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Abstract

Kublanovsky has shown that if a subvariety V of the variety RSn generated by completely 0-simple
semigroups over groups of exponent n is itself generated by completely 0-simple semigroups, then it
must satisfy one of three conditions: (i) A2 ∈ V; (ii) N1 6∈ V; (iii) B2 ∈ V but A0 6∈ V. The conditions
(i) and (ii) are also sufficient conditions. In this note, we complete Kublanovsky’s programme by refining
condition (iii) to obtain a complete set of conditions that are both necessary and sufficient.
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1. Introduction and background

The lattice of varieties of semigroups is a fascinating structure, many parts of which
have been intensively studied. Completely 0-simple semigroups are one of the basic
building blocks for semigroups, especially finite semigroups, and so the varieties that
they generate deserve special attention.

Following the necessary background material in this section, we describe
Kublanovsky’s results concerning exact varieties, that is, varieties that are generated by
completely 0-simple semigroups over groups of exponent dividing n. Kublanovsky’s
proof of the sufficiency of certain conditions leads us to the variety defined by the
identity xn yn

= ynxn , which can be characterized as the largest variety not containing
any of the semigroups L2, R2, A0. As preparation, we also characterize the variety
defined by the identity xn yn

= (xn yn)n+1. In Section 3 we introduce a construction
that is used in Section 4 to show that the mapping V 7−→ V ∩ Gn is a complete
retraction of the lattice L(RSn) of Rees–Sushkevich varieties to the lattice L(Gn) of
varieties of groups of exponent dividing n.
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376 N. R. Reilly [2]

In Sections 5 and 6 we show that any variety in the interval [B2, NB2 ∨ Gn] is the
join of the largest group variety and the largest aperiodic variety that it contains. We
are then able to show in Section 7 that the exact varieties do not form a sublattice
of L(RSn) and that the interval [B2, NB2 ∨ Gn] is the largest interval of the form
[B2, V] consisting entirely of exact varieties. For each prime p, we introduce a
2 × 2 nonorthodox completely simple semigroup Mp over the cyclic group of order
p. Denoting by Mp the variety generated by Mp, we show in Section 8 that, for
each prime p dividing n, the interval [B2 ∨ Mp, [xn yn

= (xn yn)n+1
] ∩ RSn] consists

entirely of exact varieties. In this way we can give a complete characterization of the
exact subvarieties of RSn and describe them as consisting of a finite set of intervals.

The following semigroups defined by generators and relations will be important to
our discussions:

N1 = 〈a, 0 | a2
= 0〉,

Y2 = 〈a, 0 | a2
= a〉,

A0 = 〈a, b | a2
= a, b2

= b, ba = 0〉,

L2 = 〈e, f | e2
= e = e f, f 2

= f = f e〉,

R2 = 〈e, f | e2
= e = f e, f 2

= f = e f 〉.

The following Rees-matrix semigroups will also be important:

A2 =M0({0, 1}, {1}, {0, 1}; P2),

B2 =M0({0, 1}, {1}, {0, 1}; I2),

where

P2 =

[
1 1
1 0

]
, I2 =

[
1 0
0 1

]
.

Alternatively, we may describe B2 by generators and relations:

B2 = 〈a, b, 0 | aba = a, bab = b, a2
= b2

= 0〉.

For any semigroup S (respectively, family of semigroups {Sα | α ∈ A}) we denote
by V (S) (respectively, V ({Sα | α ∈ A})) the variety generated by S (respectively, the
semigroups Sα, α ∈ A). We write V = [u1 = v1, . . . , um = vm] for the semigroup
variety defined by the identities u1 = v1, . . . , um = vm . For any variety V we denote
the lattice of subvarieties of V by L(V). We adopt the notation:

LZ = V (L2), RZ = V (R2),

A∗

2 = V (A2), B2 = V (B2),

LNB2 = B2 ∨ LZ, RNB2 = B2 ∨ RZ,

NB2 = B2 ∨ LZ ∨ RZ,

Gn = variety of groups of exponent dividing n.

In the next lemma we present bases of identities for several varieties that are critical to
our discussions.
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LEMMA 1.1. The following hold:

(i) B2 = [x2
= x3, xyx = xyxyx, x2 y2

= y2x2
].

(ii) LNB2 = [x2
= x3, xyx = xyxyx, ax2 y2

= ay2x2
].

(iii) RNB2 = [x2
= x3, xyx = xyxyx, x2 y2b = y2x2b].

(iv) NB2 = [x2
= x3, xyx = xyxyx, ax2 y2b = ay2x2b].

(v) A∗

2 = [x2
= x3, xyx = xyxyx, xyxzx = xzxyx].

PROOF. (i) Trahtman [11] was the first to present a basis of identities for B2. His
proof contains a small lacuna, which can be fixed, however, in a number of ways, one
of which can be found in [9, Theorem 7.4].

(ii, iii, iv) These follow in a straightforward way from (i). Details can be found
in [9].

(v) See Trahtman [12]. 2

Let X = {x1, x2, . . .} be a countably-infinite alphabet, and let X+ (respectively X∗)
denote the free semigroup (respectively, free monoid) on the set X. For any word
w ∈ X+, let

c(w) = set of letters appearing in w,

|w| = the number of letters in w, counting repetitions,

h(w) = the first letter in w,

t (w) = the last letter in w.

For u ∈ X+, let e(u) denote the set of all subwords of u of length 2. For any finite
subset A of X2, let

κ(A) = A ∪ {xy | ∃ a, b, x, y ∈ X with ab, ay, xb ∈ A},

and define κn(A) inductively by:

κ0(A) = A,

κn+1(A) = κ(κn(A)).

Intuitively, we think of κ as ‘completing’ squares:

b y
a X X
x X

.

For finite A, there must exist an integer n with κn+1(A) = κn(A). When u ∈ X+,

A = e(u) and n such that κn+1(e(u)) = κn(e(u)), we define

E(u) = κn(u).

For any x ∈ c(u), u ∈ X+, let

L(x) = {p ∈ X : px ∈ E(u)},

R(x) = {p ∈ X : xp ∈ E(u)}.
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Since B2 and B2 × L2 × R2 are finite semigroups, their word problems are
‘trivially’ solvable by considering all possible substitutions of variables into these
semigroups. However, such a computation is exponential in the number of variables,
which is neither very practical, nor very useful theoretically. The solutions in the next
lemma are both polynomial and theoretically applicable.

LEMMA 1.2. The following hold:

(i) For u, v ∈ X+, B2 satisfies the identity u = v if and only if the following
conditions are satisfied:

c(u) = c(v), E(u) = E(v),

either h(u) = h(v) or L(h(u)) ∩ L(h(v)) 6= ∅,

either t (u) = t (v) or R(t (u)) ∩ R(t (v)) 6= ∅.

(ii) For u, v ∈ X+, NB2 satisfies the identity u = v if and only if the following
conditions are satisfied:

c(u) = c(v), h(u) = h(v), t (u) = t (v) and E(u) = E(v).

PROOF. (i) This solution to the word problem for B2 can be found in Reilly [9]. It can
also be derived from the somewhat different solution provided by Mashevitzky [6].

