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Turbulent convection in the interiors of the Sun and the Earth occurs at high Rayleigh
numbers Ra, low Prandtl numbers Pr, and different levels of rotation rates. To understand
the combined effects better, we study rotating turbulent convection for Pr = 0.021 (for
which some laboratory data corresponding to liquid metals are available), and varying
Rossby numbers Ro, using direct numerical simulations in a slender cylinder of aspect ratio
0.1; this confinement allows us to attain high enough Rayleigh numbers. We are motivated
by the earlier finding in the absence of rotation that heat transport at high enough Ra is
similar between confined and extended domains. We make comparisons with higher aspect
ratio data where possible. We study the effects of rotation on the global transport of heat
and momentum as well as flow structures (a) for increasing rotation at a few fixed values
of Ra, and (b) for increasing Ra (up to 1010) at the fixed, low Ekman number 1.45 × 10−6.
We compare the results with those from unity Pr simulations for the same range of Ra and
Ro, and with the non-rotating case over the same range of Ra and low Pr. We find that
the effects of rotation diminish with increasing Ra. These results and comparison studies
suggest that for high enough Ra, rotation alters convective flows in a similar manner for
small and large aspect ratios, so useful insights on the effects of high thermal forcing on
convection can be obtained by considering slender domains.

Key words: Bénard convection, rotating flows, turbulent convection

1. Introduction

Convection in most natural settings, such as the Earth’s interior and Jupiter’s atmosphere
(Heimpel, Aurnou & Wicht 2005), and the interior convection of the Sun (Hanasoge,
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Gizon & Sreenivasan 2016), coexists with rotation. Rotating Rayleigh–Bénard convection
(RRBC), where a fluid layer rotates uniformly about its vertical axis and is simultaneously
heated from the bottom and cooled from the top, is a popular model of such flows (Ecke
& Shishkina 2023). The characteristics of RRBC depend on the Prandtl number Pr (the
ratio of the heat and momentum diffusion time scales), the Rayleigh number Ra (the ratio
of the buoyancy force to effects of thermal diffusivity and viscosity of the fluid), and
the Ekman number Ek (the time scale ratio of rotation and momentum diffusion). The
Prandtl number is small in many natural convective flows: Pr ∼ 0.01–0.1 in the Earth’s
outer core (Aurnou et al. 2015; Pandey et al. 2022b), and Pr ∼ 10−6 in the Sun’s interior
(Schumacher & Sreenivasan 2020). Despite the importance of the low-Pr RRBC, and the
awareness that it is distinct from convection at moderate and high Pr (King & Aurnou
2013; Horn & Schmid 2017; Aurnou et al. 2018), it has not been explored as extensively
as its high-Pr counterpart. In this paper, we study RRBC at the low Pr value 0.021 for a
range of rotation rates, with the Ra range that includes the onset of convection as well as
the turbulent state.

To optimize computational resources (see also the discussion at the end of § 2), we use
a cylindrical domain of aspect ratio Γ = 0.1. Here, Γ is the diameter to height ratio of
the cell. We demonstrated recently (Pandey & Sreenivasan 2021; Pandey et al. 2022a)
that many properties of convective flows in the slender cell are similar, in the absence of
rotation, to those in extended domains of Γ = 25, when Ra is large. Similarly, while the
flow structures near the onset of convection indeed depend on Γ , they may be expected to
be similar between confined and extended domains if Ra is large. In any case, wherever
possible, we make explicit comparisons with data from wider convection cells. Note,
however, that directional confinement has been observed to alter the flow properties in
different ways in Rayleigh–Bénard convection (RBC) depending on the control parameters
(Wagner & Shishkina 2013; Chong et al. 2015; Chong & Xia 2016). For example, Chong
et al. (2015) found for Pr = 4.38 that in rectangular domains of dimensions (H, Ly, H),
the heat transport gets amplified and attains a maximum when Γy = Ly/H decreases, and
reaches a certain Ra-dependent critical Γy. The narrower boxes, however, were observed
to become increasingly resistant to the momentum transport. On the other hand, Wagner
& Shishkina (2013) observed for Pr = 0.786 that both the heat and momentum transports
generally decrease when Γy is changed from 1 to 1/10.

For comparison purposes, we also perform the direct numerical simulations (DNS)
of convection in rapidly rotating and non-rotating cells for the same range of Ra, while
maintaining Pr low at 0.021. We study the effects of rotation on flow structures as well as
global heat and momentum transports. Specifically, we consider the following.

(1) The effect of rotation on the critical Rayleigh number Rac. We elucidate the change
in the large structure of the flow, in particular the evolution of the organized helical
structure at low Ra into one with increasing small-scale content.

(2) The effect of rotation near the onset of instability. For horizontally unbounded
rotating layers, linear stability theories show that the onset of convection is delayed in Ra,
with the critical Rayleigh number Rac and the corresponding length scale �c depending
only on Ek when Pr is moderate and large (Chandrasekhar 1981). For low Pr as well, the
dependence of onset parameters on Pr is known explicitly (Chandrasekhar 1981; Zhang
& Liao 2017). What is not known is the behaviour of the heat transport for low Pr. For
moderate Pr, the excess heat transport (Ecke & Niemela 2014; Plumley & Julien 2019;
Kunnen 2021) given by Nu − 1 increases linearly with the supercriticality ε = Ra/Rac − 1
(Gillet & Jones 2006; Ecke 2015; Long et al. 2020) – the Nusselt number Nu being the ratio
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of the actual heat transport to that enabled by conduction alone – but the corresponding
behaviour of low Pr has not yet been explored.

(3) The scaling of heat and momentum transport for large Ra range. A range of scaling
exponents β in the empirical relations Nu ∼ Raβ has been observed in RRBC. In the
rapidly rotating regime, β is as large as 3.6 for convection in water, with β decreasing
as rotation decreases (King et al. 2009; King, Stellmach & Aurnou 2012; Cheng et al.
2015). Asymptotic simulations of RRBC have revealed that the heat transport scales as
Nu − 1 = Ra3/2 Pr−1/2 Ek2 in the geostrophic regime (Julien et al. 2012a; Aurnou, Horn
& Julien 2020; Kunnen 2021). In rotating liquid gallium (Pr ≈ 0.025), King & Aurnou
(2013) reported β values varying from 0.1 to 1.2 in the rotationally influenced regime in a
cylindrical cell with Γ ≈ 2, while Aurnou et al. (2018) found β ≈ 0.9 for a similar aspect
ratio (Γ = 1.9). We examine the validity of these expectations.

(4) The bulk temperature gradient in the rotating slender cells. The inhibition of
turbulent mixing by rotation is often manifested by the presence of significant vertical
temperature gradient ∂T/∂z in the bulk region. This gradient varies non-monotonically
in RRBC (Cheng et al. 2020; Aguirre Guzmán et al. 2022), and, for moderate Pr, the
rapidity of its variation with Ra indicates various flow structures (Julien et al. 2012b). The
low-Pr case has been restricted mostly to moderate Ra (King & Aurnou 2013; Horn &
Schmid 2017; Aurnou et al. 2018; Aguirre Guzmán et al. 2022) because of numerical and
experimental challenges (Pandey et al. 2022b). Here, we quantify ∂T/∂z in the bulk region
in both low- and moderate-Pr convection, carrying out the DNS for high Ra, and find that
it is qualitatively similar to that in wider cells.

