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Abstract

A simple rigorous approach is given to generalized functions, suitable for applications.
Here, a generalized function is defined as a genuine function on a superset of the real line,
so that multiplication is unrestricted and associative, and various manipulations retain
their classical meanings. The superset is simply constructed, and does not require
Robinson's nonstandard real line. The generalized functions go beyond the Schwartz
distributions, enabling products and square roots of delta functions to be discussed.

1. Introduction

Many questions in physics and engineering, and in partial differential equations,
require the Dirac delta function and its relations. The rigorous theory of Schwartz's
distributions [9] is widely used, but is too complicated, in concept and detail, for
many users. Moreover, multiplication of distributions is restricted, and may be
nonassociative, as in Schwartz's famous example [9]:

6(0 = (r1 • 08(0 * rl{t8{t)) = r1 • 0 = 0.

This paper presents a simple, though rigorous, approach to generalized func-
tions, in which the delta function is a genuine function, whose domain and range
are supersets of the real line. Consequently, expressions like fn8(t)f(t)dt and
their manipulation have meaning as ordinary integrals, and multiplication of
generalized functions is unrestricted, and associative. Engineers have always
manipulated generalized functions as if they were ordinary functions; with the
present formulation, such manipulations become rigorous. The supersets of the
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UI Generalized functions 363

real line used here do not require the full panoply of A. Robinson's nonstandard
analysis, using symbolic logic [5]; a simpler process suffices, which is constructible
(and computable). The class of generalized functions obtained here is wide
enough for physics and engineering applications, and is not restricted as in [11].
For the present purpose, there is no need (or advantage) to avoid Cauchy-
Weierstrass limits by using infinitesimals. The superset here has long been known;
what is novel here is its use for generalized functions, without involving other
complications.

The present theory does not preserve the property, that every Schwartz distri-
bution has a (weak) derivative—who needs to differentiate the Weierstrass
nondifferentiable function? Most applications call for generalized functions which
are smooth (Cr with r > 1) except for delta functions or their relatives at some
singular points (or curves or surfaces); and these are differentiable, with the
present approach. Fractional powers of (suitable) delta functions are possible;
these and some other formulas, relevant to quantum theory, which go beyond the
Schwartz theory, receive simple treatment. Some generalized functions have more
than one reasonable definition, with the values differing by infinitesimals, so that
the ambiguity does not affect most applications. The delta distribution is un-
avoidably multivalued, if extended beyond its natural domain (of functions
continuous at 0); the present approach makes the multivaluedness explicit, and
makes use of it.

2. A superset of the real line

Consider one "infinitesimal" element e adjoined to the real line R; for
convenience denote the "infinite value" e"1 also by «. In order to include
quantities such as

u = 1 + 2e - 3e2, v = 4e + 6e2 + 8e3 + • • • ; y = 3w + 2; (1)

the superset R$ is defined as the field consisting of all formal series of the form

z = £z,e> (allzneR,zn#0), (2)

together with zero. Define the index of z of q(z) = -n, with ^(0) = 0, and the
leading term of z as z.e'q(z) with z.= z_q(z), and 0.= 0. Thus, for example,
q(u) = 0; q{v) = -1 (negative indicating infinitesimal), with leading term 4e; and
v = 4e(l + f e + f e2 + • • • ), expressing v as the product of its leading term and
a term 1 + "infinitesimal"; and q{y) = +1 (positive indicating "infinite value"),
with leading term 3w, and.y = 3«(1 + f e). Level k of z means the term z_ke'k.
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364 B.D. Craven (3)

The series (2) are formal series, with no convergence requirement. They are
added termwise, and multiplied by the Cauchy product rule, namely

) ( L *,*>• (3)
j-n I k — m + n^ i

Since the coefficient of ek is a finite sum, the right side of (3) is well defined,
without any question of convergence arising. From (3), the multiplicative inverse
of Ljloa,e' (where aQ = 1) is Y.J_obj£J, where b0 = 1, and the b} for j < 1 are
determined recursively from b} = -lL\^lalbj_i. The field properties for R$ then
follow directly from the field properties for power series with Cauchy products,
since there are no zero divisors, and so need not be proved here. Thus R$ is an
extension field of R, which contains e. The zero of R$ is 0 = E 0 • eJ. Also R$ may
be linearly ordered, using the leading terms, by

x > ky in R$ «• x - y Ss 0 «=> (x - >>)•> °- (4)

Thus, setting z = x — y, exactly one of the three following cases occurs:

(i)0ito0«z.> 0;

(ii)z = 0 « z . = 0; (5)

(iii) 0 # z < 0 <=> z.< 0.