(ii) This can be derived from part (i), and can also be found in Reilly [9]. 2

The following observation regarding the identities satisfied by B2 is easy to verify
directly, or can be found in [9, Corollary 6.3].

LEMMA 1.3. Let s, t ∈ X and u, v ∈ X+ be such that s, t 6∈ c(u) = c(v). If B2
satisfies the identity sut = svt , then B2 also satisfies the identity u = v.

We denote by CS0
n the class of completely 0-simple semigroups over groups of

exponent dividing n and we denote by RSn the variety generated by all completely
0-simple semigroups over groups of exponent dividing n. We call any subvariety
of RSn a Rees–Sushkevich variety. For the sake of simplicity we will interpret
‘completely 0-simple’ to mean either completely 0-simple or completely simple, as
the occasion requires.

THEOREM 1.4 (Hall et al. [2, Proposition 3.3]). The following set of identities is a
basis of identities for RSn:

xn+2
= x2, (In)

(xy)n+1x = xyx, (IIn)

xyx(zx)n
= x(zx)n yx . (IIIn)

If we take n = 1 in Theorem 1.4, then the identities (In), (IIn) and (IIIn) reduce to
exactly the basis for A∗

2 given in Lemma 1.1(v). Thus we have the following.
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COROLLARY 1.5. A∗

2 = RS1.

A word w ∈ X+ is said to be covered by cycles if, for each xi x j ∈ e(w), there exists
a subword u of w with xi x j ∈ e(u) and h(u) = t (u). An identity u = v (u, v ∈ X+) is
said to be covered by cycles if u and v are both covered by cycles.

LEMMA 1.6 (Mashevitzky [7, Lemma 6]; corrected in Volkov [13]). Let w ∈ X+ be
covered by cycles and θ : X+

→ S ∈ RSn be any homomorphism. Then θ(w) is a
regular element of S.

A useful fact concerning regular elements is contained in the following.

LEMMA 1.7 (Hall et al. [2, Lemma 3.2]). Let S ∈ RSn. For any distinct regular
elements a, b ∈ S, there exists a completely 0-simple semigroup K and a surjective
homomorphism ϕ : S → K such that ϕ(a) 6= ϕ(b).

A word u ∈ X+ is said to be a repeated word if each of its letters either appears in
it at least twice or is contained in a subword starting and ending with the same letter.

LEMMA 1.8. Let u ∈ X+ be a repeated word and ρ be a fully invariant congruence
on X+ such that X+/ρ satisfies the identity

xyx = x(yx)n+1 (n > 1).

Then u is ρ-equivalent to a word that is a product words covered by cycles. In
particular, it is ρ-equivalent to a word of the form

x1u1x1x2u2x2 . . . xmum xm,

where xi ∈ X, ui ∈ X∗.

PROOF. See Reilly [9, Lemma 5.1(ii)]. 2

Throughout we take advantage of the Rees theorem representing completely
0-simple semigroups as regular Rees matrix semigroups, for which we adopt the
notation M0(I, G, 3; P) from [8]. Whenever we write S =M0(I, G, 3; P) we
intend that the matrix P = (pλi ) be regular, that is,

(∀i ∈ I )(∃λ ∈ 3) pλi 6= 0 and

(∀λ ∈ 3)(∃i ∈ I ) pλi 6= 0.

We refer the reader to Howie [3] for information on this and other basic aspects of
semigroup theory.

2. Basic results

In [4], Kublanovsky provides a wealth of information on Rees–Sushkevich
varieties. One fascinating idea introduced there was that it might be possible to give
a simple characterization of the Rees–Sushkevich varieties that are actually generated
by completely 0-simple semigroups by means of the inclusion or exclusion of some
small family of semigroups.
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THEOREM 2.1 (Kublanovsky et al. [5]). Let V ∈ L(RSn). If V is generated by
completely 0-simple semigroups, then one of the following conditions must hold:

(1) A2 ∈ V;

(2) N1 6∈ V;

(3) B2 ∈ V, A0 6∈ V.

Conversely, if V satisfies condition (1) or (2) or the condition

(3′) B2 ∈ V, A0, L2, R2 6∈ V,

then V is generated by completely 0-simple semigroups. 2

In subsequent sections, we will show that condition (3′) is equivalent to saying that
the interval [B2, B2 ∨ Gn] consists of exact varieties. We will then extend this result to
show that the interval [B2, NB2 ∨ Gn] consists of exact varieties and that is the largest
possible such interval, though it does not capture all the remaining exact varieties.

We now provide some preliminary observations regarding condition (3′).

LEMMA 2.2. Let S ∈ RSn, n > 1. Then the following statements are equivalent.

(i) S satisfies the identity xn yn
= ynxn .

(ii) S is not divisible by A0, L2 or R2.

We can now characterize in terms of the lattice of Rees–Sushkevich varieties the
applicability of condition (iii) in Theorem 2.1.

LEMMA 2.3. Let V be a Rees–Sushkevich variety. Then the following statements are
equivalent:

(i) B2 ⊆ V and A0, L2, R2 6∈ V;

(ii) V ∈ [B2, [In, IIn, IIIn, xn yn
= ynxn

]];

(iii) V ∩ A∗

2 = B2.

PROOF. It follows immediately from Lemma 2.2 that (i) implies (ii).
To show that (ii) implies (iii):

B2 ⊆ V ∩ A∗

2

⊆ [xn yn
= ynxn

] ∩ A∗

2

= B2 by Lemma 1.1(i),

whence V ∩ A∗

2 = B2.

From the fact that A0, L2, R2 belong to A∗

2 but not B2, it follows immediately that
(iii) implies (i). 2

COROLLARY 2.4. All varieties in the interval [B2, [In, IIn, IIIn, xn yn
= ynxn

]] are
exact.

PROOF. This follows immediately from Theorem 2.1 and Lemma 2.3. 2
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We conclude this section with two useful characterizations of the variety given by
the identities in Corollary 2.4.

COROLLARY 2.5. Let

V = [In, IIn, IIIn, xn yn
= ynxn

] (n > 1).

(i) V is the largest subvariety of RSn such that V ∩ RS1 = B2.
(ii) V is the variety generated by all Brandt semigroups over groups with exponent

dividing n.

PROOF. (i) Clearly B2 ⊆ V ∩ RS1. Moreover, in combination with x2
= x3 the

identity xn yn
= ynxn reduces to x2 y2

= y2x2. Thus V ∩ RS1 ⊆ B2 and equality
prevails.

If S ∈ RSn\V, then S does not satisfy the identity xn yn
= ynxn , so that, by

Lemma 2.2, V (S) contains L2, R2 or A0. Thus V (S) ∩ RS1 6⊆ B2. Therefore V is
the largest such variety.

(ii) See [2, Proposition 3.9]. 2

In Corollary 5.3 (below), we will have a further characterization of the variety
discussed in Corollary 2.5 as

V = B2 ∨ Gn.

The condition that A0 not belong to a subvariety of RSn is an important one, for
reasons brought out in the next result. Recall that an element a ∈ S is said to be regular
if there exists an element x ∈ S with a = axa. For any semigroup S, let

Reg(S) = {a ∈ S | a is regular}.