(5) Viscous boundary layer near the horizontal plate. In non-rotating convection, the
viscous boundary layer near the plates becomes thinner with increasing thermal forcing,
whereas its width δu is determined by the Ekman number in RRBC; in rapidly rotating
convective flows, δu ∼ √

Ek (King, Stellmach & Buffett 2013). We estimate δu and find
that it scales as

√
Ek in the rotating slender cells when rotation effects dominate the

thermal forcing. We further compare the velocity profile in the near-wall region and
observe very good agreement with the analytical Ekman layer profile (Aguirre Guzmán
et al. 2022) in the regime where δu ∼ √

Ek scaling holds well.
As the onset length scale decreases with decreasing Ekman number, convective

structures grow in number with decreasing Ek in a domain of fixed Γ . This aspect has been
utilized by researchers by exploring rotating convection at low Ek (and high Ra) in slender
convection domains because the effects of confinement may be rendered insignificant
by the presence of a multitude of elementary flow structures (Cheng et al. 2015, 2018,
2020; Madonia et al. 2021). However, flow properties in confined RRBC domains could
be altered in an intricate manner – for example by the so-called boundary zonal flow
(Shishkina 2020; Zhang et al. 2020; Zhang, Ecke & Shishkina 2021; Ecke, Zhang &
Shishkina 2022; Wedi et al. 2022) or sidewall circulation (Favier & Knobloch 2020; de
Wit et al. 2020). In the present work, the slender convection cell contains between 1 and
3 elementary structures at the onset, clearly indicating that the flow is confined in that
context. In spite of this, the way the flow is altered due to rotation is essentially the same
as in flows in wider cells, especially at higher Ra.

After a brief discussion of the simulation tools in § 2, we present comments on flow
morphology in § 3. Flow structures near the onset of convection are discussed in § 4, the
scaling results on global heat transport in § 5, and the temperature gradient in the bulk
region and the viscous boundary layer in § 6. A few concluding remarks are presented in
§ 7 while important parameters of our simulations are summarized in Appendix A.
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2. Simulation methodology

We solve the non-dimensional Oberbeck–Boussinesq equations

∂u
∂t

+ u · ∇u = −∇p + Tẑ − 1
Ro

ẑ × u +
√

Pr
Ra

∇2u, (2.1)

∂T
∂t

+ u · ∇T = 1√
Pr Ra

∇2T, (2.2)

∇ · u = 0, (2.3)

where u (≡ uxx̂ + uyŷ + uzẑ), T and p are the velocity, temperature and pressure fields,
respectively. The normalizing length H is the height between the horizontal plates, and �T
is the temperature difference between them. The free-fall velocity uf = √

αg �T H and the
free-fall time tf = H/uf are the relevant velocity and time scales. The Rayleigh number
is Ra = αg �T H3/(νκ), and the Prandtl number is Pr = ν/κ . The convective Rossby
number Ro = uf /(2ΩH) = αg �T/(2Ωuf ) is the ratio of the buoyancy and Coriolis
forces, where Ω is the rotation rate, and α, ν, κ are the isobaric coefficient of thermal
expansion, kinematic viscosity and thermal diffusivity of the fluid, respectively.

The simulations correspond to Pr = 0.021 and 2 × 107 ≤ Ra ≤ 1010 in a cylindrical cell
with Γ = 0.1 using the solver Nek5000, based on the spectral element method (Fischer
1997). The no-slip boundary condition is prescribed for the velocity field on all walls, and
the isothermal and adiabatic conditions for the temperature field on the horizontal and
sidewalls, respectively. The cylinder is decomposed into Ne elements, and the turbulence
fields within each element are expanded using the Nth-order Lagrangian interpolation
polynomials. Thus the number of mesh cells in the entire flow is NeN3; higher mesh
density in the near-wall regions is used to capture rapid variations of the field variables.
More details can be found in Scheel, Emran & Schumacher (2013), Iyer et al. (2020) and
Pandey et al. (2022a). (Incidentally, the number of spectral elements Ne in Iyer et al.
(2020) was 192 000 for Ra = 108, 109, 1010 and 1011.)

The effects of rotation are studied using two different approaches. First, the effects of
increasing thermal forcing are explored for a fixed Ek = 1.45 × 10−6 and varying Ra up
to 1010. The Ekman number Ek = ν/(2ΩH2) quantifies the strength of the viscous force
relative to that of the Coriolis force, so we are dealing with a rapidly rotating case. Second,
the effects of increasing rotation are studied by fixing Ra = 108, 109 and 1010, and by
decreasing the Rossby number for each Ra. Note that the convective Rossby number is also
expressed as Ro = Ek

√
Ra/Pr; for a fixed Ra and Pr, Ek decreases with the decreasing

Ro. The simulations for non-rotating convection serve as the reference state. To compare
the flow properties with those of moderate-Pr convection, we additionally conduct RRBC
simulations for Pr = 1 and Ra up to 1011, but the emphasis in this paper is the low-Pr
case. The parameter space in this study is shown in figure 1.

The Kolmogorov length scale is estimated as η = (ν3/εu)
1/4, where εu is the kinetic

energy dissipation rate computed at each point in the flow as

εu(x) = ν

2

∑
i,j

(
∂ui

∂xj
+ ∂uj

∂xi

)2

, (2.4)

where i, j ≡ (x, y, z). To ensure the adequacy of the spatial resolution, we estimate the
height-dependent Kolmogorov scale η(z) using the area- and time-averaged dissipation
rate 〈εu〉A,t(z), and ensure that the vertical grid spacing Δz remains of the order η(z).
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(b)(a)

Figure 1. The parameter space explored in the present study for (a) Pr = 0.021 and (b) Pr = 1. Open symbols
are for simulations with fixed rotation and varying thermal forcing, whereas filled ones are for simulations with
fixed forcing and varying rotation rate. In (a,b), the sloping data are for variable Ro but constant Ek.

This constraint captures all significant variations in the velocity field. Further, within the
Ekman layer, which varies as δu ∼ √

Ek, we have embedded 5–20 grid points.
We briefly expand here on the computational gains in using a slender cell because the

fluid volume is smaller by a factor of Γ 2. Higher Ra could thus be achieved for the same
computational resources, compared to those of higher Γ . However, an increased fraction
of fluid is affected by the sidewall, and the critical Ra for the onset of convection grows for
small Γ (Shishkina 2021; Ahlers et al. 2022). To that extent, the computational advantage
of using a slender domain to explore a highly turbulent regime of convection tends to be
diminished, but one needs further exploration on these advantages in different Rayleigh
number regimes.

3. Flow morphology

Multiple vertically stacked circulation rolls lead to helical structures in slender convection
domains (Iyer et al. 2020; Zwirner, Tilgner & Shishkina 2020; Pandey & Sreenivasan
2021; Pandey et al. 2022a). The flow configuration in the non-rotating slender cell
is shown in figure 2 for varying Ra. The instantaneous velocity streamlines shown
in figures 2(a–c), coloured according to the vertical velocity, confirm the presence of
vertically stacked rolls. The helical flow structure is relatively smooth for Ra = 108

(figure 2a) but becomes increasingly complex as the thermal forcing increases. The
vertical velocity slices in figures 2(d–f ) exhibit coherently moving flows, both up and
down, with sizes comparable to the lateral extent of the flow. However, these organized
structures incorporate increasingly smaller scales as Ra increases. The corresponding
temperature isosurfaces in figures 2(g–i) show that the mixing is weak at low Ra but
becomes increasingly effective as the thermal forcing becomes stronger. Even in a highly
turbulent flow for Ra = 1010 (figure 2i), a variety of temperature isosurfaces are present
in the bulk region, which indicates that the turbulent mixing is weaker than in wider
convection domains, where a well-mixed and isothermal bulk component is observed. The
global heat transfer, however, is not very different in the two cases (Pandey et al. 2022b).

