sen(K) + Cn−1) +Gn−1(Pe⊥n (K) + Cn−1))

n+1

(Gn−1(Pe⊥n (K)))n .

∎

Finally, let us see that Theorem 1.7 implies Theorem 1.6. Let us recall that, by
Lemma 3.1, Theorem 1.6 is an equivalent form of Theorem 1.1, which implies, as seen
in Corollary 3.6, Zhang’s inequality (1.1).

Corollary 5.7 (Theorem 1.6) Let K ⊆ R
n be a convex body. Then,

(2n
n )

nn 2n ∫
Sen (K)

∣⟨x , en⟩∣ndx ≤ (voln(K))n+1

(voln−1(Pe⊥n (K)))n .

Proof Let K ⊆ R
n be a convex body. Since the inequality we want to prove is

invariant under translations, we can assume, without loss of generality, that

max
y∈Pe⊥n

(K)
vol1(K ∩ (y + ⟨en⟩)) = vol1(K ∩ ⟨en⟩).

Therefore, for any λ > 0,

max
y∈Pe⊥n

(λK)
vol1(λK ∩ (y + ⟨en⟩)) = vol1(λK ∩ ⟨en⟩).

Since for every y ∈ Pe⊥n (λK), the segment Sen(λK) ∩ (y + ⟨en⟩) is centered at y, we
have

max
y∈Pe⊥n

(λK)
G1(Sen(λK) ∩ (y + ⟨en⟩)) = G1(Sen(λK) ∩ ⟨en⟩).

In particular,

max
y∈Pe⊥n

(λK)∩Zn
G1(Sen(λK) ∩ (y + ⟨en⟩)) = G1(Sen(λK) ∩ ⟨en⟩).
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By Theorem 1.7, there exists m0,λ ≥ maxx∈Sen (λK)∩Zn ⟨x , en⟩ such that

(n + 1)Bm0,λ(n + 1)
Bm0,λ(1)−(n+1) 2n ∫

Sen (λK)
∣⟨x , en⟩∣ndGn(x) ≤

≤
(Gn(Sen(λK) + Cn−1) +Gn−1(Pe⊥n (λK) + Cn−1))

n+1

(Gn−1(Pe⊥n (λK)))n .

Therefore, taking into account that Sen(λK) = λSen(K) for any λ > 0 and dividing
both sides of the inequality by λ2n = λn(n+1)

λn(n−1) , we have that for every λ > 0,

(n + 1)Bm0,λ(n + 1)
Bm0,λ(1)−(n+1) 2n 1

λn ∫λSen (K)
∣⟨x

λ
, en⟩∣ndGn(x) ≤

≤
(Gn(λSen (K)+Cn−1)

λn + 1
λ

Gn−1(Pe⊥n
(λK)+Cn−1)

λn−1 )
n+1

(
Gn−1(λPe⊥n

(K))
λn−1 )

n .

Taking the limit as λ →∞ and taking into account that
limλ→∞maxx∈Sen (λK)∩Zn ⟨x , en⟩ = ∞, and therefore limλ→∞m0,λ = ∞, we obtain,
using Lemma 5.1,

(n + 1)( 2n
n−1)

nn+1 2n ∫
Sen (K)

∣⟨x , en⟩∣ndx ≤ (voln(Sen(K)) + 0)n+1

(voln−1(Pe⊥n (K)))n = (voln(K))n+1

(voln−1(Pe⊥n (K)))n ,

where we have also used (2.1) and (2.3), since the function ∣⟨x , en⟩∣n is Riemann-
integrable on Sen(K).

Equivalently,

(2n
n )

nn 2n ∫
Sen (K)

∣⟨x , en⟩∣ndx ≤ (voln(K))n+1

(voln−1(Pe⊥n (K)))n .
∎

6 Ball bodies of the discrete covariogram

In this section, we initiate, for any convex body K ⊆ R
n with 0 ∈ K, the study of the

p-th ball bodies of the discrete covariogram function g̃K ∶ Rn → [0,∞) given by

g̃K(x) = Gn(K ∩ (x + K)) = ∑
y∈K∩Zn

χy−K(x).(6.1)