The symbol e for an infinestimal is chosen following physicists's usage, and R$

is chosen to be typable. This field was first used in [1] and [8]; for historical
comments, see Section 5. It is not obvious whether R$ is the smallest extension
field of R that contains e; this does not matter for its use. An "infinite value"
must not be equated to + oo (or to any infinite cardinal); the harmonic series
E l/n diverges to + oo, not to any "infinite value" in R$. The field R$ has a
graded structure, with some analogy to Chevalley's "graded algebras"; elements;
ruJ (r e R) may be visualized as occupying floor j of a building, thus the
infinitesimals occupy the basements (j < 0), with lower basements containing
infinitesimals of smaller kind; however, a typical z e R$ will have terms on
several floors. In this paper, a function with domain R$ will be assumed to vanish
on the "infinite value" domains Q_= {x e R$: q(x) > 0, x < 0} and fl+= {x e
R$: q(x) > 0, x > 0}. Instead of formal power series (2), coefficient sequences
could be used instead; however the familiar manipulations of power series are
easier to calculate. Schmiden and Laugwitz [7] used a sequence space, to extend R
to a space including infinitesimals and infinite values; however, their space is too
large for the present purpose, and is not an ordered field.

For ( e R , define the monad [t]s of t as the set of points of R$ which differ
from / by an infinitesimal; thus [t]s = {t + u e R$: q(u) < 0}. Define also

[t]*= {t + u<zR$:-r*zq(u)<0}. (6)

https://doi.org/10.1017/S0334270000004562 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004562


[41 Generalized functions 365

Thus [r]* is a subset of the monad, restricting the degree of the infinitesimals
added to t. The space R$ may be constructed by replacing each t e R by its
monad, then adjoining fl. and fi+. It will be convenient later to use subsets of R$,
constructed from R by replacing certain / e R by appropriate sets [t]$

r0).
Sequential convergence in R$ is defined by convergence separately at each level.

Thus, let x(n) = E,JCJ"V and x = LJXJEJ be in R$. Then, by definition,

{x(n)} -> x in R$ «• (V/){xjn)} -> Xj in R. (7)

A similar definition applies to convergence of nets, replacing n ( -» oo) by a e D,
a directed set, and also when n —» oo is replaced by < —» c in R. One consequence
is that the chain rule for derivatives holds (with the same proof) for differentiable
functions with domains and ranges in R$. Another is that, if / is a compact
interval in R, then a function g: / -» R$ may be expanded as g(t) = T.jgj(t)eJ

with each gj(t) e R, and then

(8)

provided that each integral on the right exists (say as a Riemann or Lebesgue
integral.)

The usual (Cauchy-Weierstrass) limits in R are used here. If they were to be
replaced by use of infinitesimals, a continuum of infinitesimals would presumably
be required, such as the Robinson theory provides, rather than the sequence {eJ:
7 = 1,2,...}.

3. Generalized functions

Consider, as a motivating example, a generalized function g, described formally
by g(x) = f(x) + 8'(x) for x e R, where/is a smooth function, and 8' denotes
the derivative of the Dirac function. The generalized function g will be considered
as a conventional function from a superset E of R onto R$. Since 8'(x) = 0 for
O ^ x e R , 8' may be regarded as "localized" within [0]$, or even [0]f, and a
suitable domain E for g is obtained by replacing 0 e R by [0]J. Then g is trivially
extended to domain R$.

The delta function can be defined as follows. For ( e R , let 4>(t) =
(2w)'1exp(- \t2). Extend $ to <J>: R$ -» R$ by defining <j>(x) = <j>(t) whenever
x e [/]$, and <j>(x) = 0 when q(x) > 0. Then the delta function may be defined
by