The critical parameters for the onset of non-rotating convection are independent of Pr.
In contrast, the onset parameters in rotating convection do depend on the Prandtl number
when it is less than 0.68 (Chandrasekhar 1981). Linear stability analysis for Pr > 0.68 in
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Figure 2. Instantaneous convective structures in a non-rotating slender cell for (a,d,g) Pr = 0.021 and
Ra = 108, (b,e,h) Ra = 109, and (c, f,i) Ra = 1010. The velocity streamlines (a–c), coloured by the vertical
velocity, exhibit helical flow structures in the slender cell. Planar cuts of the vertical velocity (d–f ) reveal that
progressively finer flow structures are generated with increasing thermal forcing. Isosurfaces of the temperature
(g–i) indicate that despite increased mixing with Ra, the isothermal bulk region, observed to exist in wider
convection domains, is not present in the slender cell.

horizontally unconfined domains yields the Rayleigh number and the length scale for the
steady onset as

Rac = 3(π2/2)2/3 Ek−4/3 ≈ 8.7 Ek−4/3, (3.1)

�c/H = (2π4)1/6 Ek1/3 ≈ 2.4 Ek1/3. (3.2)

For low Prandtl numbers (Pr < 0.68), the critical parameters at the oscillatory onset
depend on both Ek and Pr (Horn & Schmid 2017; Aurnou et al. 2018; Vogt, Horn &
Aurnou 2021) as

Rac = 3π

(
2π

1 + Pr

)1/3 (
Ek
Pr

)−4/3

, (3.3)
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�c/H = (2π4)1/6(1 + Pr)1/3
(

Ek
Pr

)1/3

, (3.4)

ωc = (2 − 3 Pr2)1/2
(

2π

1 + Pr

)2/3 (
Ek
Pr

)1/3

, (3.5)

where ωc is the oscillation frequency at the onset. Thus the onset length scale �c in low-Pr
convection is larger by a factor of (1 + 1/Pr)1/3.

The flow in the rotating cell for Ek = 1.45 × 10−6 is shown in figure 3 for various Ra.
For this Ek and Pr = 0.021, the length scale at the onset of convection according to (3.4)
is �c/H ≈ 0.1, which is equal to the horizontal dimension of the slender domain. Thus
the low-Pr flow for this Ek is confined at the onset. For Ra = 6 × 107 – not far from
the onset – the Coriolis force dominates the buoyancy force, leading to smooth and tall
velocity structures inhabiting the entire depth (figure 3a). For Ra = 2 × 108 (figure 3b),
buoyancy becomes stronger but the flow continues to be influenced by the strong rotation.
The observed tall structures develop a wavy character as in high-Pr convection (Cheng
et al. 2020). The vertical coherence is lost nearly completely for Ra = 109, and for Ra =
1010, the flow morphology appears very close to that in the non-rotating cell shown in
figures 2( f,i), indicating that the effects of the Coriolis force (for this rotation) essentially
vanish near Ra = 1010. From the velocity streamlines visualization (not shown), we infer
that the helical structure, present for the entire range of the thermal forcing explored in the
non-rotating cell, is not observed in the rotating slender convection when the Coriolis force
dominates; the helical configuration is recovered only when the thermal forcing becomes
strong enough to overcome rotation.

Dwindling vertical coherence with increasing Ra, for a fixed rotation, is also clear
from the temperature field in figures 3(e–h). The temperature isosurfaces for Ra =
6 × 107 – shown in figure 3(e) – are nearly flat circular discs. This is in line with the
Taylor–Proudman constraint that the vertical variation of the flow is inhibited in a rapidly
rotating inviscid flow (Chandrasekhar 1981). With increasing Ra, the isosurfaces become
increasingly three-dimensional, and for Ra = 1010, appear very similar to the non-rotating
case. In § 5, we also show that the integral transport properties of the rotating flow
at Ra = 1010 and Ek = 1.45 × 10−6 are nearly the same as those of the corresponding
non-rotating flow.

A qualitatively similar change in the flow morphology is observed when the rotation
increases for a prescribed thermal forcing (Horn & Shishkina 2015; Aurnou et al. 2020).
Figure 4 exhibits flow structures for Ra = 1010 and 0 ≤ Ro−1 ≤ 30, where the helical
structure transforms to tall vertically elongated velocity structures as the container is
rotated increasingly rapidly. The temperature contours also lose their three-dimensional
character as Ro decreases, consistent with the observations in wider convection domains
filled with moderate- and high-Pr fluids (Cheng et al. 2015). We also observe from
figure 4 that the flow length scale varies with varying Ro. For Ro−1 = 30 in figure 4(d),
Ek ≈ 4.8 × 10−8 and the linear stability theory yields �c/H ≈ 0.032, which is nearly
three times smaller than that for Ek ≈ 1.45 × 10−6 in figure 3. Therefore, the confinement
effects in the slender cell are mitigated progressively as Ek decreases.

4. Rotating slender convection near the onset

We first explore the flow evolution in the low-supercritical regime for Ek = 1.45 ×
10−6 and Pr = 0.021. We start simulations from the conduction solution with random
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Figure 3. Flow morphology in a rotating slender cell for Pr = 0.021, Ek = 1.45 × 10−6, revealed by
(a–d) instantaneous vertical velocity slices and (e–h) temperature isosurfaces, for (a,e) Ra = 6 × 107,
(b, f ) Ra = 2 × 108, (c,g) Ra = 109, and (d,h) Ra = 1010. Near the onset of convection (a,e), flow structures
feel the rotation strongly, and the variation along the vertical direction is almost suppressed. With increasing
Ra, the resilience increases and the flow configuration for Ra = 1010 (d,h) shows strong resemblance with its
non-rotating counterpart in figure 2. (The global heat and momentum transports are also nearly indifferent for
these cases; see table 3.)

perturbations, and observe that the convective state, corresponding to substantially
non-zero values of Nu − 1, occurs first at Ra = 5.6 × 107. Note that this value is nearly an
order of magnitude larger than the Rac obtained from (3.3). Here, the Nusselt number Nu
is computed as

Nu = 1 +
√

Ra Pr 〈uzT〉V,t, (4.1)

where 〈·〉V,t denotes averaging over the entire flow and integration time. For a simulation at
Ra = 5.55 × 107 started from the conduction state, we observe Nu − 1 ≈ 0.0022, whereas
we get Nu − 1 ≈ 0.049 when the same simulation is started with a flow state given
by the simulation at Ra = 6 × 107. By decreasing Ra, we can observe finite-amplitude
convection up to Ra = 5.40 × 107, where the convective flux Nu − 1 ≈ 0.034 is small but
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Figure 4. Evolution of the convective structures with increasing rotation rate for Pr = 0.021, Ra = 1010:
(a,e) Ro−1 = 0, (b, f ) Ro−1 = 2, (c,g) Ro−1 = 10, (d,h) Ro−1 = 30. The flow loses its three-dimensional
character, and the length scale of the velocity structures decreases, as the Rossby number decreases.

significantly different from zero. Thus there is modest hysteresis in low-Pr RRBC in a
slender cell.

We monitor the evolution of the temperature and velocity fields at a few locations
in the flow, and show the temperature variation at mid-height near the sidewall in
figure 5 for Ra ≤ 108 and Ek = 1.45 × 10−6. Figure 5(a) exhibits that the flow evolves
periodically for Ra = 6 × 107, a feature also observed for lower-Ra simulations. The
corresponding power spectrum, shown in figure 5(b), reveals a single dominant frequency
at ω ≈ 0.20, and its higher harmonics. It is interesting that this frequency agrees well with
ωc ≈ 0.195 predicted from (3.5) using the linear stability analysis at Ek = 1.45 × 10−6

(Chandrasekhar 1981). With increasing Ra, the flow evolution becomes progressively
complex due to the emergence of other modes. For Ra = 7 × 107, a high-amplitude
peak develops also at a lower frequency, which indicates the presence of the wall modes
(Goldstein et al. 1994; Horn & Schmid 2017; Aurnou et al. 2018). For Ra = 8 × 107, the
peak at lower frequency becomes strong compared to its higher-frequency counterpart. The
periodicity is nearly lost at Ra = 9 × 107, and the flow becomes chaotic. The broadband
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Figure 5. (a,c,e,g,i) Temperature signal in the mid-plane at a probe near the sidewall, and
(b,d, f,h, j) the corresponding power spectrum in a rapidly rotating flow (Pr = 0.021, Ek = 1.45 × 10−6) near
the onset of convection: (a,b) Ra = 6 × 107, (c,d) Ra = 7 × 107, (e, f ) Ra = 8 × 107, (g,h) Ra = 9 × 107, and
(i, j) Ra = 108.

power spectrum for Ra ≥ 9 × 107 indicates the presence of flow structures of a wide range
of temporal (and spatial) scales. Thus, due to its highly inertial nature, low-Pr RRBC
becomes promptly complex.