Since y − K is measurable for every y ∈ Rn , as it is a compact set, g̃K is a measurable
function. Besides, it satisfies that g̃K(0) = Gn(K) > 0, since 0 ∈ K. Therefore, we can
consider, for p > 0, the p-th Ball bodies of g̃K , which are defined by (2.12) and are given
by

Kp(g̃K) ∶={x ∈ Rn ∶ p∫
∞

0
rp−1 g̃K(rx)dr ≥ g̃K(0)}

={x ∈ Rn ∶ p∫
∞

0
rp−1Gn(K ∩ (rx + K))dr ≥ Gn(K)} .
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The p-th ball bodies of g̃K , Kp(g̃K), are not necessarily convex bodies. Nevertheless,
they are star sets whose radial function, by (2.13), is given, for any θ ∈ Sn−1, by

ρp
Kp( g̃K)

(θ) = p
Gn(K) ∫

∞

0
rp−1Gn(K ∩ (rθ + K))dr.

Remark 6.1. Let us point out that if K ∩Z
n = {0}, then, by (6.1), g̃K = χ−K and then,

by (2.14), Kp(g̃K) = −K for every p > 0.

We will also consider the discrete covariogram function of the open set K + Cn ,
g̃K+Cn ∶ Rn → [0,∞), given by

g̃K+Cn(x) = Gn((K + Cn) ∩ (x + K + Cn)) = ∑
y∈(K+Cn)∩Zn

χy−(K+Cn)(x),

which is also measurable since y − (K + Cn) is measurable for every y ∈ Rn , as K + Cn
is an open set, and satisfies that g̃K+Cn(0) > 0, since 0 ∈ K ⊆ K + Cn . The p-th Ball
bodies of g̃K+Cn are given by

Kp(g̃K+Cn) ∶= {x ∈ Rn ∶ p∫
∞

0
rp−1 g̃K+Cn(rx)dr ≥ g̃K+Cn(0)}

={x ∈ Rn ∶ p∫
∞

0
rp−1Gn((K + Cn) ∩ (rx + K + Cn))dr ≥ Gn(K + Cn)} ,

which are star sets with radial function given, for every θ ∈ Sn−1, by

ρp
Kp( g̃K+Cn )

(θ) = p
Gn(K + Cn) ∫

∞

0
rp−1Gn((K + Cn) ∩ (rθ + K + Cn))dr.

Notice that, since K ⊆ K + Cn , then g̃K(x) ≤ g̃K+Cn(x) for every x ∈ Rn . Thus, for
every θ ∈ Sn−1, we have

Gn(K)ρp
Kp( g̃K)

(θ) ≤ Gn(K + Cn)ρp
Kp( g̃K+Cn )

(θ)

and then

Kp(g̃K) ⊆ (
Gn(K + Cn)

Gn(K) )
1
p

Kp(g̃K+Cn).(6.2)

The purpose of this section is to prove, on the one hand, that even though Kp(g̃K) is
not necessarily convex, its convex hull is contained in the same dilation of Kp(g̃K+Cn)
that appears in (6.2) and, on the other hand, that even though we do not know whether
an inclusion relation such as the one given by (2.16) holds for the p-th Ball bodies of
the discrete covariogram, a similar inclusion relation holds when substituting Kp(g̃K)
by the dilation of Kp(g̃K+Cn) given by the right-hand side of (6.2). More precisely, we
will prove the following.

Theorem 6.2 Let K ⊆ R
n be a convex body such that 0 ∈ K. For any 0 < p < q, we have

that

(n + q
n

)
1
q

Kq(g̃K) ⊆ (
n + p

n
)

1
p

(Gn(K + Cn)
Gn(K) )

1
p

Kp(g̃K+Cn).
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Let us start by showing that the convex hull of Kp(g̃K) is contained in the same
dilation of Kp(g̃K+Cn) that appears in (6.2). The proof will follow the lines of the
proof of the convexity of the p-th Ball bodies of log-concave function (see [9, Theorem
2.5.5]), relying on [9, Theorem 2.5.4], which gives a lower bound for the integral of a
function h on [0,∞) in terms of some mean of the integrals of two functions w and
g on [0,∞), provided that for any r, s > 0 the function h, evaluated at the same mean
of r and s is bounded below by some geometric mean of w(r) and g(s). However,
some modifications in the proof will be induced by the necessity of adding the open
cube Cn to the set in the left-hand side in the discrete Brunn–Minkowski inequality
(Theorem 2.2).

