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Quantum Ergodicity of Boundary Values of
Eigenfunctions: A Control Theory
Approach

N. Burq

Abstract. Consider M, a bounded domain in R
d , which is a Riemanian manifold with piecewise

smooth boundary and suppose that the billiard associated to the geodesic flow reflecting on the bound-

ary according to the laws of geometric optics is ergodic. We prove that the boundary value of the eigen-

functions of the Laplace operator with reasonable boundary conditions are asymptotically equidis-

tributed in the boundary, extending previous results by Gérard and Leichtnam as well as Hassell and

Zelditch, obtained under the additional assumption of the convexity of M.

Résumé. Soit M un domain borné de R
d qui est une variété riemanienne à coins. On suppose que

le billard défini par le flot géodésique brisé est ergodique. On démontre que les valeurs au bord des

fonctions propres du Laplacien (avec des conditions aux limites raisonnables) sont asymptotiquement

équidistribuées dans le bord. Ceci généralise des résultats antérieurs, de P. Gérard et E. Leichtnam aussi

bien que A. Hassell et S. Zelditch, obtenus sous l’hypothèse supplémentaire de convexité géodésique

du domaine.

1 Introduction

The purpose of this article is to show how ideas coming from control theory allow

the deduction of ergodicity of boundary values of eigenfunctions on manifolds with

piecewise smooth boundaries and ergodic billiard flows from the known results on

ergodicity of the eigenfunctions in the interior. The main result we obtain is the

following:

Theorem 1 Consider the eigenfunctions of the Laplace operator associated with the

boundary condition B:

(1.1)
−∆ge j = λ2

j e j ,

Be j |∂M= 0.

Denote by |dx ′| and dσ the natural measures on ∂M and T∗∂M and associate e j with
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4 N. Burq

its boundary value according to the table below

B Be eb dµb

Dirichlet e |∂M λ−1
k ∂ne |∂M γ(̺)1|̺|g(x)≤1dσ

Neumann ∂ne |∂M e |∂M γ−1(̺)1|̺|g(x)≤1dσ

Robin (∂ne − Ke) |∂M e |∂M
γ(̺)

γ2(̺)+k(̺)2 1|̺|g(x)≤1dσ

where K ∈ Ψ
1(∂M) is a non-negative self adjoint pseudodifferential operator of or-

der 1 (this assumption could be relaxed to the non negativness of its principal symbol).

Then there exists a subset S of density 1 such that for any semi-classical pseudodifferen-

tial operator on the boundary (tangential to the boundary of the boundary) of order 0,

a(x, hDx) we have

(1.2) lim
i→+∞

i∈S

∫

∂M

a(x, λ−1
j Dx)eb

j e
b
j dσ = 〈µb, a(x, ξ)〉.

The study of ergodicity of the eigenfunctions of the Laplace operator dates back to

the works by Shnirelman [10], Zelditch [11] and Colin de Verdière [6]. In the case of

manifold with boundary, the first study was initiated by Gérard and Leichtnam [7]

for C1,1 boundaries and then extended (with a much simpler proof) by Zelditch and

Zworski [12] to the case of manifolds with corners.

Recently, the study of the ergodicity of the boundary values of the eigenfunctions

has been performed in the restricted case of convex manifolds (with corners) by Has-

sell and Zelditch [8]. Theorem 1 is hence a generalization of these results in [8] to

the non convex case. Since most known ergodic billiards are non convex, our gener-

alization is relevant (see the discussion in the introduction of [8]).

In fact it has to be noticed that for Dirichlet boundary conditions and the standard

metric, the result above is not new (even though it does not appear explicitly in the

literature for non convex domains): indeed it had been recognized by Gérard and

Leichtnam [7, Remark 5.3] that for the Dirichlet problem, the questions of ergodicity

of the eigenfunctions in the interior and ergodicity of their normal derivatives on

the boundary are equivalent. The assumption of convexity of the domain which

was made throughout the article played no role in this particular remark; and to

obtain the ergodicity of the normal derivatives for a general ergodic billiard, it is

consequently sufficient to link the posterior result in [12] and this remark (and to

treat some minor problems arising from the presence of the corners, see the end of

Section 3).