PROPOSITION 2.6. Let V ∈ L(RSn), n > 1. Then the following statements are
equivalent.

(i) V satisfies the identity xn yn
= (xn yn)n+1.

(ii) For all S ∈ V, Reg(S) is a subsemigroup.
(iii) A0 6∈ V.

PROOF. To show that (i) implies (ii): let a, b ∈ Reg(S), where S ∈ V. Then there
exist elements a′, b′

∈ S with a = aa′a, b = bb′b. The elements a′a and bb′ are
idempotents, and so we may write

ab[b′(a′abb′)n−1a′
]ab = aa′ab[b′(a′abb′)n−1a′

]abb′b

= a(a′abb′)n+1b

= a((a′a)n(bb′)n)n+1b

= a(a′a)n(bb′)nb

= ab.

Thus ab ∈ Reg(S) and (ii) holds.
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To show that (ii) implies (i): let x, y ∈ S ∈ V. By the identity In, xn and yn are
idempotents, whence xn, yn

∈ Reg(S). Now 〈xn, yn
〉 is a subsemigroup of S, and so

belongs to V. Hence, by hypothesis, Reg(〈xn, yn
〉) is a subsemigroup of 〈xn, yn

〉.

Since xn, yn
∈ Reg(〈xn, yn

〉), it follows that xn yn
∈ Reg(〈xn, yn

〉). Therefore there
exists an element z ∈ 〈xn, yn

〉 with

xn yn z xn yn
= xn yn,

which implies that
xn yn

= (xn yn)k,

for some integer k > 1. Thus 〈xn yn
〉 is a subgroup of 〈xn, yn

〉 and of S and so is of
exponent dividing n. Hence we must have (xn yn)n+1

= xn yn , and (i) holds.
To show that (i) implies (iii): as A0 does not satisfy the identity xn yn

= (xn yn)n+1,

it is evident that A0 cannot belong to V.

To show that (iii) implies (i): suppose that V does not satisfy the identity
xn yn

= (xn yn)n+1. Then there exist S ∈ V and x, y ∈ S such that xn yn
6= (xn yn)n+1.

Let e = xn, f = yn. Since S ∈ RSn, we know that e and f are idempotents. Let

T = 〈e, f 〉, I = T f e T .

Then I is an ideal of T . Suppose that e f ∈ I. Then there exist a, b ∈ T with
e f = a f eb. Hence, for some k > 1, we have e f = (e f )k . But that means that 〈e f 〉

is a cyclic subgroup of T and must have order dividing n, so that

(xn yn)n+1
= (e f )n+1

= e f = xn yn,

contradicting our assumption. Hence e f 6∈ I and T/I = {e, f, e f, I } ∼= A0. Thus
A0 ∈ V, which is again a contradiction. Hence V must satisfy the identity in (i). 2

3. Construction of a cover

In this section, we wish to construct a suitable cover for Rees matrix semigroups
that satisfy the identity axn ynb = aynxnb.

LEMMA 3.1. Let S =M0(I, G, 3; P) satisfy the identity axn ynb = aynxnb. Then
the following hold.

(i) There exists a {0, 1}-matrix Q = (qλi ) such that S ∼=M0(I, G, 3; Q).
(ii) There exists a set A and partitions I =

⋃
α∈A Iα, 3 =

⋃
α∈A 3α of I and 3

such that

qλi 6= 0 ⇐⇒ there exits α ∈ A with i ∈ Iα and λ ∈ 3α.

PROOF. Part (i) follows from Graham [1, Corollary 2], and part (ii) follows from
Reilly [10, Theorem 7.2(xiv)]. 2
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Let S, T be semigroups, and let K be an ideal of T . We say that T is a retract ideal
extension of K by S if:

(a) T/K ∼= S; and
(b) there exists an endomorphism ϕ : T → K with ϕ(k) = k for all k ∈ K .

Let S =M0(I, G, 3; P), where:

(i) G ∈ Gn and G is nontrivial;
(ii) S satisfies the identity axn ynb = aynxnb;
(iii) P is a {0, 1}-matrix.

Let I =
⋃

α∈A Iα, 3 =
⋃

α∈A 3α be partitions of I and 3 such that

pλi 6= 0 ⇐⇒ (∃α ∈ A)i ∈ Iα, λ ∈ 3α.

Let K ∈ V (G) ∩ Gn be such that G is a subgroup of K , and let i 7→ ui be a mapping
of I into K such that:

K(i) ui = u j ⇐⇒ (∃α ∈ A)i, j ∈ Iα;
K(ii) {ui u

−1
j | i, j ∈ I, ui 6= u j } ∩ G = ∅.

Let λ 7→ uλ ∈ K be defined by setting uλ = ui where i ∈ Iα, λ ∈ 3α.

Let S∗
= S\{0} and T = S∗

∪ K , and define multiplication in T as follows:

(i, g, λ) ( j, h, µ) = u−1
i guλu−1

j huµ (pλ j = 0),

(i, g, λ)k = u−1
i guλk, k(i, g, λ) = ku−1

i guλ,

with multiplication within S∗ and K as given.

THEOREM 3.2. With S, K and T as above:

(i) the mapping
χ : (i, g, λ) 7−→ u−1

i guλ

is a partial homomorphism of S∗ into K ;
(ii) T is a retract ideal extension of K by S, with retraction ζ : T → K defined by

ζ((i, g, λ)) = χ((i, g, λ)) ((i, g, λ) ∈ S∗),

ζ(k) = k (k ∈ K );

(iii) χ is injective on eachH-class of T ;
(iv) S ∼= T/K ;
(v) H is a congruence on S and T and

T/H∼= S/H ∈ NB2;

(vi) T is isomorphic to a subsemigroup of K × S/H.
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PROOF. (i) For pλ j 6= 0, we have pλ j = 1 and

χ((i, g, λ) ( j, h, µ)) = χ(i, gh, µ)

= u−1
i gh uµ.

Since pλ j 6= 0, there exists α ∈ A with j ∈ Iα, λ ∈ 3α such that uλ = u j and

χ(i, g, λ) χ( j, h, µ) = u−1
i guλu−1

j huµ

= u−1
i gh uµ,

as required.
(ii) See Petrich and Reilly [8, Lemma I.6.3].
(iii) The H-classes of T are K and the nonzero H-classes of S. By definition, the

restriction of ζ to K is the identity mapping. Consider any pair (i, g, λ), (i, h, λ) of
H-related elements in S∗. We have

ζ(i, g, λ) = ζ(i, h, λ) H⇒ u−1
i g uλ = u−1

i h uλ

H⇒ g = h

H⇒ (i, g, λ) = (i, h, λ).

Thus ζ is injective on allH-classes.
(iv) This follows immediately from (ii).
(v) This follows from the observation that the H-classes of T are the nonzero H-

classes of S together with K .

Now S/H is aperiodic, and so it satisfies the identity x2
= x3. In conjunction with

the identity axn ynb = aynxnb, this yields the identity ax2 y2b = ay2x2b. Hence, by
Lemma 1.1, S/H ∈ NB2.