Proposition 6.3 Let K ⊆ R
n be a convex body with 0 ∈ K. Then, for any p > 0,

conv(Kp(g̃K)) ⊆ (
Gn(K + Cn)

Gn(K) )
1
p

Kp(g̃K+Cn).

Proof First of all, let us define K̃p(g̃K+Cn) as the following set:

K̃p(g̃K+Cn) = {x ∈ Rn ∶ p∫
∞

0
rp−1 g̃K+Cn(rx)dr ≥ g̃K(0)}

= {x ∈ Rn ∶ p∫
∞

0
rp−1Gn((K + Cn) ∩ (rx + K + Cn))dr ≥ Gn(K)} .

Notice that since the right-hand side in the inequality defining this set is g̃K(0) rather
than g̃K+Cn(0), this set is not Kp(g̃K+Cn) but a dilation of it. Indeed, for any x ∈ Rn

and any λ > 0,

p∫
∞

0
rp−1 g̃K+Cn(λrx)dr = p

λp ∫
∞

0
sp−1 g̃K+Cn(sx)ds

and then, if 0 < λ ≤ 1,

p∫
∞

0
rp−1 g̃K+Cn(λrx)dr ≥ p∫

∞

0
rp−1 g̃K+Cn(rx)dr.

Thus, if x ∈ K̃p(g̃K+Cn), we have that also λx ∈ K̃p(g̃K+Cn). Therefore, K̃p(g̃K+Cn) is a
star set with 0 as a center. Moreover, as in (2.13), for any θ ∈ Sn−1,

ρK̃p( g̃K+Cn )
(θ) = sup{λ > 0 ∶ p∫

∞

0
rp−1 g̃K+Cn(λrθ)dr ≥ g̃K(0)}

= sup{λ > 0 ∶ p
λp ∫

∞

0
sp−1 g̃K+Cn(sθ)ds ≥ g̃K(0)}

= ( p
g̃K(0) ∫

∞

0
sp−1 g̃K+Cn(sθ)ds)

1
p

= ( p
Gn(K) ∫

∞

0
rp−1Gn((K + Cn) ∩ (rθ + K + Cn))dr)

1
p

= (Gn(K + Cn)
Gn(K) )

1
p

ρKp( g̃K+Cn )(θ).
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Therefore, K̃p(g̃K+Cn) is the dilation of Kp(g̃K+Cn) in the right-hand side of (6.2):

K̃p(g̃K+Cn) = (
Gn(K + Cn)

Gn(K) )
1
p

Kp(g̃K+Cn).

Let x , y ∈ Kp(g̃K), λ, μ ∈ [0, 1] such that λ + μ = 1, and γ = 1
p . Let us define the

functions:
• h(t) = g̃K+Cn(tγ(λx + μy)), t > 0,
• w(r) = g̃K(rγ x), r > 0,
• g(s) = g̃K(sγ y), s > 0.
Denoting by Mλ

−γ(r, s) for any r, s > 0 the number

Mλ
−γ(r, s) = (λr−γ + μs−γ)−

1
γ ,

our purpose is to show that for any r, s > 0, we have that

h(Mλ
−γ(r, s)) ≥ w(r)

λsγ
λsγ+μrγ g(s)

μrγ

λsγ+μrγ(6.3)

in order to apply [9, Theorem 2.5.4] and obtain

∫
∞

0
h(t)dt ≥ Mλ

−γ (∫
∞

0
w(r)dr,∫

∞

0
g(s)ds) .(6.4)

If K ∩ (rγ x + K) = ∅ or K ∩ (sγ y + K) = ∅ then w(r) = 0 or g(s) = 0 and inequal-
ity (6.3) is trivial. Otherwise, calling
• λ1 = λsγ

λsγ+μrγ

• μ1 = μrγ

λsγ+μrγ

we have that λ1 + μ1 = 1 and, since K is convex,

(K + Cn) ∩ (λ1rγ x + μ1sγ y + K + Cn) ⊇
⊇ λ1(K ∩ (rγ x + K)) + μ1(K ∩ (sγ y + K)) + Cn

and then, by the discrete Brunn–Minkowski inequality (Theorem 2.2),

Gn((K + Cn) ∩ (λ1rγ x + μ1sγ y + K + Cn)) ≥
≥ Gn(λ1(K ∩ (rγ x + K)) + μ1(K ∩ (sγ y + K)) + Cn)

≥ (λ1G
1
n
n (K ∩ (rγ x + K)) + μ1G

1
n
n (K ∩ (sγ y + K)))

n

≥ Gλ1
n (K ∩ (rγ x + K))Gμ1

n (K ∩ (sγ y + K)).