On the other hand, in control theory, much analysis has been done since the 1980’s

to relate the behaviour of solutions of wave equations in the interior of a domain with

the behaviour of their traces on the boundary (see [1, 2, 3]). We are going to take ad-

vantage of this knowledge (eigenfunctions are very particular cases of solutions of

wave equations) in order to show that the interior result in [12] implies the bound-

ary result. For general boundary conditions, the analysis becomes more involved

than in the Dirichlet case; but the knowledge of [12] (the eigenfunctions are, for
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Quantum Ergodicity 5

a density-1 sequence, equidistributed and consequently can not concentrate at the

boundary) avoids most of the technical difficulties (see [3]) usually posed by bound-

ary value problems; we shall be able to perform quite the same argument as in [7]

in the case of boundary conditions satisfying the strong Lopatinskii condition (non

degenerate Robin conditions, for example). In the case of a Neumann problem, this

strong Lopatinskii condition is no more fulfilled at the gliding points (and in partic-

ular the traces of the eigenfunctions are not a priori bounded in L2(∂M)) and one

has to show in addition that nothing happens at these points. In fact this part of the

analysis, as well as the study of the behaviour near the singular part of the boundary,

will be performed using some heat kernel methods from [8, Appendix].

In Section 2, we give the assumptions and define the semiclassical measures asso-

ciated to sequences of eigenfunctions. We also give some elementary consequences

of Zelditch and Zworski’s result. We present an elementary and self contained (as-

suming the result in [12]) proof of Theorem 1 for Dirichlet conditions in Section 3.

In Section 4 we prove the result for Robin and Neumann conditions for a restricted

class of operators whose principal symbol vanishes near the singular set Σ and the

Glancing set G. Finaly in Section 5, we explain how the analysis in [8, Appendix]

allows handling these singular and glancing sets.

Remark 1.1 After this work was completed, S. Zelditch informed me that they had

simultaneously been able to supress the convexity assumption in their work with A.

Hassell (see [8, Addendum]).

2 Assumptions and Ergodicity of Eigenfunctions

The manifold (M, g) we consider is a compact C∞ Riemann manifold with piecewise

boundary: M is a compact subset of a C∞ compact Riemann manifold, M̃ and there

exist r functions f1, . . . , fr ∈ C∞(M̃) such that

(1) d fi | f −1

i (0)
6= 0,

(2) d fi and d f j are independant on f −1
i (0) ∩ f −1

j (0),

(3) M = {x ∈ M̃ ; fi(x) > 0∀i = 1, . . . , r}.

To include Bunimovitch’s stadium example, condition (2) can be replaced by

(2 ′) f −1
i (0)∩ f −1

j (0) is an embedded submanifold of M̃ and M has Lipschitz bound-

ary.

A point x0 ∈ ∂M will be called regular if

(2.1) ♯{ j ; f j(x0) = 0} = 1,

and singular otherwise. We will denote by Σ ⊂ ∂M the set of singular points.

2.1 Ergodicity of Eigenfunctions

With these assumptions, one can define the billiard flow (see [12]) and under the

assumption that this flow is ergodic, S. Zelditch and M. Zworski prove the following
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6 N. Burq

Theorem 2 ([12]) There exists a set S ⊂ N of density one:

(2.2) lim
N→+∞

1

N
♯(S ∩ {1, 2, . . . , N}) = 1,

such that for any A ∈ Ψ
0
phg pseudodifferential operator of order 0, with kernel supported

in the interior of M, one has

(2.3) lim
j∈S→+∞

(
Ae j , e j

)
L2(M)

= 〈dL, σ0(A)〉,

where dL is the Liouville measure on S∗M the sphere cotangent bundle.

Remark 2.1 In [12], this result is proved only for Dirichlet or Neumann boundary

conditions. However, the proof relying on the easy (non-diffractive) part of Egorov

theorem extends clearly to Robin boundary conditions.