Figure 6 shows the instantaneous mid-plane slices of the vertical velocity for Ra ≤
9 × 107 in the rotating cell at Ek = 1.45 × 10−6. We can see that the vertical velocity
peaks near the sidewall at Ra = 6 × 107, while the bulk region (away from the sidewall)
is characterized by low-amplitude structures. This is a signature of the wall modes in
the slender convection cell at a low Prandtl number (Horn & Schmid 2017; Aurnou
et al. 2018). For Ra = 7 × 107 and 8 × 107, the high-amplitude patch broadens and
encroaches into the bulk interior. However, the interior is nearly entirely occupied by
the bulk mode at Ra = 9 × 107, and has taken over the wall modes (Goldstein et al.
1994). Further, the convective flow patterns in rotating cylinders are observed to precess
(mostly) in the retrograde direction (Zhong, Ecke & Steinberg 1993; Horn & Schmid
2017). Similar precessing patterns in the slender cell at low Prandtl number can be found
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Figure 6. Instantaneous vertical velocity contours in the mid-plane for Ek = 1.45 × 10−6 and (a) Ra = 6 ×
107, (b) Ra = 7 × 107, (c) Ra = 8 × 107, (d) Ra = 9 × 107. Peak amplitudes in the velocity are observed near
the sidewall at low Ra, but the interior of the domain is filled with stronger flows as thermal driving becomes
stronger.
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Figure 7. Convective heat transport Nu − 1 as a function of the normalized distance ε = Ra/Rac − 1 from the
onset for (a) Pr = 0.021 and (b) Pr = 1. Linear scaling is observed in the vicinity of the onset for both cases,
but a finite intercept in (a) is due to the highly inertial nature of low-Pr convection.

in the supplementary movies for a few cases available at https://doi.org/10.1017/jfm.2024.
640.

We now compare the heat transport at the onset in flows at low Pr with those at moderate
and high Pr, both rotating. For moderate and high Pr, the convective heat transport Nu − 1
has been observed to increase linearly with the supercriticality ε = Ra/Rac − 1 (Gillet &
Jones 2006; Ecke 2015; Gastine, Wicht & Aubert 2016; Long et al. 2020; Ecke et al. 2022).
Figure 7(a) shows the present data on Nu − 1 as a function of ε on a linear–linear scale for
Pr = 0.021 and Ek = 1.45 × 10−6. Even though there is modest hysteresis (as mentioned
earlier), we have taken Rac = 5.5 × 107 based on the observation that the convective heat
transport is very small at Ra = 5.55 × 107. Figure 7(a) shows a linear trend for ε � 0.5,
with the best fit given by Nu − 1 = 0.39ε + 0.05. The precise value of the finite intercept
depends on the modest hysteresis just mentioned, so is probably not entirely reliable.

The data for unity Prandtl number in the same slender cell at a similar Ekman
number, i.e. Ek = 10−6, are shown in figure 7(b). For this case, the heat transport due to
convective motion vanishes at Ra ≈ 8 × 107, this being the onset Rayleigh number. The
data follow the linear scaling quite well; when extrapolated back to Nu = 1, one obtains
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Rac = 8 × 107, in perfect agreement with Rac determined from inspecting the DNS. It
is intriguing that (3.1) yields Rac ≈ 8.7 × 108, which is an order of magnitude higher
than the Rac determined from DNS data. This is due to wall modes that lower the critical
Rayleigh number in confined domains (Herrmann & Busse 1993; Aurnou et al. 2018;
Vogt et al. 2021). Figure 7(b) further shows that the prefactor of the linear scaling is ≈ 2,
which is close to 1.54 reported recently in a Γ = 1/2 cell for Pr = 0.8 and Ek = 10−6

(Ecke 2015; Ecke et al. 2022). Thus a slightly different convective heat flux near the onset
could be due to the highly inertial nature of low-Pr convection, where the chaotic time
dependence is ingrained even at the onset. It appears fair to conclude, overall, that the
onset behaviour is essentially the same for all Prandtl numbers.

5. Global transport of heat and momentum in the turbulent state

We now compare the heat transport over an extended range of Ra between rotating and
non-rotating cases, both at low Pr = 0.021; see figure 8. The data for the non-rotating
slender cell (green stars) do not follow a satisfactory power law, but we proceed to fit
power laws for different segments of Ra, and comment on them. Let us first note that the
critical Rayleigh number for the onset of convection in the slender cell is nearly 1.1 × 107

(Pandey & Sreenivasan 2021), which is much higher than that in unbounded domains
(Chandrasekhar 1981). However, the temperature and velocity evolution in the flow as
well as the averaged heat flux at the horizontal plates exhibit chaotic time dependence
already for Ra = 2 × 107. This indicates that the transition to turbulence in the slender
cell for Pr = 0.021 occurs not far from the onset Ra, which is in line with the observations
in wider domains (Schumacher, Götzfried & Scheel 2015; Horn & Schmid 2017). Figure 8
also plots the heat transport from non-rotating convection experiments by Glazier et al.
(1999) in a Γ = 1/2 cell, and from DNS by Scheel & Schumacher (2017) in a Γ = 1 cell,
both at Pr ≈ 0.021. While the heat transport in the slender cell is lower than that reported
in wider cells, the discrepancy decreases with increasing Ra; the slender data at the largest
Ra explored in this work follow a scaling similar to that in wider convection cells.

It is well known that rotation reduces heat transport (Chandrasekhar 1981; Plumley
& Julien 2019; Kunnen 2021; Ecke & Shishkina 2023). The data for Ek = 1.45 × 10−6

(figure 8, red circles) confirm this behaviour – except for large Ra ≥ 109, for which the
Nusselt numbers in rotating and non-rotating cases are quite close, and for these particular
conditions, Nu can be said to be essentially unaffected by rotation, and the data nearly
follow the canonical non-rotating Ra1/3 scaling (Niemela et al. 2000) – indicating that the
effects of rotation on the low-Pr convection in the slender cell resemble those in wider
domains.

Turning attention to low Ra for, say, Ra < 108, Nu is seen to follow a much steeper
scaling, Nu − 1 ∼ Ra3 (solid red line). (This does not contradict the linear scaling shown
in figure 7(a), as these plots use different quantities.) This scaling regime is similar to that
reported in DNS in a horizontally periodic box for Pr = 1 (Song, Shishkina & Zhu 2024).
Note that a steep heat transport scaling Nu ∼ Ra3 near the onset of rotating convection
has been proposed by King et al. (2012), thus reported for moderate Prandtl numbers
(Stellmach et al. 2014; Cheng et al. 2015). However, our Nu versus Ra plot (not shown)
does not show this cubic scaling near the onset.