Therefore,

h(Mλ
−γ(r, s)) = g̃K+Cn (

1
λr−γ + μs−γ (λx + μy))

= g̃K+Cn (
λsγ

λsγ + μrγ rγ x + μrγ

λsγ + μrγ sγ y)

= g̃K+Cn (λ1rγ x + μ1sγ y)
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≥ g̃λ1
K (rγ x)g̃ μ1

K (sγ y)

= g̃K(rγ x)
λsγ

λsγ+μrγ g̃K(sγ y)
μrγ

λsγ+μrγ

= w(r)
λsγ

λsγ+μrγ g(s)
μrγ

λsγ+μrγ .

Thus, by [9, Theorem 2.5.4] we have (6.4). Equivalently, taking into account that
−γ < 0,

(∫
∞

0
g̃K+Cn(tγ(λx + μy))dt)

−γ
≤ λ (∫

∞

0
g̃K(rγ x)dr)

−γ

+ μ (∫
∞

0
g̃K(sγ y)ds)

−γ
.

Changing variables, using that γ = 1
p , and taking into account that x , y ∈ Kp(g̃K),

(∫
∞

0
pt p−1 g̃K+Cn(t(λx + μy))dt)

− 1
p

≤ λ (∫
∞

0
prp−1 g̃K(rx)dr)

− 1
p

+ μ (∫
∞

0
psp−1 g̃K(sy)ds)

− 1
p

≤ λGn(K)−
1
p + μGn(K)−

1
p = Gn(K)−

1
p .

Therefore,

∫
∞

0
pt p−1 g̃K+Cn(t(λx + μy))dt ≥ Gn(K)

and

λx + μy ∈ K̃p(g̃K+Cn) = (
Gn(K + Cn)

Gn(K) )
1
p

Kp(g̃K+Cn). ∎

Remark 6.4. Let us point out that a reverse inclusion of Kp(g̃K+Cn) in a dilation of
the convex hull of K̃p(g̃K) is not possible as the following example shows: Consider
K = conv{(0, 0), ( 1

2 , 1) , ( 1
2 ,−1)} ⊆ R

2. Since K ∩Z
2 = {(0, 0)}, by Remark 6.1, for

any p > 0, we have that Kp(g̃K) = −K and then

conv(Kp(g̃K)) = −K ⊆ {x ∈ R2 ∶ ⟨x , e2⟩ ≤ 0}.

Therefore, if Kp(g̃K+C2) is contained in a dilation of conv(Kp(g̃K)), necessarily
ρKp( g̃K+C2 )(e2) = 0. However,

(0, 0) ∈ (K + C2) ∩ (re2 + K + C2) for every r ∈ [0, 1)

and then g̃K+Cn(re2) > 0 for every r ∈ [0, 1). Thus, ρKp( g̃K+C2 )(e2) > 0 and Kp(g̃K+C2)
is not contained in any dilation of conv(Kp(g̃K)).

The following lemma shows that even though it is defined from the discrete
covariogram, the volume of Kn(g̃K) equals the volume of K.
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Lemma 6.5 Let K ⊆ R
n be a convex body with 0 ∈ K. Let h ∶ Rn → [0,∞) be a

homogeneous function of degree p ≥ 0. Then,

∫
Kn+p( g̃K)

h(x)dx = 1
Gn(K) ∫Rn

h(x)Gn(K ∩ (x + K))dx .

In particular,

voln(Kn(g̃K)) = voln(K).