2.2 Semi-Classical Measures

We introduce the following usual class of semi-classical symbols on R
d:

(2.4) Sm(R
d) = {a ∈ C∞(T∗

R
d × (0, 1]) ; |∂α

x ∂β
ξ a(x, ξ, h)| ≤ Cα,β,khm〈ξ〉−|β|}.

To any symbol a ∈ Sm we can associate an operator Op(a)(x, hDx, h) by the relation

(2.5) Op(a)(x, hDx, h)u =

∫
eix·ξa(x, hξ, h)û(ξ) dξ.

Denote by M̃ the space R
d endowed with a metric equal to g on M. Consider the

sequence of eigenfunctions (ek)k∈N normalized in L2(M); and denote by ek their ex-

tension by 0 outside M which is bounded in L2(M̃). Using the standard definition

of semi-classical measures in [7, section 2], [9] (see also [4]) we can associate, mod-

ulo extraction of a subsequence, a measure µ on T∗M̃ such that for any semiclassical

pseudodifferential operator Op(a)(x, hDx) one has (with hk = λ−1
k ),

(2.6) lim
k→+∞

(
a(x, hkDx)ek, ek

)
L2(M̃)

= 〈µ, a(x, ξ, 0)〉.

Of course this measure is supported in T∗M̃ |M . The semi-classical elliptic regularity

implies that in the interior of M, the semi-classical measure µ is supported in the

characteristic set:

(2.7) supp(µ) ⊂ Char(−h2
∆g − 1) = {(x, ξ) ∈ T∗

R
d ; |ξ|g(x) = 1}.

The ergodicity property (2.3) and (2.7) imply that in the interior of M, µ satisfies

(2.8) µ1x∈M = dL ⊗ δ|ξ|g(x)=1.
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But owing to the normalization ‖ei‖L2 = 1, we know that µ has at most total mass 1.

Since it is also the case for dL ⊗ δ|ξ|g(x)=1, we conclude

(2.9) µ = µ1x∈M = dL ⊗ 1|ξ|g(x)=1

and consequently for any semi-classical pseudodifferential operator on R
d, one has

(2.10) lim
j∈S→+∞

(
Op(a)(x, h jDx)e j , e j

)
L2(M̃)

= 〈dL ⊗ δ|ξ|g(x)=1, Op(a)(x, ξ)〉.

Finally, we can extend slightly the class of symbols for which (2.5) holds. We work

close to a point x0 ∈ ∂M \Σ in a geodesic coordinate system (xn, x ′) such that locally

M = {(xn, x ′) ∈ R
∗,+ × R

d−1} and

(2.11) ∆g =
1√
c(x)

∂xn

√
c(x)∂xn

+ R(xn, x ′, Dx ′)

and the natural integration measures on M and ∂M are

(2.12) |dx| =

√
c(x)dxndx ′, |dx ′| =

√
c(x)dx ′

In this coordinate system, the usual elliptic (E), hyperbolic (H) and glancing (G)

subsets of T∗∂M are

(2.13) E = {(x ′, ξ ′) ; R(0, x ′, ξ ′ > 1} = {(x ′, ξ ′) ; ‖ξ ′‖g(x) > 1}
G = {(x ′, ξ ′) ; R(0, x ′, ξ ′

= 1} = {(x ′, ξ ′) ; ‖ξ ′‖g(x) = 1}
H = {(x ′, ξ ′) ; R(0, x ′, ξ ′ < 1} = {(x ′, ξ ′) ; ‖ξ ′‖g(x) < 1}.

Lemma 2.2 Denote by Sm(Rxn
× T∗

R
d−1
x ′ ) the set of symbols in the x ′, ξ ′ variable

depending smoothly of the parameter xn. For any a1, a2 ∈ S0(Rxn
× T∗

R
d−1
x ′ ) and any

second order polynomial of order 1 in the ξn variable, Q(ξ),

(2.14) lim
k∈S→+∞

(Op(a1)(xn, x ′, hkDx ′ , hk)ek, ek)L2(M) = 〈µ, a1(x, ξ ′)〉,

(2.15) lim
k∈S→+∞

(
Op(a2)(xn, x ′, hkDx ′)Q(hkDx)ek, ek

)
L2(M)

= 〈µ, a2(x, ξ ′)ξn〉.