In the intermediate region 108 < Ra < 109, the data for the rotating case seem to follow
a power law with the best fit given by Nu − 1 ∼ Ra1.32±0.06. This scaling is roughly
consistent with simulations of the asymptotically reduced equations – describing RBC
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Figure 8. Convective heat transport as a function of Ra in the non-rotating slender cell (green stars) and in a
rapidly rotating slender cell (red circles) of Γ = 0.1 for Pr = 0.021. Heat flux in the non-rotating cell exhibits
a steeper scaling Nu − 1 ∼ Ra1.03 (dashed green line) compared to that observed in wider convection cells for
moderate Rayleigh numbers, but a similar Ra1/3 scaling for large Rayleigh numbers (solid green line). The
Nu in rotating convection is lower than in non-rotating convection when Rayleigh numbers are small, but the
differences essentially diminish as the thermal forcing increases. The data for 108 < Ra ≤ 109 exhibit a power
law, and the best fit yields Nu − 1 ∼ Ra1.32 (dashed red line), which is close to Nu − 1 ∼ Ra3/2 scaling in the
geostrophic regime. Cyan diamonds represent experimental data for Ek = 10−6 in a Γ = 1 cylinder from King
& Aurnou (2013), and the solid cyan line indicates Ra1.32 scaling. Solid lines are not the best fits but are drawn
as a guide to the eye. Filled symbols correspond to low-Pr non-rotating convection from the literature: blue
squares represent the experimental data from Glazier et al. (1999) in the Γ = 1/2 domain, whereas orange
triangles correspond to DNS data in a Γ = 1 cell by Scheel & Schumacher (2017).

in the rapidly rotating limit – for which Nu − 1 increases as Ra3/2, for Pr ≥ 0.3, in the
geostrophic regime (Julien et al. 2012a). A plot of Nu versus Ra (not shown) gives a lower
exponent of 0.95 for the same range of Ra, which is similar to Nu ∼ Ra0.91 observed in the
‘rotationally dominated’ regime of convection in liquid gallium in a Γ = 1.94 cylinder
(Aurnou et al. 2018). Moreover, Nu − 1 ∼ Ra1.03 for intermediate Rayleigh numbers in
the non-rotating case. For comparison, we also include data from King & Aurnou (2013),
who performed experiments in a Γ = 1 cylindrical cell for Pr ≈ 0.025: cyan diamonds in
figure 8 show the heat transport for Ek = 10−6. It is clear that Nu − 1 in the wider RRBC
cell also increases steeply near the onset, but for higher Ra, Nu − 1 exhibits a similar
Ra1.32 scaling (solid cyan line) as observed in the rotating slender cell.

Rotation also influences momentum transport, as seen by the behaviour of the Reynolds
number, based here on the root mean square (r.m.s.) velocity and the depth of the fluid
layer, as

Re =
√

〈u2
x + u2

y + u2
z 〉V,t Ra/Pr. (5.1)

The Reynolds number in both the non-rotating and rotating cells is plotted as a function
of Ra in figure 9. The Re for the non-rotating cell (green stars) increases rapidly near
the onset, but the rate of increase decays as the thermal driving becomes stronger. In the
same intermediate range of Ra where we observe Nu − 1 ∼ Ra scaling, the best fit yields
Re ∼ Ra0.73±0.01 scaling. Note that the Reynolds number in wider convection domains
has been known to increase nearly as

√
Ra for moderate and low Prandtl numbers (Ahlers,

Grossmann & Lohse 2009; Chillà & Schumacher 2012; Pandey & Verma 2016; Scheel &
Schumacher 2017; Verma, Kumar & Pandey 2017; Pandey et al. 2022b). We indicate the
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Figure 9. Reynolds number Re as a function of Ra in the non-rotating cell (green stars) and rotating cell at
Ek = 1.45 × 10−6 (red circles). Velocity fluctuations grow rapidly near the onset of convection in the slender
cell, but the growth rate becomes slower as the driving becomes stronger. The solid green line indicates that the
data at the highest Ra nearly follow a

√
Ra power law as in wider cells. The solid red line suggests that Re grows

as Ra3 for Ra < 108. Dashed lines represent the best fits for moderate thermal forcings. The difference between
the non-rotating and rotating Re values declines as Ra increases, and the two are nearly indistinguishable at
Ra = 1010. Orange triangles represent DNS data in a Γ = 1 cell by Scheel & Schumacher (2017).

Ra1/2 scaling by a solid green line in figure 9, and note that the non-rotating data for the
largest few Rayleigh numbers of this study nearly follow this same scaling, signalling that
the effects of confinement become weaker with increasing thermal driving. Also included
in figure 9 for comparison are Re computed in a Γ = 1 cylindrical cell for Pr = 0.021 by
Scheel & Schumacher (2017). We observe that the Reynolds number in the slender cell
is smaller compared to that in the wider cell, which is due to a larger effective friction of
rigid boundaries in the former case (Pandey & Sreenivasan 2021).

Red circles in figure 9 represent the Reynolds numbers in the rotating slender cell for
Ek = 1.45 × 10−6, and the reduced transport of momentum in the presence of rotation is
clear (Schmitz & Tilgner 2010) for low Ra. The figure also shows, similar to figure 8, that
the onset of convection shifts to higher Ra compared to that for the non-rotating cell. Near
the convective onset, Re in the rotating cell grows approximately as Ra3 (solid red line),
very similar to the growth of Nu − 1 in this regime. A rapid growth of Re near the onset of
rotating convection was also reported by Schmitz & Tilgner (2010), who performed DNS
in a horizontally periodic domain. With increase of the thermal driving, the growth rate of
Re decays, and the best fit for 108 < Ra ≤ 109 is a Re ∼ Ra0.83±0.03 scaling (dashed red
line). This scaling has some similarity with the dissipation-free scaling Re ∼ Ra Ek/Pr
reported by Guervilly, Cardin & Schaeffer (2019), Maffei et al. (2021), Vogt et al. (2021)
and Ecke & Shishkina (2023). For higher Ra, Re in the rotating cell approaches that in the
non-rotating cell, and the difference becomes very small for Ra > 109.

The influence of rotation can be studied also by decreasing the Rossby number Ro for
a fixed Rayleigh number (Kunnen et al. 2011; Stevens, Clercx & Lohse 2013; Ecke &
Niemela 2014; Horn & Shishkina 2015; Aurnou et al. 2020); the inverse Rossby number
Ro−1 is a measure of the strength of the Coriolis force relative to buoyancy. We carry
out low-Pr simulations for Ro−1 ∈ [0, 30] at Ra = 108, 109, 1010. The Nusselt number
normalized with Nu0 – the heat transport in absence of rotation – as a function of Ro−1

is shown in figure 10(a), with the curves for different Ra collapsing reasonably well. The
normalized heat flux remains close to unity for Ro−1 � 2, beyond which it decreases.
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Figure 10. (a) Heat and (b) momentum transports in rotating slender cells, normalized with the corresponding
values from the non-rotating cell, are nearly unity for Ro−1 ≤ 2, but decay rapidly for larger inverse Rossby
numbers. The suppression of the heat flux is stronger than that of the momentum flux in low-Pr slender
convection.

This indicates that slow rotation does not affect the heat transport in the slender cell, in
line with observations in wider convection cells for moderate Prandtl numbers (Wedi et al.
2021). Figure 10 also shows that there is no enhancement of heat transport at moderate
rotation rates, in contrast to that at large Prandtl numbers due to the so-called ‘Ekman
pumping’ mechanism (Stevens et al. 2009; Zhong et al. 2009; Zhong & Ahlers 2010;
Chong et al. 2017), but the absence of heat flux enhancement in the slender cell data is
consistent with low-Pr RRBC in more extended domains (Zhong et al. 2009).