Proof Integrating in polar coordinates, we have that

∫
Kn+p( g̃K)

h(x)dx = nvoln(Bn
2 )∫Sn−1 ∫

ρKn+p( g̃K )(θ)

0
rn−1h(rθ)drdσ(θ)

= nvoln(Bn
2 )∫Sn−1 ∫

ρKn+p( g̃K )(θ)

0
rn+p−1h(θ)drdσ(θ)

= n
n + p

voln(Bn
2 )∫Sn−1

ρn+p
Kn+p( g̃K)

(θ)h(θ)dσ(θ)

= nvoln(Bn
2 )

Gn(K) ∫
Sn−1 ∫

∞

0
rn+p−1Gn(K ∩ (rθ + K))h(θ)drdσ(θ)

= nvoln(Bn
2 )

Gn(K) ∫
Sn−1 ∫

∞

0
rn−1Gn(K ∩ (rθ + K))h(rθ)drdσ(θ)

= 1
Gn(K) ∫Rn

h(x)Gn(K ∩ (x + K))dx .

Notice that if h(x) = 1, which is homogeneous of degree 0, we have that

voln(Kn(g̃K)) =
1

Gn(K) ∫Rn
Gn(K ∩ (x + K))dx

= 1
Gn(K) ∫Rn

∑
y∈Zn

χK(y)χx+K(y)dx

= 1
Gn(K) ∑

y∈Zn
∫
Rn

χK(y)χy−K(x)dx

= 1
Gn(K) ∑

y∈Zn
χK(y)voln(K) = voln(K). ∎

Let us now prove the inclusion relation given in Theorem 6.2. The proof will follow
the lines of the proof of Theorem 2.4. We begin with the following lemma in which,
for any p > 0 and any θ ∈ Sn−1, we construct a 1

n -affine function on its support, gp,θ ,
with the property that for any q > 0,

⎛
⎝
(n+q

n )
Gn(K) ∫

∞

0
qrq−1 gp,θ(r)dr

⎞
⎠

1
q

= mp,θ ,
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where

mp,θ ∶= (
n + p

n
)

1
p

ρK̃p( g̃K+Cn )
(θ),

being K̃p(g̃K+Cn) the dilation of Kp(g̃K+Cn) defined in Proposition 6.3. Such function
has a crossing point r0(p, θ) (see Lemma 6.6 for the precise definition of such crossing
point) with a modification of the function g̃K .

Lemma 6.6 Let K ⊆ R
n be a convex body such that 0 ∈ K and let θ ∈ Sn−1. For any

p > 0, let

mp,θ ∶=
⎛
⎝
(n+p

n )
Gn(K) ∫

∞

0
prp−1 g̃K+Cn(rθ)dr

⎞
⎠

1
p

and gp,θ ∶ [0,∞) → [0,∞) be the function given by

gp,θ(r) =
⎧⎪⎪⎨⎪⎪⎩

(1 − r
mp,θ

)
n

Gn(K) if 0 ≤ r ≤ mp,θ

0 otherwise.

Then, there exists r0(p, θ) ∈ [0,∞) such that

g̃K+Cn(rθ) ≥ gp,θ(r)

for every 0 ≤ r < r0(p, θ) and

gp,θ(r) ≥ g̃K(rθ)

for every r ≥ r0(p, θ).

Proof Let K ⊆ R
n be a convex body with 0 ∈ K, θ ∈ Sn−1 and p > 0. Let mp,θ and

gp,θ be defined as in the statement. First of all, notice that since 0 ∈ K , we have that
0 ∈ int(K + Cn) and then mp,θ > 0. Notice also that for every convex set L, every
θ ∈ Sn−1, and every 0 ≤ r1 < r2, we have that L ∩ (r1θ + L) ⊇ L ∩ (r2θ + L) and then
the functions g̃K(rθ) and g̃K+Cn(rθ) are decreasing in r ∈ [0,∞). Moreover, since
K ⊆ K + Cn , we have that K ∩ (x + K) ⊆ (K + Cn) ∩ (x + K + Cn) for every x ∈ Rn

and then g̃K(x) ≤ g̃K+Cn(x) for every x ∈ Rn . Furthermore, since K is a compact
convex set, g̃K(rθ) is continuous from the left in r ∈ [0,∞) and since K + Cn is an
open bounded convex set, g̃K+Cn(rθ) is continuous from the right in r ∈ [0,∞). Let
us call

Mθ = max{r ≥ 0 ∶ g̃K(rθ) ≥ 1}(6.5)

and

M̃θ = sup{r ≥ 0 ∶ g̃K+Cn(rθ) ≥ 1}

and notice that, necessarily, mp,θ ≥ Mθ . Otherwise, if mp,θ < Mθ ≤ M̃θ then K ∩
(mp,θ θ + K) ≠ ∅ and for every 0 ≤ r ≤ mp,θ , we have that