Indeed if the operators a1 and a2 have kernels supported in M, this result is straight-

forward (using the elliptic regularity). To allow symbols supported up to the bound-

ary, remark first that if ϕ ∈ C∞
0 (R) is equal to 1 close to 0, owing to (2.9) we have

(2.16) lim
ε→0

lim
j∈S→+∞

‖ϕ(xn/ε)e j‖2
L2(M) = lim

ε→0
〈µ, ϕ(·/ε)2〉 = 0.
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On the other hand

(2.17) 0 =

∫

M

(−h2
j∆g − 1)e jϕ

2(x/ε)e j |dx|

=

∫

M

ϕ2(x/ε)h j∇ge jh j∇ge j |dx| −
∫

M

ϕ2(x/ε)e j e j |dx|

+ h j

∫

M

∇g(ϕ2(x/ε))h j∇ge je j |dx| +

∫

∂M

h2K(e j )e j |dx ′|

(with K = 0 in case of Dirichlet or Neumann boundary conditions) which implies

(using that the operator K is non-negative)

(2.18) lim
j→+∞

∫

M

ϕ2(x/ε)h j∇ge jh j∇ge j |dx| ≤ lim
j→+∞

∫

M

ϕ2(x/ε)e j e j |dx|

+ lim
j→+∞

Oε(h j),

and consequently

(2.19) lim
ε→0

lim
j→+∞

∫

M

ϕ2(x/ε)h j∇ge jh j∇ge j |dx| = 0.

Now (2.16), (2.19) (and the knowledge of the result if the operators are supported

in the interior) imply Lemma 2.2 since in (2.15) one can always by an integration by

parts pass one derivative (the one not involving hkDxn
) in the right hand side of the

scalar product.

3 The Dirichlet Case

3.1 A Priori Estimates

We start this section by recalling some well known estimates on the boundary values

of the normal derivatives of the eigenfunctions (see for example in the more general

context of strong Lopatinskii conditions [5, Theorem VII.4.4] or in our context [7,

Lemma 2.1]).

Proposition 3.1 Consider (e j) the Dirichlet eigenfunctions of the Laplace operator

associated with the eigenvalues λ j and normalized to 1 in L2(M). Denote by eb
j =

λ−1
j ∂ne j |∂M the normal derivatives on the boundary of the eigenfunctions. Then there

exists C > 0 such that

(3.1) ‖eb
j‖L2(∂M) ≤ C.

Proof Consider X a vector field defined near M and such that on ∂M one has
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X · ∂n ≥ c > 0, and compute

(3.2)

∫

M

[−h2
k∆ − 1, X]ekek dx =

∫

M

−h2
k∆Xekek |dx|,

= h2
k

∫

∂M

Xek |∂M
∂ek

∂n
|dx ′|,

≥ c

∫

∂M

∣∣∣∣
hk∂ek

∂n

∣∣∣∣
2

|dx ′|.

On the other hand, the left hand term in (3.1) has the form

(3.3)

∫

M

h2
kP2ekek,

where P2 is a second order differential operator, and hence this quantity is clearly

bounded by h2
k‖ek‖2

H1
0 (M)

≤ C .

3.2 The Relationship Between the Interior and the Boundary

Consider a point x0 ∈ ∂M \ Σ. Working in a geodesic coordinate system close to x0,

we can compute for symbols a = a1(x, ξ ′) + a2(x, ξ ′)ξn, using Green’s formula

(3.4)∫

M

1

ihk
[−h2

k∆g − 1, Op(a)(x, hkDx)]e j e j |dx|

=

∫

M

1

ihk

(−h2
k∆g − 1) Op(a)(x, hkDx)e je j |dx ′|

=

∫

∂M

ihk∂xn
Op(a)(x, hkDx)e je j |dx ′|

−
∫

∂M

i Op(a)(x, hkDx)e j |xn=0 hk∂xn
e j |dx ′|

=

∫

∂M

Op Op(a2)(xn = 0, x ′, h jDx ′)h j∂ne j |xn=0 h j∂xn
e j |dx ′|.