(vi) Define ϕ : T → K × T/H by

ϕ(t) = (ζ(t), Ht ).

The mapping ζ is a retraction (and so a homomorphism) of T to K , while the mapping
t 7→ Ht is a homomorphism since H is a congruence. Hence ϕ is a homomorphism.
The homomorphism t 7→ Ht separates H-classes of T , while the homomorphism
ζ : T → K is, by part (iii), injective when restricted to any H-class. Therefore ϕ is
a monomorphism. The claim now follows from part (v). 2

4. A complete homomorphism

Clearly the groups contained in RSn comprise the variety Gn , and so it comes as no
surprise that the variety Gn of groups of exponent dividing n figures prominently in the
study of RSn. In this section we will show that the mapping V 7−→ V ∩ Gn determines
a complete retraction of L(RSn) to L(Gn).
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For any x ∈ G ∈ Gn, we have x−1
= xn−1, and so it follows that every (group)

subvariety of Gn can be defined by identities of the form

wy = yw = y,

where w ∈ X+ and y ∈ X.

Let u = u(x1, . . . , xm) be a word in the variables x1, . . . , xm . We wish to define
an associated word. First let w denote any word that contains as subwords all products
xi x j of all pairs of the variables x1, . . . , xm and let x0 be a variable distinct from
x1, . . . , xm . Now define

xγ

i = (x0wx0)
nxn

0 xi x
n
0 (1 ≤ i ≤ m),

and
uγ (x0, x1, . . . , xm) = u(xγ

1 , xγ

2 , . . . , xγ
m).

LEMMA 4.1. Let F = F(x0, x1, . . . , xn) be the free semigroup in RSn on
x0, x1, . . . , xm . Then the elements xγ

i , i = 1, . . . , n, generate a subgroup of F.

PROOF. Since RSn is generated by completely 0-simple semigroups, there exist
Sα ∈ CS0

n, α ∈ A such that F is (isomorphic to) a subsemigroup of
∏

α∈A Sα; that is,

F ≤

∏
α∈A

Sα.

Let α ∈ A. If there exist i, j such that xi (α)x j (α) = 0, then w(α) = 0, so that
xγ

i (α) = 0 for all i. On the other hand, if xi (α)x j (α) 6= 0 for all i, j with 0 ≤ i, j ≤ m,

then 〈{xi (α)}〉 is a completely simple subsemigroup of Sα. Consequently, xγ

i (α)

∈ Hx0(α) = Tα for all i with 1 ≤ i ≤ m, where Tα is a subgroup of Sα. Hence

〈{xγ

i }〉 ≤

∏
α∈A

Tα,

where each Tα is a subgroup of Sα. Since Tα ∈ Gn for all α, it follows that 〈{xγ

i }〉 is a
subgroup of

∏
α∈A Tα and therefore also of F. 2

LEMMA 4.2. Let V = V ({Sα | α ∈ A}) where Sα ∈ RSn. Then V ∩ Gn is generated
by the subgroups of the Sα.

PROOF. Let W denote the variety generated by the subgroups of the Sα. Clearly W ⊆

V ∩ Gn. Now let u(x1, . . . , xm) = v(x1, . . . , xm) be any identity not satisfied by
V ∩ Gn. Then there must exist S ∈ V ∩ Gn and a substitution ϕ : xi 7→ ai of the xi into
S such that u(a1, . . . , am) 6= v(a1, . . . , am). Extend ϕ to a homomorphism ϕ : F =

F(x0, x1, . . . , xm) → S by defining ϕ(x0) = e, the identity of S. Let xγ

i (1 ≤ i ≤ m),
uγ and vγ be defined as above. Then

ϕ(xγ

i ) = ϕ((x0wx0)
nxn

0 xi x
n
0 )

= (ew(a1, . . . , am)e)nenai e
n

= ai ,
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so that

ϕuγ (x0, x1, . . . , xm) = ϕu(xγ

1 , . . . , xγ
m)

= u(a1, . . . , am)

6= v(a1, . . . , am)

= ϕv(xγ

1 , . . . , xγ
m)

= ϕvγ (x0, x1, . . . , xm).

Thus S does not satisfy the identity uγ
= vγ . Since S ∈ V and V is the variety

generated by the Sα, it follows that there exists α ∈ A and a homomorphism
θ : F → Sα such that θuγ

6= θvγ . Setting bi = θ(xγ

i ), we obtain

u(b1, . . . , bm) = θu(xγ

1 , . . . , xγ
m)

= θuγ (x0, x1, . . . , xm)

6= θvγ (x0, x1, . . . , xm)

= θv(xγ

1 , . . . , xγ
m)

= v(b1, . . . , bm).

By Lemma 4.1, 〈{xγ

i }〉 is a subgroup of F. Hence θ〈{xγ

i }〉 = 〈{bi }〉 must be a subgroup,
Tα say, of Sα. Thus Tα ∈ W, and does not satisfy the identity u = v. By the arbitrary
nature of the identity u = v, it follows that V ∩ Gn ⊆ W, and equality prevails. 2

THEOREM 4.3. The mapping

χGn
: V 7→ V ∩ Gn (V ∈ L(RSn))

is a complete retraction ofL(RSn) ontoL(Gn). Consequently χGn
induces a complete

congruence, and, for any U ∈ L(Gn), the class of U in this complete congruence is an
interval, which will be denoted by [U, RSn(U)].

PROOF. It is clear that χGn
respects arbitrary intersections. Now let

Vα ∈ L(RSn), α ∈ A. Trivially,( ∨
α∈A

Vα

)
∩ Gn ⊇

∨
α∈A

(Vα ∩ Gn).

So let G ∈ (
∨

α∈A Vα) ∩ Gn. Then there exist Sβ ∈
⋃

α∈A Vα, β ∈ B, such that
G ∈ V ({Sβ | β ∈ B}). By Lemma 4.2, G is contained in the variety generated by the
subgroups of the Sβ . Consequently, G ∈

∨
β∈B(Vβ ∩ Gn), so that( ∨

α∈A

Vα

)
∩ Gn ⊆

∨
α∈A

(Vα ∩ Gn),

whence equality prevails. 2
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THEOREM 4.4. Let U = [uα = vα]α∈A ∈ L(Gn) where, for each α ∈ A,
uα = uα(x1, . . . , xm), vα = vα(x1, . . . , xm) ∈ X+. Then:

(i) RSn(U) = {S ∈ RSn | all subgroups of S lie in U};
(ii) RSn(U) = [In, IIn, IIIn, uγ

α = v
γ
α ]α∈A.

PROOF. (i) This follows easily from Lemma 4.2.
(ii) See [2, Theorem 3.4 and Corollary 3.5]. 2

5. The interval [B2, B2 ∨ Gn]

In this section we analyse the interval [B2, B2 ∨ Gn] in more detail.

LEMMA 5.1. Let V ∈ [B2, [In, IIn, IIIn, xn yn
= ynxn

]], n > 1. Then

V = (V ∩ Gn) ∨ B2.