(K + Cn) ∩ (rθ + K + Cn) ⊇ (1 − r
mp,θ

)K + r
mp,θ

(K ∩ (mp,θ θ + K)) + Cn
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and then, by the discrete Brunn–Minkowski inequality (Theorem 2.2),

g̃
1
n
K+Cn

(rθ) ≥ Gn ((1 − r
mp,θ

)K + r
mp,θ

(K ∩ (mp,θ θ + K)) + Cn)
1
n

≥ (1 − r
mp,θ

)Gn(K) 1
n + r

mp,θ
Gn(K ∩ (mp,θ θ + K)) 1

n

≥ (1 − r
mp,θ

)Gn(K) 1
n .

Therefore, for every 0 ≤ r ≤ mp,θ , we have that

g̃K+Cn(rθ) ≥ gp,θ(r)

and then, taking into account that g̃K+Cn(rθ) ≥ 1 for every 0 ≤ r < M̃θ ,

mp
p,θ =

(n+p
n )

Gn(K) ∫
∞

0
prp−1 g̃K+Cn(rθ)dr

=
(n+p

n )
Gn(K) ∫

M̃θ

0
prp−1 g̃K+Cn(rθ)dr

>
(n+p

n )
Gn(K) ∫

mp,θ

0
prp−1 g̃K+Cn(rθ)dr

≥
(n+p

n )
Gn(K) ∫

mp,θ

0
prp−1 gp,θ(r)dr

= (n + p
n

)∫
mp,θ

0
prp−1 (1 − r

mp,θ
) dr = mp

p,θ ,

which is a contradiction.
Since we trivially have that for any r > M̃θ ,

0 = g̃K+Cn(rθ) ≤ gp,θ(r),

we can define

r0(p, θ) = inf{r ≥ 0 ∶ g̃K+Cn(rθ) ≤ gp,θ(r)} < ∞.

From the definition of r0(p, θ) as an infimum, we trivially have that for every 0 ≤ r <
r0(p, θ),

g̃K+Cn(rθ) > gp,θ(r).

Besides, since g̃K+Cn(rθ) is continuous from the right on [0,∞) and g̃K(x) ≤
g̃K+Cn(x) for every x ∈ Rn , from the definition of r0(p, θ) as an infimum, we obtain

g̃K(r0(p, θ)θ) ≤ g̃K+Cn(r0(p, θ)θ) ≤ gp,θ(r0(p, θ)).(6.6)

and r0(p, θ) is a minimum.
Notice that also, from the definition of Mθ , for every r > Mθ , we have that

gp,θ(r) ≥ g̃K(rθ) = 0.
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Therefore, if r0(p, θ) > Mθ , the theorem is proved. Thus, we will assume that
r0(p, θ) ≤ Mθ .

If r0(p, θ) = Mθ then, by (6.6), we have that

g̃K(Mθ θ) ≤ g̃K+Cn(Mθ θ) ≤ gp,θ(Mθ)

and the theorem is proved.
Let us assume, then, that r0(p, θ) < Mθ and let us prove that if r0(p, θ) < r ≤ Mθ

then gp,θ(r) ≥ g̃K(rθ).
If r0(p, θ) < r ≤ Mθ then, taking λ = r0(p,θ)

r ∈ [0, 1), we have

(K + Cn) ∩ (r0(p, θ)θ + K + Cn) ⊇ (1 − λ)K + λ(K ∩ (rθ + K)) + Cn

and then by the discrete Brunn–Minkowski inequality (Theorem 2.2),

g̃
1
n
K+Cn

(r0(p, θ)θ) ≥ Gn ((1 − λ)K + λ(K ∩ (rθ + K) + Cn))
1
n

≥ (1 − λ)Gn(K) 1
n + λGn(K ∩ (rθ + K)) 1

n

= (1 − λ)g̃
1
n
K (0) + λg̃

1
n
K (rθ).

Taking into account that r0(p, θ) < r ≤ Mθ ≤ mp,θ

g
1
n
p,θ(r0(p, θ)) = (1 − r0(p, θ)

mp,θ
)Gn(K) 1

n

= (1 − λ)Gn(K) 1
n + λ(1 − r

mp,θ
)Gn(K) 1

n

= (1 − λ)g̃
1
n
K (0) + λg

1
n
p,θ(r).