8(x) = e-M*-1*) (x e R$). (9)
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Using the chain rule, S'(x) = t~2$'(e~lx) for x e R$. If \p: R -* R is continuous,
and has an extension to domain eR for which \f/(ev) — <f>(0) is infinitesimal for
v e R, then

f 8(t)>p(t)dt= fe-1<j>(v)^(ev)edu= f <t>(v)t(0) dv + 6 = <//(0) + B

(10)

where 0 is infinitesimal, using (8), with the convention that, for the linear change
of variables t = ev, the measure on eR is edv. Note that 8(x) has been defined so
as to be differentiable to all orders on eR, and continuous on RJ. If, moreover, \p
is differentiable and e"1[\//(ei;) - [\p(0) + ei//'(0)w]] is infinitesimal for o e R ,
then, for some infinitesimal p,

f S'(t)i(t)dt= f e-y(
JeR JR

'(v) dv + \p'(O)f <t>'(v)vdv + pj
= 0 - *'(0) + p. (11)

Hence

/ 8(t)i(t) dt <E [t(0)]s and sf 8'(t)t(t) dt e [-^'(0)]$ (12)

hold, under the stated conditions. Another differentiable function could replace <j>
here, provided that /R ^(/) dt = 1 is retained. Since <j> is differentiable arbitrarily
often, 8 is also differentiable arbitrarily often on eR, with

) = e-*-y*>(e-1jc) (* = 0,1,2,. . . ; x e R), (13)

with <£w extending <j>w exactly as <j> extends ^. Note that 8(-) is continuous at the
"boundary" between eR and (0, oo), since 8() = 0 on (0, oo), and, for v e R,
8(ev) = e~fy(") -> 0 as y -» oo.

The generauzed function 8' is an example of a class of local generalized
functions, obtained by replacing e'24>' above by another suitable function h.

A local generalized function (l.g.f.) of depth r > 0 at x G R is a function p:
R$ -> R$ defined by

^ ( 0 = 0 fort<£[x]s; p(x + y) = h(e~ry) forx + y e [xf; (14)

where A: R -» R$ is a continuous function, with /i(±oo) = 0, extended to A:
R$ - R$ by

h{t) = h{u) if te[u]
$, h(t) = 0 i f ^ ( 0 > 0 . (15)
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Then p(t + w) = p(t) when t e [x]s
r and ^(w) < -r; and /;(* + y) = 0 when

?(.y) > -'"• Consequently/) has an effective domain [x]* adding an infinitesimal of
lower index to the argument does not affect the function value.

Let / : R -» R$ be a conventional function, S a discrete subset of R (discrete
means that each s e X has positive distance from 5 \ {s}), and ps (for s e S) a
finite sum of l.g.f. at s, having maximum depth ds; at / e R, let (each component
of)/.have kt(> 0) derivatives. Define a generalized function g from R into R as the
function from R$ into R$ given, for x e R, and * + y e [x]$, by

_/—o

The first summation in (16) is finite by construction from l.g.f. The depth of g at x
is </, if JC = s e 5, otherwise 0. Denote by G/" the space of generalized functions
so defined.

For example, if f(t) = t, and S = {0}, po(t) = 8(f) + S'(t), then g has depth 1
at 0, and g(eu) = ev + e~V>(u) + £~2<t>'(v) for D e R. If, instead, g(t) = < +
SXe"1^). then g has depth 2 at 0, and, for v, w e R,

g(eu + e2w) = ev + e2w + e'2<j>'(w)8(v)

where8(v) = 0 (v * 0),0(v) = 1 (u = 0). (17)

These examples of generalized functions are differentiate arbitrarily often. From
(14) and (16), a generalized function g is differentiable min(kx, bx) times at x,
where (if x e S) each function h defining a l.g.f. at x is differentiable bx times, or
&, = oo if x £ 5. If / is a conventional function, continuously differentiable k
times at 0, then (16) with ps = 0 defines / as a generalized function; then _a
calculation similar to (11) shows that, whenever k > /,

] $ (18)

If A: is replaced in (16) by k' with / < k' < k, then the generalized function
corresponding to the function/is altered, but (18) is unchanged.