PROOF. Clearly (V ∩ Gn) ∨ B2 ⊆ V. By Corollary 2.4, V is exact. So consider any
S =M0(I, G, 3; P) ∈ V. If G is trivial, then

S ∈ V ∩ A∗

2

= B2 (by Lemma 2.3)

⊆ (V ∩ Gn) ∨ B2.

Now assume that G is nontrivial. Since S satisfies the identity xn yn
= ynxn, we may,

by Lemma 3.1, assume that P is a {0, 1}-matrix and that I and 3 are partitioned as in
Lemma 3.1(ii). Let

K =

∏
α∈A∪{0}

Gα,

where Gα = G for all α. Clearly K ∈ V (G) ∩ Gn. Let g ∈ G\{1}, and for i ∈ I define

ui (α) =

{
g if i ∈ Iα ,
1 otherwise.

We identify G with {k ∈ K | k(α) = 1 for all α 6= 0}, where k(α) denotes the
α-component of the element k from the direct product. It is straightforward to verify
that the mapping i 7→ ui satisfies the conditions K(i) and K(ii). So we can let T be
defined as in the discussion preceding Theorem 3.2. Then

S ∈ V (G) ∨ V (S/H) by Theorem 3.2(iv) and (vi)

⊆ (V ∩ Gn) ∨ (NB2 ∩ V (S)) by Theorem 3.2(v)

⊆ (V ∩ Gn) ∨ B2 by Lemma 1.1(i).

Therefore V ⊆ (V ∩ Gn) ∨ B2, and equality prevails. 2
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LEMMA 5.2. Let U ∈ L(Gn) (n > 1) and V = RSn(U) ∩ [xn yn
= ynxn

].

(i) V is the largest subvariety of [In, IIIn, IIIn, xn yn
= ynxn

] such that V ∩

Gn = U.
(ii) V = U ∨ B2.

PROOF. (i) This is clear from the definition of RSn(U) in Theorem 4.3.
(ii) Since V ∈ [B2, [In, IIn, IIIn, xn yn

= ynxn
]], we have

V = (V ∩ Gn) ∨ B2 by Lemma 5.1
= U ∨ B2 by (i).

2

COROLLARY 5.3. For n > 1,

B2 ∨ Gn = [In, IIn, IIIn, xn yn
= ynxn

]

is the largest subvariety of RSn whose intersection with RS1 is B2.

PROOF. We have

[In, IIn, IIIn, xn yn
= ynxn

] = RSn ∩ [xn yn
= ynxn

]

= RSn(Gn) ∩ [xn yn
= ynxn

]

= B2 ∨ Gn by Lemma 5.2(ii),

so that the equality holds. In combination with the identity x2
= x3, the identities

In, IIn and IIIn reduce to the defining identities for A∗

2 (=RS1) in Lemma 1.1(v), so that

[In, IIn, IIIn, xn yn
= ynxn

] ∩ RS1

= [x2
= x3, xyx = xyxyx, xyxzx = xzxyx, x2 y2

= y2x2
]

= [x2
= x3, xyx = xyxyx, x2 y2

= y2x2
],

since the identity xyxzx = xzxyx may be obtained from the other identities. Thus, by
Lemma 1.1(i),

[In, IIn, IIIn, xn yn
= ynxn

] ∩ RS1 = B2.

By Lemma 2.3, [In, IIn, IIIn, xn yn
= ynxn

] is then the largest subvariety of RSn
whose intersection with RS1 is B2. 2

6. The interval [B2, NB2 ∨ Gn]

We are now ready to consider the interval [B2, NB2 ∨ Gn]. We begin with a
description of the interval [B2, NB2].

LEMMA 6.1. The interval [B2, NB2] consists of the varieties B2, LNB2, RNB2 and
NB2.

PROOF. See [9, Theorem 8.1]. 2
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THEOREM 6.2. Let V ∈ [B2, [In, IIn, IIIn, axn ynb = aynxnb]], n > 1. Then

V = (V ∩ Gn) ∨ (V ∩ NB2),

and, in particular, V is exact.

PROOF. Let U denote the subvariety of V generated by the completely 0-simple
semigroups in V. The first step will be to show that U = V. We will do this by showing
that any identity not satisfied by V is also not satisfied by U.

First note that we must have V ∩ NB2 ∈ [B2, NB2], so that by Lemma 6.1, V ∩ NB2
is one of the varieties B2, LNB2, RNB2 or NB2, and is, therefore, an exact variety. It
is also clear that

B2, (V ∩ Gn) ∨ (V ∩ NB2) ⊆ U.

Let u, v ∈ X+ and u = v be an identity not satisfied by V. Let ρ be the fully
invariant congruence on X+ corresponding to V, and let γ : X+

→ X+/ρ be the
natural homomorphism. Then γ (u) 6= γ (v).

If γ (u) and γ (v) are both regular elements in X+/ρ, then, by Lemma 1.7,
there exists a completely 0-simple semigroup S and a surjective homomorphism
θ : X+/ρ → S with θγ (u) 6= θγ (v). Since S is a homomorphic image of X+/ρ, it
follows that S ∈ V, and therefore S ∈ U, so that U does not satisfy the identity u = v.

Consequently we may assume that one of γ (u), γ (v) is not regular, say γ (u) is
not regular.

If c(u) 6= c(v), then U does not satisfy the identity u = v, since B2 does not and
B2 ∈ U. So we may also assume that c(u) = c(v), and we may argue by induction
on |c(u)|.

First assume that |c(u)| = 1, say c(u) = c(v) = {x}. Then u = v is an identity
satisfied by the monogenic free semigroup 〈x〉U in U on the single generator {x}.

Since RSn satisfies the identity x2
= xn+2, it follows that all monogenic semigroups

in RSn have index at most 2. Since B2 ∈ U, 〈x〉U must have index 2. Likewise, the
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monogenic free semigroup 〈x〉V in V must have index 2. Since U and V contain the
same groups, it must also be the case that 〈x〉U and 〈x〉V have the same period, so we
must have 〈x〉U ∼= 〈x〉V. (See Howie [3] for a discussion of the structure of monogenic
semigroups.) But then 〈x〉U and 〈x〉V will satisfy the same identities and, if V does not
satisfy the identity u = v, then neither does U.

So now assume that |c(u)| = m > 1, and that the claim holds for any identity u = v

with c(u) = c(v) and |c(u)| < m.

First consider the case where u is a repeated word. By Lemma 1.8, we may assume
that u is of the form u = u1u2 . . . uk where the factors u1, . . . , uk are all covered by
cycles. By Lemma 1.6, each of the elements γ (ui ) is a regular element of X+/ρ.

Furthermore, invoking the identities of RSn and axn ynb = aynxnb we obtain

(xn yn)n+1
= xn ynxn . . . ynxn yn

= (xn)n+1(yn)n+1

= xn yn.