The normalized Reynolds number Re/Re0 with Ro−1 is plotted in figure 10(b). The trend
is qualitatively similar to that of the normalized heat flux; weak rotation (Ro−1 � 2) does
not affect momentum transport. For Ro−1 � 2, the normalized momentum flux decreases,
but the data for Ra = 108 lie below those for Ra ≥ 109 at higher Ro−1. The suppression of
the momentum transport is weaker than for heat transport; at Ro−1 = 10, the normalized
Nusselt number is Nu/Nu0 ≈ 0.45, whereas Re/Re0 ≈ 0.8, both for Ra = 1010.

6. Temperature gradient in the bulk region and viscous boundary layer

The mean temperature in turbulent convection varies primarily in the thin thermal
boundary layers near the horizontal plates. However, severe lateral confinement causes
temperature variation to be present also in the bulk region for moderate and low Prandtl
numbers (Iyer et al. 2020; Pandey & Sreenivasan 2021; Pandey et al. 2022a). The mean
vertical temperature gradient ∂T/∂z decreases with increasing Ra in the non-rotating
case, whereas it changes in a specific manner in rotating convection (Julien et al. 2012b;
Cheng et al. 2020; Aguirre Guzmán et al. 2022). We compute mean vertical temperature
gradient in the bulk region, 〈∂T/∂z〉bulk, by performing an average over the bulk volume
with z/H ∈ [0.25, 0.75], and plot it as a function of Ra in figure 11(a) for Pr = 0.021.
The gradient remains close to unity and does not change significantly near the onset of
non-rotating convection (green stars). Thus the bulk flow state in the vicinity of the onset
does not differ much from the unmixed conduction state with ∂T/∂z = −1. For Ra > 108,
however, −〈∂T/∂z〉bulk decreases monotonically with Ra, but even for Ra = 1010, low-Pr
RBC in the slender cell possesses a higher gradient than in the well-mixed case of extended
domains.
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Figure 11. Mean vertical temperature gradient in the bulk region between z = 0.25H and z = 0.75H as a
function of Ra from non-rotating (green stars) and rotating (open symbols) slender cells for (a) Pr = 0.021
and (b) Pr = 1. Mean gradient decreases monotonically with Ra in the non-rotating convection, whereas a
non-monotonic trend is observed in the rotating convection. Solid and dashed curves are guides to the eye
and not the best fits. The dash-dotted vertical line in (b) indicates the transition Ra ≈ 23 Ek−4/3 between the
cellular and plumes regimes, as found by Stellmach et al. (2014). Dashed vertical lines in both plots correspond
to Ro = 0.2. Non-rotating data in (b) are taken from Iyer et al. (2020).

The variation of 〈∂T/∂z〉bulk in figure 11(a) for rotating convection (red circles) is
different. It has been known from simulations of the asymptotically reduced equations
(Sprague et al. 2006; Julien et al. 2012b) as well as DNS of RRBC (Stellmach et al.
2014; Aguirre Guzmán et al. 2022) that the temperature gradient decreases steeply with
Ra in the cellular and columnar regimes, which occur in the vicinity of convective
onset for moderate and large Prandtl numbers. With further increase of Ra, the gradient
increases in the plumes regime and nearly saturates in the geostrophic regime, where the
vertical coherence is lost (Stellmach et al. 2014). For higher Rayleigh numbers in the
rotation-affected regime, the gradient decreases again (Cheng et al. 2020). Figure 11(a)
shows that the gradient for Ek = 1.45 × 10−6 decreases rapidly near the onset and starts
to increase at Ra = 2 × 108, before decreasing again for Ra ≥ 5 × 108.

Figure 11(b) shows the temperature gradient for Pr = 1 from the rotating case (Ek =
10−6) and the non-rotating case (data taken from Iyer et al. 2020), both for slender cells.
The bulk temperature gradient varies with Ra qualitatively the same way as in the low-Pr
rotating convection. Near the critical Rayleigh number, the gradient follows an Ra−0.96

scaling indicated by the solid blue curve. This scaling is consistent with the onset results
in simulations of asymptotic equations (Sprague et al. 2006; Julien et al. 2012b) as well
as with the DNS (King et al. 2013; Stellmach et al. 2014; Aguirre Guzmán et al. 2022) for
moderate Prandtl numbers. With increasing Ra, the gradient decreases more slowly before
increasing from Ra = 2 × 109 up to Ra ≈ 6 × 109. As discussed earlier, an increasing
gradient with Ra is a characteristic of the plumes region. Stellmach et al. (2014) performed
DNS in a horizontally periodic domain with both no-slip and free-slip plates, and observed
that the transition for Pr = 1 from the cellular to plumes region occurs at Ra ≈ 23 Ek−4/3

for the no-slip case. This corresponds to Ra ≈ 2.3 × 109 for the slender data; we indicate
this transition Ra by the dash-dotted vertical line in figure 11(b). It is interesting that
the transition Ra found for a horizontally periodic domain identifies the transition for
the slender data quite well. It is observed in experiments (Cheng et al. 2020) and DNS
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(Aguirre Guzmán et al. 2022) that the temperature gradient decreases as Ra−0.21 in the
rotationally affected regime, when the thermal forcing is significantly stronger than the
critical value for the onset. The slender data at the largest Rayleigh numbers in figure 11(b)
nearly follow this scaling. Thus the temperature gradient with Ra in the rotating slender
cell is qualitatively similar to that in wider cells, indicating again the dominance of rotation
over confinement.

To see if the data in figure 11(a) exhibit the scaling features just mentioned for moderate
Prandtl numbers, we indicate the Ra−0.96 scaling by a solid red curve, but find that the
gradient near the onset decreases more slowly; instead, the data follow a 〈∂T/∂z〉bulk ∼
Ra−0.21 scaling (red dash-dotted curve). This is possibly an indication of a different flow
state near the onset in low-Pr convection. The Ra−0.21 scaling in the rotation-affected
regime is also indicated as a red dashed curve; we find from this exercise that the gradient
for the largest Ra in the low-Pr case is not very different. The dashed vertical lines in
figure 11 correspond to Ro = 0.2, which suggests that the Ra−0.21 scaling occurs when
Ro > 0.2 and the rotational constraint in bulk region relaxes gradually.

The thickness of the viscous boundary layer (VBL) near the horizontal plates decreases
with increasing Ra in non-rotating convection (King et al. 2013; Scheel & Schumacher
2017; Bhattacharya et al. 2018). In rotating convection, however, the VBL – also known
as the Ekman layer – is controlled by the Ekman number; for weak thermal forcings, i.e.
in a rotationally controlled regime, the Ekman layer thickness scales as

√
Ek (King et al.

2013; Aguirre Guzmán et al. 2022). The VBL thickness δu is frequently determined using
the r.m.s. horizontal velocity profile uh(z), where uh =

√
〈u2

x + u2
y〉A,t. Due to the imposed

no-slip condition in our simulations, uh vanishes at the plates and increases rapidly as
one moves away from them. We estimate δu as the distance of the first local maximum
in the uh(z) profile from the horizontal plate. We compute δu at both the top and bottom
plates, and show the averaged thickness as a function of Ra in figure 12(a) for both the
non-rotating and rotating slender cells. For the non-rotating case (green stars), δu decreases
with Ra. In figure 12(b), we plot the same data as a function of Re, which suggests that data
for Re > 103 may be described by a single power law. The best fit for this regime yields
a δu = 0.05 Re−0.26 scaling, which is in qualitative agreement with the Re−1/4 scaling
observed in wider convection domains for moderate and high Prandtl numbers (King et al.
2013).