The above definitions extend readily to generalized functions of two or more
variables. In defining a l.g.f. on R2, the point x e R i s replaced by a curve
F c R2. Let F be a rectifiable curve in R2, with arc length coordinate s, and
having a normal defined for almost all s. The local coordinates (s, n), where n
denotes distance normal to F, are then defined for almost all s. Then a l.g.f. of
depth r on T is a function of form p((s, n)) = h(s, e'rn), where h(s, •) has the
properties of A in (15), and p(x) = 0 for x e R 2 \ T . This construction can
describe, for example, a distribution of delta functions along a curve, or a
double-layer or dipole moment distribution along a curve, and the curve need
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only have the restricted amount of smoothness specified here. In three dimen-
sions, the curve is replaced by a surface, for which finite area is defined, and a
normal exists for almost all points on the surface. Another kind of l.g.f. may be
defined on a curve T c R3, having a normal defined at almost all points; then
(s, n) is replaced by (s, n, u), where u is distance perpendicular to tangent and
normal, and a l.g.f. has the form p((s, n, u)) = h(s, e~r(n, «)), where h(s, •) has
the properties of h() in (15), but with argument in R2. There are obvious
analogues for dimensions greater than three. Then the definition above of
generalized function applies, replacing/: R -» R$ by/: R" -» R$ with n = 2,3,
The same definition, applied to m functions, will define generalized functions
from R" into Rm (as suitable functions g: R$n -» R$m).

The effective domain of g e GF has as its components the components of the
open set R \ 5 (or R"\S), together with the sets s + sJR for each s e S and
1 < j < ds. The integral of g over R$ may be written conventionally as JRg(t) dt;
it reduces to the integral of g over its effective domain. Using the limit definition
(7), integration by parts remains valid, provided that the generalized functions
concerned are continuous over the whole domain, and satisfy the usual differen-
tiability requirements within each component of the effective domain of the
functions. Integrals over components may be added if there are finitely many
components, or (from Lebesgue theory) there are countably many components
and the gj(t) are nonnegative or satisfy a dominance condition.

A generalized function g has compact support if g vanishes outside a set
U , e / J / ] s , where K is compact in R (or R").

4. Some examples and applications of these generalized functions

(a) Using (18) and integration by parts (valid here in consequence of the limit
definition (7)), the usual manipulations of 5 W ( ) hold, up to an infinitesimal
(which makes no difference to calculations with integrals). Also

/ 5 ( 0 = 0 ( i f O * / e R ) , tS(t) = u<j>(v) (if t = eo, v e R). (19)

Hence r"1(r8(O) = 5(0 in the present theory, verifying associativity of multipli-
cation here. (In view of Schwartz's counterexample, associativity is only possible
with t8(t) * 0; however /„ tS(t)\p(t) dt = 0 for any smooth function ^.)

(b) Other delta functions are possible, as well as 8 from (9). With the same <f>,
consider

A2(x) = e-Me-2x) (x £ R$). (20)
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Note that A2 has depth 2, whereas 8 from (9) has depth 1. If \p is continuous, and
is extended to R$ so that \p(x + y) — $(x) is infinitesimal when x e R and
x + y e [x]$, then

f A2(x)4>(x) dx = f e-2<t>(e-2x)>P(x)dx= f e"2*(w)[iK0) + P]e2 dw

(where x = e2w, w e R, and /? is infinitesimal)

- [ * ( < > ) ] ' • (21)
R

(Note that substituting x = u + ev + e2w + e2z with u, v, w e R and z infinitesi-
mal does not alter (21).) Thus A2 is also a delta function. Moreover A2 (unlike 8
from (9)) possesses a square root in GF, namely

A2(x)1/2 = £-1[<f>(e-2x)]1/2 ( x e R $ ) . (22)

Similarly, by replacing e'2 by e"* in (20), a delta function could be constructed
which possesses a kth root in GF.

Rational fractional powers of the delta function have been applied in quantum
physics [12]. Note that [12] defines the delta function as (n/ir)1/2exp(-nx2), with
n an "infinite value" from Robinson's theory; the choice e = (2w)~1/2 recovers 8
in (9). The fractional powers of the delta function obtained in GF here are not
identical with those in [12], but allow similar calculations.

In GF, 8(t)2 is well defined, but has values in level 2 of R$, so that the formula
8(t)2 = const .5(0. sometimes used in quantum physics contexts, is not sup-
ported by the present theory. (In view of [12], it need not be.)