Consequently, by Proposition 2.6, the regular elements of X+/ρ form a subsemigroup.
Hence

γ (u) = γ (u1)γ (u2) . . . γ (uk)

must also be a regular element in X+/ρ. But that would be a contradiction. Hence
there must exist a letter t that appears in u exactly once and is not contained in any
subword w of u with h(w) = t (w). So we can write

u = u1tu2,

where u1, u2 ∈ X∗, t 6∈ c(u1u2) and c(u1) ∩ c(u2) = ∅. Since c(u) = c(v), t must
appear in v. First suppose that t appears in v at least twice. That means that

v = v1tv2tv3,

where v1, v2, v3 ∈ X∗. Define a homomorphism θ : X+
→ B2 by

θ(x) =


a if x = t ,
ab if x ∈ c(u1),
ba if x ∈ c(u2),
ba otherwise.

Then θ(u) = a 6= 0, θ(v) = 0 and θ(u) 6= θ(v). Thus the identity u = v does not hold
in B2.

Now suppose that t appears in v exactly once:

v = v1tv2, t 6∈ c(v1v2) and v1, v2 ∈ X∗.
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If either c(u1) ∩ c(v2) 6= ∅ or c(u2) ∩ c(v1) 6= ∅, then, with θ as defined above,

θ(u) = a 6= 0 = θ(v),

and again the identity u = v does not hold in B2. So we can assume that c(u1) = c(v1)

and c(u2) = c(v2).

The argument is now broken down into the following cases:

(a) u = u1tu2 where c(u1) 6= ∅ 6= c(u2);

(b) u = tu2 where c(u2) 6= ∅ and the variables of u2 are all repeated;
(c) u = u1t where c(u1) 6= ∅ and the variables of u1 are all repeated;
(d) u = su3t where the variable s (as well as t) appears only once,

c(u3) 6= ∅ and the variables of u3 are all repeated.

(Note that in case (d) we may assume that c(u3) 6= ∅, since otherwise u = st and, by
the arguments above, we must also have v = st , so that V would satisfy the identity
st = st or u = v trivially, which would be a contradiction.)

In case (a), by the above argument, we also have v = v1tv2 where c(u1) = c(v1)

and c(v2) = c(u2). Necessarily, at least one of the identities u1t = v1t, tu2 = tv2 does
not hold in V, say u1t = v1t does not hold in V. Then

|c(u1t)| = |c(v1t)| < m,

and we may apply the induction hypothesis to conclude that U does not satisfy the
identity u1t = v1t either.

Hence there exists S = M0(I, G, 3; P) ∈ U and a homomorphism θ : X+
→ S

with θ(u1t) 6= θ(v1t). At least one of these elements must be nonzero, and therefore
θ(t) 6= 0. Let e be any idempotent in the L-class of θ(t). Now define ϕ : X+

→ S by

ϕ(x) =

{
θ(x) if x ∈ c(u1t) = c(v1t),
e otherwise.

Then

ϕ(u) = ϕ(u1t) ϕ(u2)

= θ(u1t)e

= θ(u1t)

6= θ(v1t)

= θ(v1t)e

= ϕ(v1tv2)

= ϕ(v).

Hence the identity u = v does not hold in S or U.
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We now proceed to case (d). The arguments in cases (b) and (c) are similar.
In case (d) we know from the preceding discussion that v must also have the form
v = sv3t where c(v3) = c(u3).

We argue by contradiction. Suppose that U satisfies the identity u = v. Since
V ∩ Gn, B2 ⊆ U, it follows that V ∩ Gn and B2 satisfy the identity u = v, that is,
the identity su3t = sv3t.

But V ∩ Gn is a variety of groups and s, t 6∈ c(u3) = c(v3). Hence V ∩ Gn must
satisfy the identity u3 = v3. By Lemma 1.3, B2 also satisfies the identity u3 = v3,
whence (V ∩ Gn) ∨ B2 does also. Let {uα = vα}α∈A be a basis of identities for
V ∩ Gn , where uα, vα ∈ X+. Then

(V ∩ Gn) ∨ B2 = RSn(V ∩ Gn) ∩ [xn yn
= ynxn

] by Lemma 5.2,

= [In, IIn, IIIn, uγ
α = vγ

α (α ∈ A), xn yn
= ynxn

] by Theorem 4.4(ii).

Therefore, there exists a deduction

{In, IIn, IIIn, uγ
α = vγ

α (α ∈ A), xn yn
= ynxn

} ` u3 = v3,

so that there will also be a deduction

{In, IIn, IIIn, uγ
α = vγ

α (α ∈ A), axn ynb = aynxnb} ` u = v.

But

{In, IIn, IIIn, uγ
α = vγ

α (α ∈ A), axn ynb = aynxnb}

= RSn(V ∩ Gn) ∩ [axn ynb = aynxnb] ⊇ V,

which implies that V must satisfy the identity u = v, a contradiction. Therefore the
identity u = v must fail in U.

We have now shown that the identity u = v fails in U in all cases. Thus V = U, and
V is generated by its completely 0-simple members.

We are now able to establish the desired decomposition of V. Let

S =M0(I, G, 3; P) ∈ V.

If G is trivial, then

S ∈ V ∩ A∗

2

⊆ V ∩ NB2 (by Lemma 1.1(iv))

⊆ (V ∩ Gn) ∨ (V ∩ NB2).

Now assume that G is nontrivial. In this case, S satisfies the hypothesis of Lemma 3.1,
and, as in Lemma 5.1, we may construct the semigroup T according to the discussion
preceding Theorem 3.2. Then

S ∈ V (T ) by Theorem 3.2(iv),

T ∈ V (K ) ∨ V (S/H) by Theorem 3.2(v), (vi),
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where, by the choice of K ,

V (K ) ⊆ V (G) ⊆ V ∩ Gn,

while

V (S/H) ∈ V ∩ RS1 ⊆ V ∩ [axn ynb = aynxnb] ∩ RS1

= V ∩ NB2.

Thus
S ∈ V (T ) ⊆ (V ∩ Gn) ∨ (V ∩ NB2),

so that
V ⊆ (V ∩ Gn) ∨ (V ∩ NB2),

whence equality prevails, since the reverse inclusion is trivial. 2

There are some interesting special cases of Theorem 6.2.

COROLLARY 6.3. The following hold:

(i) LNB2 ∨ Gn = [In, IIn, IIIn, axn yn
= aynxn

];

(ii) RNB2 ∨ Gn = [In, IIn, IIIn, xn ynb = ynxnb];

(iii) NB2 ∨ Gn = [In, IIn, IIIn, axn ynb = aynxnb].

PROOF. (i) Let V denote the variety on the right-hand side of the equation. Clearly
V ∩ Gn = Gn , while, by Lemma 1.1, V ∩ NB2 = LNB2. Hence, by Theorem 6.2,

V = (V ∩ Gn) ∨ (V ∩ NB2)

= Gn ∨ LNB2.

The proofs of (ii) and (iii) follow similarly. 2

7. Exact varieties do not form a sublattice

It is evident that the join of exact varieties is again an exact variety. However, as
we will now show, the intersection of two exact varieties need not be exact, so that the
exact varieties do not form a sublattice of L(RSn).

EXAMPLE 7.1. Let p and q be distinct primes dividing n, and 〈g〉, 〈h〉 be
(multiplicative) cyclic groups of orders p and q, respectively, with generators g and h.