The Ekman layer thickness for Ek = 1.45 × 10−6 in figure 12(a) is nearly independent
of Ra for Ra ≤ 108. The constancy of δu suggests that the VBL in this regime behaves
as the classical Ekman layer, which results from the balance between the viscous and
Coriolis forces (King et al. 2013). Figure 12(a) also reveals that a considerable variation in
δu is observed for higher Rayleigh numbers. Further, the difference between the rotating
and non-rotating data becomes very small for Ra ≥ 109, which indicates the increasing
dominance of thermal forcing over rotation as Ra increases. To see the Ek dependence
of δu, we plot the normalized thickness δu/

√
Ek as a function of Ra in figure 12(c), and

also include the data from the Pr = 1, Ek = 10−6 simulations. The figure shows that the
δu ∼ √

Ek scaling is indeed observed for both the Prandtl numbers at low thermal forcings
and the prefactor ≈ 3 for Pr = 0.021, and ≈ 3.5 for Pr = 1 simulations. These prefactors
are in the range of values reported in RRBC in wider domains (King et al. 2013; Aguirre
Guzmán et al. 2022). Figure 12(c) also shows that the range of Rayleigh numbers over
which the VBL is of the Ekman type is wider for Pr = 1 than for Pr = 0.021, which
indicates the inertial nature of low-Pr RRBC and is consistent with the findings of Aguirre
Guzmán et al. (2022).
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Figure 12. (a) Viscous boundary layer thickness for Pr = 0.021, averaged over both the horizontal plates,
decreases with Ra in the non-rotating slender cell, whereas it remains constant at low Ra in the rotating cell.
(b) Thickness in the non-rotating cell as a function of Re. The best fit for Re > 103 shows that δu ∼ Re−1/4.
(c) Normalized Ekman layer thickness δu/

√
Ek remains a constant for a wider range of Ra for Pr = 1 than

for Pr = 0.021 simulations. (d) The horizontal velocity profile in the rotating slender cell (solid curves) for
Pr = 0.021 follows the analytical Ekman layer profile (dashed curves) perfectly up to Ra = 108, but deviates
for larger Rayleigh numbers.

We further probe the Ekman layer in the slender cell by investigating the form of the
r.m.s. horizontal velocity profile uh(z) near the plates. For the classical Ekman layer
above a no-slip plate, the velocity profile can be obtained analytically by considering a
geostrophic bulk flow, where the horizontal pressure gradients are balanced by the Coriolis
forces, and assuming that the same horizontal pressure gradients exist within the boundary
layer region. Following Kundu & Cohen (2004) and Aguirre Guzmán et al. (2022), we find
that uh(z) near the plate can be described by

uh(z) = Uh[1 − 2 cos(z/δU) exp(−z/δU) + exp(−2z/δU)]1/2. (6.1)

Here, Uh =
√

U2
x + U2

y is the r.m.s. horizontal velocity in the geostrophic bulk, with
Ux and Uy being the horizontal velocity components. The parameter δU corresponds
to the thickness of the Ekman layer. In figure 12(d), we show uh(z) for four Rayleigh
numbers from the simulations at Pr = 0.021, Ek = 1.45 × 10−6 as solid curves. We fit
these profiles using (6.1), and determine the parameters Uh and δU , and the resulting
profiles obtained from (6.1) with the fitted parameters are exhibited as dashed curves
in figure 12(d). We observe that the profiles for Ra ≤ 108 can be described excellently
by the analytical profile (6.1). However, deviation starts to appear for Ra ≥ 1.5 × 108.
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Figure 12(d) exhibits that (6.1) still describes the near-wall profiles for all Rayleigh
numbers. Thus the VBL in the slender cell for Pr = 0.021 is of the Ekman type only
up to Ra = 108, which is consistent with the inference from figure 12(c). Note that similar
results were reported in RRBC in horizontally periodic boxes by Aguirre Guzmán et al.
(2022).

7. Conclusions

The centre of attention in this paper is convection of low-Pr fluids (chosen here to be 0.021)
at a range of Rayleigh numbers up to 1010, with variable rotation rates. For comparison, we
have also performed simulations for Pr = 1. By necessity, the aspect ratio is small. From
a comparison of the present results with those for several different conditions, including
convection in wider cells (where possible), we deduce a variety of results, a few of which
are listed below.

First, the flow structure, which is initially helical, develops progressively finer
components with increasing thermal forcing. The flow structure feels the rotation strongly
near the onset, with suppressed variation along the vertical direction. With increasing Ra,
however, the resilience increases and the flow configuration for Ra = 1010 (figures 3d,h)
shows a strong resemblance to its non-rotating counterpart in figure 2. In spite of this
feature, the essentially isothermal bulk region, observed to exist in wider convection
domains, is absent in the slender cell. Yet the heat transport scaling is the same as in
wider cells for a given high Rayleigh number, which shows the secondary role of the bulk
flow for global heat transport.

We found that near the onset, the supercritical behaviour is qualitatively independent
of Pr. For intermediate Ra, the Nusselt number in the non-rotating slender cell
increases steeply with Ra; we found Nu − 1 ∼ Ra for 6 × 107 ≤ Ra ≤ 5 × 108. This
increase is steeper than those in convection domains of Γ ≥ 0.5, where Nu ∼ Raβ with
β ∈ [0.25, 0.30] have been observed (Cioni, Ciliberto & Sommeria 1997; Glazier et al.
1999; Scheel & Schumacher 2017; Schindler et al. 2022).

We found that Nu − 1 in the rotating cell increases approximately as Ra1.3 for the
intermediate Rayleigh numbers, which is not very different from the Nu − 1 ∼ Ra3/2

scaling proposed for the geostrophic regime (Julien et al. 2012a). Further, we observed
a Nu ∼ Ra0.95 scaling for 108 ≤ Ra ≤ 109, which is close to that found in a wider cell at a
similar Prandtl number (Aurnou et al. 2018). For Ra ≥ 109, the Nu data agree reasonably
well with the canonical Ra1/3 scaling observed in non-rotating wider convection cells
(Niemela et al. 2000). We also studied the effects of increasing rotation on the integral
transports and the flow structure for fixed thermal forcings, and observed that these flow
properties in the slender cell are altered in a very similar manner to those reported in
Γ ≥ 0.5 rotating flows.

We obtained the mean temperature gradient in the bulk region of the rotating slender
cells for Pr = 0.021 and Pr = 1, and found that its variation with Ra is similar to that
reported in extended domains. We also analysed the width of the Ekman layer and the
velocity profile in the region near the plate, and observed that they exhibit very similar
behaviour observed in rapidly rotating convective flows in wider domains. Thus the effects
of rotation on the slender convection are similar to those in extended convection, even
though the non-rotating case exhibits differing behaviour, as long as Ra is high enough.

We point out that the maximum value of the convective supercriticality, Ra/Rac,
explored in the present work for Ek = 1.45 × 10−6, is nearly 200. This value is not
very large for the non-rotating convection. In RRBC, however, the flow characteristics
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change rapidly as Ra/Rac increases from unity, and one observes richer dynamical regimes
compared to those in non-rotating convection over a relatively shorter range of Ra/Rac.
In addition to our own observations, we cite Julien et al. (2012b), Aguirre Guzmán et al.
(2022) and Ecke & Shishkina (2023) also for supporting evidence.