(c) If / , g e GF, then their convolution

U*g){t)=j'f{t-s)g{u)du (23)
A)

is directly defined already, as an integral over [0, t]$. The commutative and
associative properties of • then follow if Fubini's theorem applies; it does if/and
g axe defined, using (16), from local generalized functions whose defining func-
tions h are locally integrable (at each level) and locally integrable conventional
functions from R into R$. Most applications fulfil these conditions. (If /0' in (23) is
replaced by /R, then the generalized functions should all have compact support,
or all have support in some half-line.) In particular, since [0, / ] $ D [0]$, sub-
stituting « = ev, v e R shows that

(/•«)(') =ff(t-ev)<l>(v)dv. (24)

Hence/ • 8 = /when/ , in some neighbourhood of 0, is a continous conventional
function. However, 8* 8 =t 8.
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Suppose now that / e GF is derived, as in (16), from a conventional function
which is continuous a t ^ G R and a l.g.f. having depth r > 0 at s. (For example,
f(x) = x + S(x), s = 0, r = 1.) Let

A,(*) = e-k<t>(e-kx) (25)

be a version of the delta function, having depth k > r. It follows that/ • Ak= f.
It suffices to prove the case where f(s + z) — h(e~rz), as in (14), for z e [0]$.
Then, setting u = ekv, v e R,y e R, (24) and (25) show that

= f h(e-r(ery + ekv))e-k<}>(v)ekdv

= f h(y + ek'rv)<t>(v) dv
JR

= h{y)j 4>(v)du (from (15))

(26)

Thus / * Ak = / holds with a suitable version At (depending on / ) of the delta
function. A similar argument to (26) shows that, if {/„} is a sequence of l.g.f.
having the same depth for each n, and the corresponding h„(•)-* 0 boundedly,
then (/„ * g)(-) -» 0 pointwise on R$.

(d) The Fourier and Laplace transforms of g e GF are defined directly as
integrals:

g(s) = f eis'g(t) dt and g(0) = /" <r"g(0 dt, (27)

when those integrals exist. Consider g as defined by (16), and e'st, e'e' as
generalized functions, defined for t = x + y e [x]$ by Taylor series, as in (16)
(with kx = oo). For example, if p is l.g.f. of depth r at x, as in (14), then (27) gives

p(s) e [e'^(0)]$ and g(6) e [e'^(0)]$. (28)

In particular, while Ak(s) depends on k, &k(s) e [1]$ holds for all k = 0,1,2,
However, the transforms of the part of g derived from a conventional function /
do not necessarily exist in GF; for existence, the integral involving / must
converge in the classical sense. For example, the Fourier transform of 8w(t) is
given by (-is)*, by the usual integration-by-parts formula; but the integral
fji(-is)ke's'ds is undefined. (In contrast, the Schwartz theory "smooths" (-«)*
by multiplying it by a "test function" which vanishes suitably at ± oo.) So the
usual formulas hold for transforms of derivatives hold here, such as (Dg)(s) =
-isg(s), where D = d/dt, but not generally Plancherel's theorem; inverse trans-
forms must replace transforms of transforms.
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11 o I Generalized functions 371

Consider now an ordinary differential equation with constant coefficients (with
independent variable / e R+):

P(iD)u = g, (29)

where P is a polynomial, D = d/dt, and g e GF is a forcing (generalized)
function. In particular, consider

P{iD)e = 8. (30)

Well-known methods may be applied. Assuming that e has a Fourier transform,
(30) shows that e{s) = l/P(s); expression of \/P(s) in partial fractions allows
e(t) to be evaluated, confirming the assumption. Then a solution u to (29) is
obtained as u = e * g, provided that the convolution exists. Alternatively, "en-
gineers'" methods of Laplace transforms may be used to obtain u, allowing for
initial conditons. In the present framework, these methods are rigorous.

It follows that e(t) = H(t)e\p(\jt), where H is the Heaviside unit function,
here defined as H(t) = ^(e"1') for / e R$ (so that H\t) = 8(t)), and the A, are
the zeros of P(i\) = 0 (with appropriate limiting cases when Xy coalesce).
Similarly, for (29), u(t) is constructed from integrals of the form

Vg( / -T)r fT , (31)

together with terms involving exp(A7*) and initial conditions. If each l.g.f. in g has
an absolutely integrable defining function h, and if the conventional function /
used in defining g is locally integrable, then the convolution is associative, and the
integrals in (31) exist, leading to a solution in GF for (29).

(e) In some other theories of generalized functions (see e.g. Lighthill [3]), the
generalized functions corresponding to functions such as/(f) = t'1, which are not
locally integrable, require special treatment. From the present viewpoint, these are
ordinary functions like any others. Such formulas as that for the derivative of the
logarithm (taking log z as the principal value of the logarithm of complex z):

{d/dz)\ogz = z'1 - /V6(z) (z G R) (32)

are also routine in the present approach, using log z = log|z| + iirH(-z).