Let 3 = {1, 2, 3} and

S1 =M0(3, 〈g〉, 3; P1), S2 =M0(3, 〈h〉, 3; P2),

where

P1 =

1 1 0
1 g 0
0 0 1

 and P2 =

1 1 0
1 h 0
0 0 1

 .
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Then
V1 = V (S1), V2 = V (S2)

are both exact varieties. Also, V1 satisfies x p+2
= x2 and V2 satisfies xq+2

= x2, so
that V1 ∩ V2 satisfies x3

= x2.

Thus V1 ∩ V2 is an aperiodic variety. But both V1 and V2 satisfy the identity
(axn ynb)n

= (aynxnb)n , so that any aperiodic exact variety contained in V1 ∩ V2
must satisfy the identity (ax2 y2b)2

= (ay2x2b)2 as well as the identity x2
= x3.

However, any aperiodic completely 0-simple semigroup M0(I, G, 3; P) satisfying
these identities must also satisfy the identity ax2 y2b = ay2x2b, and so lie in NB2.

Clearly NB2 ⊆ V1 ∩ V2, so that NB2 is the largest exact variety contained in V1 ∩ V2.

In addition, V1 ∩ V2 is properly contained in A∗

2.

In S1, let

e = (1, 1, 1), f = (1, 1, 2), a = (1, 1, 3), b = (1, g, 3), c = (2, 1, 3).

Then T1 = {e, f, a, b, c, 0} is a subsemigroup of S1 with multiplication table:

e f a b c
e e f a b a
f e f a b b
a 0 0 0 0 0
b 0 0 0 0 0
c 0 0 0 0 0

.

Furthermore, with the substitution

a 7→ e, x 7→ e, y 7→ f, b 7→ c,

we find that

ax2 y2b 7−→ ee2 f 2c = b,

ay2x2b 7−→ e f 2e2c = a,

so that T1 does not satisfy the identity ax2 y2b = ay2x2b. Consequently, T1 6∈ NB2.

However, T1 is aperiodic, whence NB2 ∨ V (T1) is aperiodic but not equal to NB2. On
the other hand, T1 ∈ V (S1), which satisfies the identity (axn ynb)n

= (aynxnb)n , and
therefore does not contain A2. Hence A2 6∈ NB2 ∨ V (T1). Consequently,

NB2 ∨ V (T1) ∈ [NB2, A∗

2],

but is not exact.
In S2, let

e = (1, 1, 1), f = (1, 1, 2), a = (1, 1, 3), b = (1, h, 3), c = (2, 1, 3).
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Then T2 = {e, f, a, b, c, 0} is a subsemigroup of S2 with the same multiplication table
as T1. Thus T1 ∼= T2. Therefore

NB2 ⊂
6=

NB2 ∨ V (T1) ⊆ V1 ∩ V2 ⊂
6=

A∗

2,

so that V1 ∩ V2 is not an exact variety. Thus the exact varieties do not constitute a
sublattice of L(RSn).

A further consequence of Example 7.1 is that the interval [B2, NB2 ∨ Gn] cannot
be extended at the upper end without including some nonexact varieties. To see this,
let S =M0(I, G, 3; P) 6∈ NB2 ∨ Gn. If A2 ∈ V (S), then V (S) must also contain the
nonexact variety NB2 ∨ V (T ), where T is as constructed in the example.

That means that P cannot contain any submatrix of the form[
pλi pλ j
pµi 0

]
,

where pλi , pλ j and pµi are nonzero. Otherwise, if T is the corresponding
subsemigroup of S then we will have A2 ∼= T/H ∈ V (S), a contradiction. Now
consider P as a normalized matrix. If P is a {0, 1}-matrix, then S will satisfy the
identity axn ynb = aynxnb, and S will belong to NB2 ∨ Gn, a contradiction again.
Hence, there must exist an entry pλi in P, when normalized, with pλi 6= 0, 1. Let
g = pλi . Then P has a submatrix of the form[

1 1
1 g

]
,

where g 6= 0, 1. Let S1 =M0(I1, 〈g〉, 31; P1) denote the corresponding subsemi-
group. Now let S2 = (S1 × B2)/J, the Rees quotient of S1 × B2 modulo the ideal
J = {(x, y) |x = 0 or y = 0}. Then S2 is a completely 0-simple semigroup, and we
can recognize a subsemigroup of the form

S3 =M0(I ′, 〈g〉 × 〈1〉, 3′
; P3),

where

P3 =

(1, 1) (1, 1) 0
(1, 1) (g, 1) 0

0 0 (1, 1)

 .

Then S3 is of the form of the Si in Example 7.1, and so contains a subsemigroup
(isomorphic to) T . Therefore

NB2 ⊂
6=

NB2 ∨ V (T ) ⊆ NB2 ∨ Gn ∨ V (S),

where, by Example 7.1, NB2 ∨ V (T ) is not exact.
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8. Further intervals of exact varieties

The observations of the previous section might lead us to suspect that the situation
with regard to exact varieties that do not contain A2 and are not contained in NB2 ∨ Gn
is somewhat chaotic. As we will now show, that is far from being the case.

THEOREM 8.1. Let V ∈ L(RSn) be such that:

(i) B2 ∈ V;

(ii) V ⊆ [xn yn
= (xn yn)n+1

] ∩ RSn;

(iii) V contains a Rees-matrix semigroup of the form

Mp =M({1, 2}, 〈g〉, {1, 2}; Pg),

where p is a prime dividing n, g is a generator of a cyclic group of order p, and

Pg =

[
1 1
1 g

]
.

Then V is an exact variety.

PROOF. Let U denote the subvariety of V generated by the completely 0-simple
semigroups in V. We will show that any identity not satisfied by V is also not satisfied
by U.

Let u, v ∈ X+ and u = v be an identity not satisfied by V. Let ρ be the fully
invariant congruence on X+ corresponding to V, and let γ : X+

→ X+/ρ be the
natural homomorphism.

The proof now proceeds exactly as in Theorem 6.2 until we reach the point where
the argument is broken down into four cases (a), (b), (c) and (d). The argument in
case (a) is again identical to that in Theorem 6.2. The cases (b) and (c) are one-sided
versions of case (d), and so case (d) remains to be dealt with. Here the argument differs
from that of Theorem 6.2.

So let us assume that V does not satisfy the identity u = v, where u and v are of
the form

u = su1t, v = sv1t,

and
s, t ∈ X, u1, v1 ∈ X+, s, t 6∈ c(u1) = c(v1) 6= ∅.

Then one of the identities su1 = sv1 and u1t = v1t must fail in V, say su1 = sv1. Since
|c(su1)| < |c(u)|, we may invoke the induction hypothesis to conclude that U does not
satisfy the identity su1 = sv1 either. Hence there exist S =M0(I, G, 3; P) ∈ U and
a homomorphism γ : X+/ρ → S such that γ (su1) 6= γ (sv1). There are several cases
to consider.

Case 1: one of γ (su1), γ (sv1) is nonzero and one is zero. Let us assume that

γ (su1) = (i, a, λ) 6= 0, γ (sv1) = 0.
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Since S is regular, there exists j ∈ I with pλ j 6= 0. We define γ ∗
: X+/ρ → S by

γ ∗(x) =

{
( j, 1, λ) if x = t ,
γ (x) otherwise.