Now consider the left hand side in (3.4)

(3.5)

∫

M

1

ihk

[−h2
k∆g − 1, Op(a)(x, hkDx)]e j e j |dx|

=

∫

M

Op(q)(xn, x ′, hDxn
, hDx ′)e je j |dx| + O(h j),

where

(3.6) q(xn, x ′, ξn, ξ
′) = {ξ2

n + R(xn, x ′, ξ ′) − 1, a(x, ξ)}
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is a second order polynomial in the ξn variable. Taking into account the equation

(−h2
∆g − 1)e = 0 and (2.11), we can eliminate the second order term in ξn and

obtain (using (2.14), (2.15) ) that the limit j ∈ S → +∞ of the left hand side in (3.4)

is equal to

(3.7) 〈µ, q̃〉,

where q̃ is the first order polynomial in the ξn variable equal to q on the set {ξ2
n +

R(xn, x ′, ξ ′) − 1 = 0}. But the measure µ is supported in this set and consequently

we get

(3.8) 〈µ, q̃〉 = 〈µ, q〉,

which implies that the left hand side in (3.4) tends to

(3.9) −〈µ, Hp(a)〉 = 〈Hp(µ), a〉,

where p(x, ξ) = ξ2
n + R(x, ξ ′) − 1. But since we know that the measure µ is equidis-

tributed, we have far from the boundary Hp(µ) = 0 and close to the boundary we

can compute Hp(µ) by the jump formula:

(3.10) Hp(µ) = (2ξn∂xn
(1xn>0)µ

= 2
√

1 − Rδxn=0 ⊗ δξn=
√

1−R ⊗ |dx ′|

− 2
√

1 − Rδxn=0 ⊗ δξn=−
√

1−R ⊗ |dx ′|

and we obtain using (3.4) and (3.9)

(3.11) lim
j∈S→+∞

∫

∂M

a2(xn = 0, x ′, h jDx ′)h j∂ne j |xn=0 h j∂xn
e j |dx ′|

=

∫

T∗∂M

a2

√
1 − R1R≤1|dx ′||dξ ′| = 〈a2

√
1 − R, |dx| ⊗ 1R≤1〉,

which implies Theorem 1 for operators whose kernel vanishes close to Σ. So far,

working locally near a point which is not in Σ, we have only described the distribu-

tion of h j∂nei away from the singular set Σ. To get a complete description, we have

to check that the L2 norm can not accumulate at Σ. For this we are going to re-

fine (3.1). Close to a point x0 ∈ Σ there exists fi1
and fi2

(possibly non unique) such

that fi1
(x0) = fi2

(x0) = 0. Take χ ∈ C∞
0 (R) equal to 1 close to 0 and consider (3.1)

with X replaced by

(3.12) χ

( | fi1
(x)| + | fi2

(x)|
ε

)
X
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and taking the limit i → +∞ (for fixed ε > 0) we obtain

(3.13) lim sup
k→+∞

∫

∂M

χ

(
( fi1

(x))2 + ( fi2
(x))2

ε

) ∣∣∣∣hk
∂ek

∂n

∣∣∣∣
2

≤
〈

µ,
{
|ξ|2g(x), χ

( | fi1
(x)| + | fi2

(x)|
ε

)
X

}〉

But taking into account that µ is equal to dL ⊗ 1|ξ|=1, we see easily that the right

hand side in (3.13) is bounded by O(ε) because the symbol is bounded by 1/ε but

supported in a set of measure O(ε2). As a consequence, passing to the limit ε → 0,

we obtain that the normal derivative can not accumulate at the singular set and con-

sequently (3.11) holds for general semi-classical pseudodifferential operators on ∂M,

tangential to Σ.