5. Discussion and further extensions

No detailed bibliography on this topic has been attempted (such a bibliography
might appear to be infinite!)

The first use of the series (2) to represent extended real numbers appears to be
by Holder [1] and Schoenflies [8], to represent a non-Archimedean number field.
The definition (9) of the delta function may be found in Stroyan and Luxemburg
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[10]; but they did not develop the theme, being more concerned to replace limits
by infinitesimals. The latter comment also applies to the recent work of Tall [11]
and Hoskins [2], who also use extended real numbers of the form (2) to define a
delta function. Lighthill [3] has discussed the "delta function and its relations" in
detail, from a different viewpoint (defining 8(/) by approximating functions).
Note, however, that [11] considers only analytic (conventional) functions / :
R -» R for extension to domain R, which severely restricts the applications. The
present treatment is not so restricted. Generalized functions of several variables
still need more investigation.

Weak convergence (as used in the Schwartz theory) remains relevant in some
contexts. For example, if px(t) = ^ ( 0 ^ ~ V r ( ^ ) » then

f Px(t)f(')*-( 8(t)f{t)dt
JR JR

as A 10 for each continuous/, but/>x -t* /using (7).
Rosinger [6], following Mikusihski [4], has given several formulas, involving

products of generalized functions, said to be relevant in quantum physics. These
formulas include

8(t)2-(rl)W = -r2/«2 (33)
and

rl8(t) = -*«'(/) . (34)

These cannot hold exactly in the present theory, both because the generalized
functions involved have values on different levels," and also because, with unre-
stricted multiplication in GF, (33) would imply that S(t)2 = 0. However, such
formulas can be given meaning by an equivalence concept.

Let V be a vector space of functions / : R -* R. Define g,G e GF to be
V-weakly equivalent if, for some infinitesimal /?,

( V / e V) f g{t)f{t) dt=f G(t)f(t) dt + /?. (35)
•'R JR

In order to discuss (33), take V as the space of continuous functions / , with each
/ e V having support in [-c, -TJ] U \t\, c] with c, TJ > 0 depending on / . Now, for
t e R (and writing D = d/dt),

\o%t=\og\t\ + iirH{-t); (36)

hence

D\ogt = r1 - iir8{t). (37)

Similarly, noting that 8 - (t) = 8(t),

D\og(-t) = r 1 + iirS(t). (38)
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So the left side of (33) may be replaced by the product

[S(t) -(mt)-1]^) +(lTTty1} = (Dlogt)(Dlog(-t))/«2 = g(t). (39)

For each/ e V, for some 0 < ?j < c, depending on/,

+ j

~2
Therefore the left side of (36) is V-weakly equivalent to the function -(irt)~2. So
(33) is confirmed in this restricted sense.

For (34), redefine V as a space of differentiable functions / : R -> R, extend to
domain eR by/(ei>) = /(0) + ef'(0)v for v e R. Then

/
R U E R

= f(O)e-1f v-^(v) dv + f'(0) f 4(0) do
JR JR

if / v'^iv) dv is interpreted as a Cauchy principal value
•'R

8'{t)f{t)dt. (41)

If, instead, / is extended to domain R$ by f(x + z) = f(x) + f'(x)z for x e R,
x + z e [J]$, then

J^ /-x«(0/(0 * e [-/^ «'(0/(0 ^]$- (42)
Thus /'X8(r) is F-weakly equivalent to -S'(0> but /ior to - jS'(t) as in (34).

If a distribution is defined as a linear functional on a subspace F of a Schwartz
space of test functions, then it can be extended by the Hahn-Banach theorem to
the whole space, but not uniquely. Only in certain cases is there a canonical
extension, which commutes with differentiation. Since 1^8(1) has effectively been
defined as a distribution on the subspace V, other extensions than to -5 ' (0 would
be possible.

One Schwartz distribution, such as the delta function, corresponds to a class of
elements of GF, rather than to a single element. As shown in Section 4(c) for
convolutions, the different versions of delta function serve different uses. The
apparent arbitrariness in (16) (the definition of g depends on how many deriva-
tives / is assumed to have) does not, in fact, disturb the conclusions, as shown by
(18). A user of generalized functions may vary somewhat his choice of generalized
functions, to suit his application.
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