Our study, which is based on simulations in a slender cell of fixed aspect ratio 0.1,
suggests that rotation influences convection more strongly than the geometric confinement.
This is an important conclusion, as the rotating convective flows could be explored
at higher Rayleigh numbers using slender domains, opening new parameter ranges not
accessible to wider convection cells. We reiterate that while with decreasing Γ the sidewall
boundary layer is expected to have an increasingly stronger influence on the dynamics of
RRBC, the rotation effects often overwhelm other factors. It is, of course, obvious that
further studies with varying Γ would help us to better understand the interplay between
the effects of rotation and confinement.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.640.
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Appendix A. Simulation parameters

We collect important parameters of DNS in the non-rotating and rotating slender cells in
tables 1 and 2, respectively. Table 3 contains relevant parameters of simulations for fixed
Rayleigh numbers and varying rotation rates. In addition to comparing the smallest grid
spacing with the Kolmogorov length scale (see § 2), we examine the convergence of the
heat flux using different methods (Pandey et al. 2022a); a properly resolved simulation
should yield the same global heat transport when computed from different approaches.
The exact relations of RBC link the volume- and time-averaged thermal and kinetic energy
dissipation rates with the Nusselt number (Shraiman & Siggia 1990), and the heat fluxes
from the energy and the thermal dissipation rates are estimated as

Nuεu = 1 + H4

ν3
Pr2

Ra
〈εu〉V,t, (A1)

NuεT = H2

κ(�T)2 〈εT〉V,t. (A2)
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Ra Ne × N3 Nu Re tsim (tf ) Δz/η

1.5 × 107 192 000 × 33 1.05 ± 0.001 512 ± 1 2547 0.32
2 × 107 192 000 × 33 1.19 ± 0.001 1010 ± 1 1448 0.47
3 × 107 192 000 × 33 1.43 ± 0.004 1673 ± 1 1255 0.65
4 × 107 192 000 × 33 1.67 ± 0.07 2230 ± 13 950 0.78
6 × 107 192 000 × 33 2.03 ± 0.07 3037 ± 6 997 0.97
8 × 107 192 000 × 33 2.40 ± 0.01 3775 ± 8 995 1.12
1 × 108 192 000 × 33 2.81 ± 0.001 4496 ± 4 929 1.26
1.5 × 108 192 000 × 53 3.84 ± 0.1 6125 ± 11 269 1.00
2 × 108 192 000 × 53 4.64 ± 0.09 7400 ± 15 385 1.14
3 × 108 192 000 × 73 6.84 ± 0.42 10 114 ± 30 140 1.04
5 × 108 192 000 × 73 9.60 ± 0.07 13 896 ± 3 110 1.30
1 × 109 537 600 × 73 12.9 ± 0.63 19 800 ± 55 61.5 1.24
3 × 109 537 600 × 73 27.2 ± 0.66 37 905 ± 122 36.9 2.00
1 × 1010 537 600 × 133 39.9 ± 8.5 65 715 ± 804 29.2 1.69

Table 1. Parameters of DNS for Pr = 0.021 in the non-rotating cylindrical cell of Γ = 0.1: the number of
mesh cells Ne × N3 in the entire flow domain, where Ne is the number of elements and N is the polynomial
order of the Lagrangian interpolation; Nu is the globally averaged heat transport estimated using (4.1), and Re
is the Reynolds number based on the r.m.s. velocity. Integration time in free-fall units in the statistically steady
state is represented by tsim, and the maximum value of the ratio of the local vertical grid spacing Δz(z) to the
local Kolmogorov scale η(z) is shown in the last column. Error bars indicate the difference in the mean values
of the two halves of the data sets.

Ra Ne × N3 Nu Re tsim (tf ) Δz/η

5.75 × 107 192 000 × 33 1.061 ± 0.001 737 ± 1 1947 0.47
6.0 × 107 192 000 × 33 1.073 ± 0.001 818 ± 1 1890 0.50
6.5 × 107 192 000 × 33 1.133 ± 0.002 1167 ± 1 1434 0.59
7.0 × 107 192 000 × 33 1.167 ± 0.001 1360 ± 1 2301 0.63
7.5 × 107 192 000 × 33 1.189 ± 0.005 1510 ± 1 2579 0.69
8.0 × 107 192 000 × 33 1.215 ± 0.001 1629 ± 1 2475 0.72
8.5 × 107 192 000 × 33 1.226 ± 0.003 1684 ± 1 2423 0.73
9.0 × 107 192 000 × 33 1.240 ± 0.007 1786 ± 1 2390 0.74
1.0 × 108 192 000 × 33 1.254 ± 0.012 1885 ± 4 1288 0.77
1.5 × 108 192 000 × 33 1.80 ± 0.03 3719 ± 9 454 1.13
2 × 108 192 000 × 33 2.39 ± 0.02 5276 ± 9 355 1.42
3 × 108 192 000 × 53 3.24 ± 0.07 7121 ± 20 190 1.11
5 × 108 192 000 × 73 5.62 ± 0.32 11 109 ± 51 125 1.11
1 × 109 537 600 × 73 11.2 ± 0.32 18 595 ± 81 63.0 1.20
3 × 109 537 600 × 73 22.1 ± 2.8 34 989 ± 330 54.2 1.90
1 × 1010 537 600 × 133 40.6 ± 9.0 65 306 ± 742 30.6 1.66

Table 2. The same DNS parameters as in table 1 for Pr = 0.021 in a rapidly rotating cylindrical cell of
Γ = 0.1 for Ek = 1.45 × 10−6.

At the horizontal plates, the heat is entirely transported due to molecular diffusion, and
the area-averaged flux at the plates is estimated using the vertical temperature gradient as

Nu∂zT = − H
�T

〈(
∂T
∂z

)
z=0,H

〉
A,t

. (A3)
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Ra Ro−1 Ne × N3 Nu Re tsim (tf ) Δz/η

108 0 192 000 × 33 2.81 ± 0.001 4496 ± 4 929 1.26
108 0.25 192 000 × 33 2.82 ± 0.13 4515 ± 17 583 1.27
108 0.50 192 000 × 33 2.76 ± 0.02 4435 ± 1 583 1.25
108 1 192 000 × 33 2.72 ± 0.17 4391 ± 16 583 1.25
108 2 192 000 × 33 2.53 ± 0.02 4187 ± 10 706 1.21
108 5 192 000 × 33 1.79 ± 0.08 3172 ± 8 723 1.02
108 10 192 000 × 33 1.25 ± 0.01 1885 ± 4 1288 0.77
109 0 537 600 × 73 12.9 ± 0.72 19 823 ± 60 61.8 1.24
109 1 537 600 × 73 12.3 ± 0.29 19 310 ± 3 39.7 1.23
109 2 537 600 × 73 11.6 ± 0.12 18 800 ± 16 45.3 1.21
109 3 537 600 × 73 10.5 ± 0.84 18 104 ± 206 45.0 1.18
109 5 537 600 × 53 8.34 ± 1.2 16 734 ± 146 90.8 1.50
109 10 537 600 × 53 3.92 ± 0.43 12 359 ± 78 125 1.20
109 20 537 600 × 53 2.15 ± 0.08 7928 ± 40 136 0.95
1010 0 537 600 × 133 39.9 ± 8.5 65 715 ± 804 29.2 1.69
1010 1 537 600 × 133 40.6 ± 9.0 65 306 ± 742 30.6 1.66
1010 2 537 600 × 133 34.8 ± 2.3 61 958 ± 202 24.2 1.62
1010 5 537 600 × 133 31.5 ± 5.2 60 277 ± 1114 27.9 1.61
1010 10 537 600 × 113 17.8 ± 4.8 50 783 ± 595 26.8 1.61
1010 20 537 600 × 93 5.73 ± 1.5 31 880 ± 484 88.4 1.33
1010 30 537 600 × 73 3.88 ± 0.30 24 455 ± 58 303 1.59

Table 3. Parameters of DNS for Pr = 0.021 with varying rotation frequency.
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Figure 13. Nusselt numbers computed using the thermal and viscous dissipation rates and the wall temperature
gradient agree with Nu computed from (4.1) within 4 % for all simulations. (a) The ratios NuεT /Nu, Nuεu/Nu
and Nu∂zT/Nu for Pr = 0.021 and Ek = ∞. (b) Data from the rotating cell for Ek = 1.45 × 10−6.

We plot the ratios NuεT /Nu, Nuεu/Nu and Nu∂zT/Nu in figure 13(a) for the non-rotating
simulations, and in figure 13(b) for simulations at Ek = 1.45 × 10−6. The ratios depart
from unity by a maximum of 4 % for all the simulations, affirming that the simulations are
resolved adequately.
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