Thus, by (6.6), if r0(p, θ) < r ≤ Mθ

(1 − λ)g̃
1
n
K (0) + λg

1
n
p,θ(r) = g

1
n
p,θ(r0(p, θ)) ≥ g̃

1
n
K+Cn

(r0(p, θ)θ)

≥ (1 − λ)g̃
1
n
K (0) + λg̃

1
n
K (rθ)

and then

gp,θ(r) ≥ g̃K(rθ). ∎

Remark 6.7. Let us point out that for any θ ∈ Sn−1, we have that g̃K(rθ) ≥ 1 if and
only if (K ∩Z

n) ∩ (rθ + K) = K ∩ (rθ + K) ∩Z
n ≠ ∅, which happens if and only if

rθ ∈ (K ∩Z
n) − K. Therefore, since g̃K(rθ) is decreasing in r ∈ [0,∞), we have that

(K ∩Z
n) − K is a star set with 0 as a center and the number Mθ defined in (6.5) is

Mθ = ρ(K∩Zn)−K(θ). In the same way, ((K + Cn) ∩Z
n) − (K + Cn) is a star set with

0 as a center and M̃θ = ρ((K+Cn)∩Zn)−(K+Cn)(θ).

Now, we can prove the inclusion relation given by Theorem 6.2.
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Proof of Theorem 6.2 Let K ⊆ R
n be a convex body with 0 ∈ K. Let θ ∈ Sn−1. Fix

p > 0 and let, as in Lemma 6.6, mp,θ be defined as

mp,θ =
⎛
⎝
(n+p

n )
Gn(K) ∫

∞

0
prp−1 g̃K+Cn(rθ)dr

⎞
⎠

1
p

and gp,θ ∶ [0,∞) → [0,∞) be the function given by

gp,θ(r) =
⎧⎪⎪⎨⎪⎪⎩

(1 − r
mp,θ

)
n

Gn(K) if 0 ≤ r ≤ mp,θ

0 otherwise.

Notice that, changing variables r = mp,θ s, for every q > 0, we have that

(n+q
n )

Gn(K) ∫
∞

0
qrq−1 gp,θ(r)dr =

(n+q
n )

Gn(K) ∫
mp,θ

0
qrq−1 (1 − r

mp,θ
)

n

Gn(K)dr

= (n + q
n

)mq
p,θ ∫

1

0
qsq−1(1 − s)nds

= mq
p,θ .

In particular, taking q = p, we have that

∫
∞

0
rp−1 gp,θ(r)dr = ∫

∞

0
rp−1 g̃K+Cn(rθ)dr.

Let q > p. Taking r0(p, θ) provided by Lemma 6.6, we have

∫
r0(p,θ)

0
rq−1 (g̃K+Cn(rθ) − gp,θ(r)) dr − ∫

∞

r0(p,θ)
rq−1 (gp,θ(r) − g̃K(rθ)) dr

= ∫
r0(p,θ)

0
rq−prp−1 (g̃K+Cn(rθ) − gp,θ(r)) dr

− ∫
∞

r0(p,θ)
rq−prp−1 (gp,θ(r) − g̃K(rθ)) dr

≤ r0(p, θ)q−p ∫
r0(p,θ)

0
rp−1 (g̃K+Cn(rθ) − gp,θ(r)) dr

− r0(p, θ)q−p ∫
∞

r0
rp−1 (gp,θ(r) − g̃K(rθ)) dr

= r0(p, θ)q−p ∫
r0(p,θ)

0
rp−1 (g̃K+Cn(rθ) − gp,θ(r)) dr

+ r0(p, θ)q−p ∫
∞

r0(p,θ)
rp−1 (g̃K(rθ) − gp,θ(r)) dr

≤ r0(p, θ)q−p ∫
r0(p,θ)

0
rp−1 (g̃K+Cn(rθ) − gp,θ(r)) dr

+ r0(p, θ)q−p ∫
∞

r0(p,θ)
rp−1 (g̃K+Cn(rθ) − gp,θ(r)) dr

= r0(p, θ)q−p ∫
∞

0
rp−1 (g̃K+Cn(rθ) − gp,θ(r)) dr = 0.
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Therefore, we have that

∫
r0(p,θ)

0
rq−1 g̃K+Cn(rθ)dr + ∫

∞

r0(p,θ)
rq−1 g̃K(rθ)dr ≤ ∫

∞

0
rq−1 gp,θ(r)dr

and then, since g̃K(x) ≤ g̃K+Cn(x) for every x ∈ Rn ,

∫
∞

0
rq−1 g̃K(rθ)dr ≤ ∫

∞

0
rq−1 gp,θ(r)dr.