4 Robin and Neumann Conditions

We consider in this section the eigenfunctions associated with the Robin or Neumann

boundary conditions.

4.1 A Priori Estimates

By standard elliptic results (see for example [3, Appendix] in a slightly different con-

text), we know that if A is a semi-classical pseudo-differential operator supported in

the elliptic region of the boundary, E, one has for any s ∈ R,

(4.1) ‖Aeb
k‖Hs(∂M) → 0 (k → +∞).

To deal with the hyperbolic region, we come back to (3.4). We obtain using the

boundary condition

(4.2)

∫

M

1

ihk

[h2
k∆g − 1, Op(a)(x, hkDx)]e je j |dx|

= −
∫

∂M

a2(xn = 0, x ′, h jDx ′)(1 − R + h2K2)(x ′, hDx ′)e je j |dx ′|.

Remark that in (4.2) owing to the elliptic regularity in the boundary (4.1) we can

replace K2 by Ψ(x ′, hkDx ′)K2
Ψ(x ′, hkDx ′)∗ with Ψ equal to 1 for |ξ ′|g(x) ≤ 2 and Ψ

equal to 0 for |ξ ′|g(x) ≥ 3. The second order pseudodifferential operator

h2
Ψ(x ′, Dx ′)K2

Ψ(x ′, Dx ′)∗

can be viewed as a semiclassical operator of order 0 and principal symbol

|Ψ(x ′, ξ ′)|2σ1(K)2(x ′, ξ ′).
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The left hand side in (4.2) is a second order differential operator in the xn variable.

Using the relation (2.11) we see easily that in the left hand side of (4.2) we can elim-

inate the second order term in the normal derivative hkDxn
. Consequently the left

hand side in (4.2) is bounded by CA(‖ek‖L2(M) + hk‖∇ek‖L2(M)) ≤ 2C(A). On the

other hand, for any q supported in the hyperbolic region, choosing a2 such that

(4.3) −a2(xn = 0, x ′, ξ ′)(1 − R + σ1(K)2)(x, ξ ′) = |q|2 ≥ 0,

we obtain, using the sharp Gårding inequality (and the fact that by the trace Theorem

we know that ‖ek‖H
−1/2

loc
(∂M)

≤ C which gives a control on the remainder terms),

(4.4)

‖Qek‖L2(M)

≤ C −
∫

∂M

a2(xn = 0, x ′, h jDx ′)(1 − R + h2K2)(x ′, hDx ′)e j |xn=0 e j |dx ′|

≤ C ′.

Remark 4.1 Remark that the estimate above holds for any k, not only for a density-1

subsequence

4.2 The Relationship between the Interior and the Boundary

We come back to (4.2). As in section 3, the left hand side in (4.2) tends (for a den-

sity-1 subsequence) to

(4.5) −〈µ, Hp(a)〉

from which we deduce, taking the limit in the right hand side

(4.6)

lim
j∈S→+∞

∫

∂M

a2(xn = 0, x ′, h jDx ′ , h j)(1 − R + h2K2)(x ′, hDx ′)e j |xn=0 e j |dx ′|

= 〈
√

1 − R1R≤1|dx ′||dξ ′|, a × ((1 − R) + |σ1(K)|2)〉,

which is Theorem 1 for the restricted class of symbols which can be written under

the form

(4.7) b(x ′, ξ ′) = a ×
(

(1 − R) + |σ1(K)|2
)

(which is true if b is equal to 0 close to G).
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5 The Singular and Glancing Regions

So far we have obtained Theorem 1 for symbols which vanish close to the singular

and glancing regions. To deal with these regions, we are going to use the following

result obtained from heat kernel considerations in [8, Appendix] (not surprisingly

since in this reference, the result was used for the same purpose):

Proposition 5.1 For any ε > 0 there exists a function ϕε equal to 1 on Σ but with

support sufficiently close to Σ such that

(5.1)
∣∣∣ lim

1

N

N∑

j=1

(
ϕε(x)e j |∂M , e j |∂M

)
L2(∂M)

∣∣∣ = |〈ϕε |∂M , dµb〉| ≤ ε.