Consequently,

(n + q
n

)
1
q

ρKq( g̃K)(θ) =
⎛
⎝
(n+q

n )
Gn(K) ∫

∞

0
qrq−1 g̃K(rθ)dr

⎞
⎠

1
q

≤
⎛
⎝
(n+q

n )
Gn(K) ∫

∞

0
qrq−1 gp,θ(r)dr

⎞
⎠

1
q

= mp,θ

=
⎛
⎝
(n+p

n )
Gn(K) ∫

∞

0
prp−1 g̃K+Cn(rθ)dr

⎞
⎠

1
p

=
⎛
⎝
(n+p

n )Gn(K + Cn)
Gn(K)

⎞
⎠

1
p

ρKp( g̃K+Cn )(θ).

Since this is true for every θ ∈ Sn−1, we have the inclusion relation stated in the
theorem. ∎

Finally, let us point out that, as it was shown in [13], the inclusion relation given by
(1.3) provides the following inclusion relation for the difference body K − K by making
q →∞:

K − K ⊆ (n + p
n

)
1
p

Rp(K), for all p > −1

and, since Rp(K) = Kp(gK) for every p > 0,

K − K ⊆ (n + p
n

)
1
p

Kp(gK), for all p > 0.

Let us show that as a corollary, making q →∞ in Theorem 6.2, we can obtain an
inclusion relation for the set

(K ∩Z
n) − K = ⋃

x∈K∩Zn
(x − K),

which is a slightly smaller set than the difference body

K − K = ⋃
x∈K

(x − K).
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Corollary 6.8 Let K ⊆ R
n be a convex body such that 0 ∈ K. For any p > 0, we have

that

(K ∩Z
n) − K ⊆ (n + p

n
)

1
p

(Gn(K + Cn)
Gn(K) )

1
p

Kp(g̃K+Cn).

Proof Let K ⊆ R
n be a convex body with 0 ∈ K, θ ∈ Sn−1, and p > 0. We have seen in

Theorem 6.2 that for any 0 < p < q, we have that

(n + q
n

)
1
q

ρKq( g̃K)(θ) ≤
⎛
⎝
(n+p

n )Gn(K + Cn)
Gn(K)

⎞
⎠

1
p

ρKp( g̃K+Cn )(θ).

Taking limits as q →∞ we have that limq→∞ (n+q
n )

1
q = 1. Besides, calling as in (6.5),

Mθ = max{r ≥ 0 ∶ g̃K(rθ) ≥ 1}, if we consider the measure dν(r) = g̃K(rθ)dr on the
interval [0, Mθ], denote by Lq(ν) the corresponding Lebesgue space on ([0, Mθ], dν),
and take h(r) = r, then

Mθ = ∥h∥∞ = lim
q→∞

∥h∥Lq−1(ν) = lim
q→∞

(∫
Mθ

0
rq−1 g̃K(rθ)dr)

1
q−1

.

Therefore,

lim
q→∞

ρKq( g̃K) = lim
q→∞

( q
Gn(K) ∫

∞

0
rq−1 g̃K(rθ)dr)

1
q

= lim
q→∞

( q
Gn(K) ∫

Mθ

0
rq−1 g̃K(rθ)dr)

1
q

= lim
q→∞

q
1
q

Gn(K)
1
q
(∫

Mθ

0
rq−1 g̃K(rθ)dr)

1
q−1

q−1
q

= Mθ .

Taking into account Remark 6.7, we have

ρ(K∩Zn)−K(θ) ≤
⎛
⎝
(n+p

n )Gn(K + Cn)
Gn(K)

⎞
⎠

1
p

ρKp( g̃K+Cn )(θ).

Since this is true for every θ ∈ Sn−1, we obtain the result. ∎
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