Proposition 5.2 For any x0 ∈ ∂M \Σ and any ε > 0 there exists a symbol Ψε(x ′, ξ ′)
equal to 1 on G close to x0 but with support sufficiently close to G such that

(5.2)
∣∣∣ lim

1

N

N∑

j=1

(
Ψε(x ′, hDx ′)Ψε(x ′, hDx ′)∗e j |∂M , e j |∂M

)
L2(∂M)

∣∣∣

= |〈dµb, |Ψε(x ′, ξ ′)|2〉| ≤ ε.

Indeed the equality in Proposition 5.1 is [8, Lemma 7.1], while the inequality follows

if the support of ϕε is taken close enough to Σ; and Proposition 5.2 follows from

[8, (11.14)] and the Karamata Tauberian Theorem, as in the proof of [8, Lemma

7.1].

To finish the proof of Theorem 1 for general operators, it is enough to prove that

for any semi-classical pseudodifferential operator A on ∂M (tangential to Σ), one has

(5.3) lim
N→+∞

1

N

N∑

j=1

∣∣∣∣
∫

∂M

Op(a)(x, λ−1
j Dx, λ

−1
j )eb

j e
b
j dσ − 〈µb, a(x, ξ)〉

∣∣∣∣ = 0.

By an easy argument, one deduces then for fixed A the existence of a density-1 sub-

sequence such that (1.2) holds, then by a diagonal argument used in [10, 11, 6], the

existence of a density-1 subsequence such that (1.2) holds for any A follows.

To prove (5.3), we use first Proposition 5.1 which allows replacing the operator A

by an operator Aε whose kernel is supported away from Σ, modulo an error of order

OA(ε). Consequently it is enough to prove the result for operators whose kernels are

supported away from Σ; from now on we suppose that A satisfies this condition
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Write

(5.4)
1

N

N∑

j=1

∣∣∣∣
∫

∂M

Op(a)(x, λ−1
j Dx, λ

−1
j )eb

j e
b
j dσ − 〈µb, a(x, ξ)〉

∣∣∣∣

≤ 1

N

N∑

j=1

∣∣∣∣
∫

∂M

(
Op(a)(x, λ−1

j Dx) − Ψε(x ′, λ−1
j Dx ′)×

Op(a)(x, λ−1
j Dx, λ

−1
j )Ψε(x ′, λ−1

j Dx ′)∗
)

eb
j e

b
j dσ

− 〈µb, a(x, ξ)(1 − |Ψε(x ′, ξ ′)|2)〉
∣∣∣∣

+
1

N

N∑

j=1

∣∣∣∣
∫

∂M

Ψε(x ′, λ−1
j Dx ′) Op(a)(x, λ−1

j Dx, λ
−1
j )×

Ψε(x ′, λ−1
j Dx ′)∗eb

j e
b
j dσ

∣∣∣∣ +
∣∣〈µb, a(x, ξ)|Ψε(x ′, ξ ′)|2〉

∣∣ .

Since the operator

(5.5)
(

Op(a)(x, λ−1
j Dx, λ

−1
j ) − Ψε(x ′, λ−1

j Dx ′)

Op(a)(x, λ−1
j Dx, λ

−1
j )Ψε(x ′, λ−1

j Dx ′)∗
)

has its kernel supported away from Σ and its symbol equal to 0 close to the glancing

set G, we obtain using (4.1) and (4.4) that

(5.6)

∣∣∣∣
∫

∂M

Op(a)(x, λ−1
j Dx)eb

j e
b
j dσ − 〈µb, a(x, ξ)〉

∣∣∣∣

is uniformly bounded with respect to j and tends to 0 for a density-1 subsequence.

Consequently the limit of the first term in (5.4) is equal to 0. On the other hand the

contributions of the other terms in (5.4) are, according to Proposition 5.2, of size

O(ε). This concludes the proof of (5.3).
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