Then

γ ∗(su1t) = γ ∗(su1) γ ∗(t) = γ (su1) ( j, 1, λ)

= (i, a, λ) ( j, 1, λ) = (i, apλ j , λ),

while

γ ∗(sv1t) = γ ∗(sv1)γ
∗(t) = γ (sv1)γ

∗(t)

= 0 · γ ∗(t) = 0.

Thus γ ∗(su1t) 6= γ ∗(sv1t), so that S, and therefore also U, does not satisfy the identity
su1t = sv1t.

Case 2: both γ (su1) and γ (sv1) are nonzero, say

γ (su1) = (i, a, λ), γ (sv1) = ( j, b, µ).

We divide this case into three subcases.

Case 2a: i 6= j. Let k ∈ I be such that pλk 6= 0. Then define γ ∗
: X+/ρ → S by

γ ∗(x) =

{
(k, 1, λ) if x = t ,
γ (x) otherwise.

Then

γ ∗(su1t) = γ ∗(su1)γ
∗(t) = γ (su1) (k, 1, λ)

= (i, a, λ) (k, 1, λ) = (i, apλk, λ),

while

γ ∗(sv1t) = γ ∗(sv1)γ
∗(t) = γ (sv1) (k, 1, λ)

= ( j, b, µ) (k, 1, λ)

=

{
( j, bpµk, λ) if pµk 6= 0
0 if pµk = 0

6= γ ∗(su1t).

Thus S and U do not satisfy the identity su1t = sv1t.

Case 2b: λ 6= µ. Let

T = (S × Mp)/J where J = {0} × Mp.
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Since S, Mp ∈ U, we also have T ∈ U. Let m ∈ I be such that pλm 6= 0. Define
γ ∗

: X+/ρ → T by the following. For x ∈ X,

γ ∗(x) =

(γ (x), (1, 1, 2)) if γ (x) = (∗, ∗, λ) and x 6= t ,
(γ (x), (1, 1, 1)) if γ (x) = (∗, ∗, ν), ν 6= λ, x 6= t ,
((m, 1, λ), (2, 1, 2)) if x = t.

Then

γ ∗(su1t) = γ ∗(su1) γ ∗(t)

= (γ (su1), ∗)γ ∗(t)

= ((i, a, λ), (1, 1, 2)) ((m, 1, λ), (2, 1, 2))

= ((i, apλm, λ), (1, g, 2)),

while

γ ∗(sv1t) = γ ∗(sv1)γ
∗(t)

= (γ (sv1), ∗)γ ∗(t)

= (( j, b, µ), (1, 1, 1)) ((m, 1, λ), (2, 1, 2))

=

{
(( j, bpµm, λ), (1, 1, 2)) if pµm 6= 0
0 if pµm = 0

6= γ ∗(su1t).

Therefore T and U do not satisfy the identity su1t = sv1t.

Case 2c: i = j, λ = µ, a 6= b.

Let m ∈ I be such that pλm 6= 0. Define γ ∗
: X+/ρ → S as follows. For x ∈ X,

γ ∗(x) =

{
(m, 1, λ) if x = t ,
γ (x) otherwise.

Then

γ ∗(su1t) = γ ∗(su1)γ
∗(t)

= γ (su1) γ ∗(t)

= (i, a, λ) (m, 1, λ)

= (i, apλm, λ),

while

γ ∗(sv1t) = γ ∗(sv1)γ
∗(t)

= γ (sv1)γ
∗(t)

= ( j, b, µ) (m, 1, λ)

= (i, b, λ) (m, 1, λ)

= (i, bpλm, λ)

6= γ ∗(su1t).
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Thus S and U do not satisfy the identity su1t = sv1t. In all cases, we have now shown
that U does not satisfy the identity u = v. Consequently, V = U, an exact variety. 2

The semigroups Mp introduced in Theorem 8.1 are important in the study of
completely regular semigroups. By Petrich–Reilly [8, Corollary III.5.5], if S is a
completely regular semigroup (that is, a union of groups) then the idempotents form a
subsemigroup of S if and only if S does not contain any Mp as a subsemigroup. Let

Mp = V (Mp).

Note that Mp is an exact variety, so that B2 ∨ Mp is also. Since L2 and R2 are
subsemigroups of Mp we have LZ, RZ ⊆ Mp.

For each integer n ≥ 1, let An denote the variety of abelian groups of exponent
dividing n.

Since 〈g〉 ∈ Mp it is clear that Ap ⊆ Mp so that

NB2 ∨ Ap = B2 ∨ LZ ∨ RZ ∨ Ap

⊆ B2 ∨ Mp.

It is straightforward to verify that Mp and B2 both satisfy the identities

x p
= x2p, x p yx pzx p

= x pzx p yx p,

so that

((NB2 ∨ Gn) ∩ (B2 ∨ Mp)) ∩ Gn

⊆ [x p
= x2p, x p yx pzx p

= x pzx p yx p
] ∩ Gn

= Ap.

The reverse inclusion is clear, so that

((NB2 ∨ Gn) ∩ (B2 ∨ Mp)) ∩ Gn = Ap,

and
((NB2 ∨ Gn) ∩ (B2 ∨ Mp)) ∩ NB2 = NB2.

By Theorem 6.2, we thus obtain

(NB2 ∨ Gn) ∩ (B2 ∨ Mp) = NB2 ∨ Ap.

We can now summarize our discussion.

THEOREM 8.2. The following hold:

(i) Let V be an exact variety in the interval [B2, [xn yn
= (xn yn)n+1

]

∩ RSn] that is not contained in NB2 ∨ Gn. Then V contains a variety of the
form B2 ∨ Mp for some prime p.

(ii) The only exact varieties in the interval [B2 ∨ Ap, B2 ∨ Mp] are B2 ∨ Ap and
B2 ∨ Mp.
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PROOF. (i) Since V is generated by completely 0-simple semigroups, there must be a
completely 0-simple semigroup

S =M0(I, G, 3; P) ∈ V ⊆ [xn yn
= (xn yn)n+1

] ∩ RSn

such that

S 6∈ NB2 ∨ Gn.

Since A2 does not satisfy the identity xn yn
= (xn yn)n+1, it follows that A2 cannot

divide S. Hence, as in the discussion in Section 7, S must contain a subsemigroup of
the form

S1 =M0({1, 2}, 〈g〉, {1, 2}; P),

P =

[
1 1
1 g

]
,

and g 6= 1. Let the order of g be m, let p be a prime dividing m and let M = 〈gm/p
〉.

Then M determines a congruence ρM on S1 defined by

a ρM b ⇐⇒ either a = (i, h, λ), b = (i, k, λ)

where Mh = Mk
or a = 0 = b.

(See Howie [3] for a discussion of congruences on completely 0-simple semigroups.)
It is easy to see that the quotient S1/ρM is isomorphic to Mp, so that Mp ∈ V, and the
claim holds.

(ii) By the discussion preceding this theorem, there are no exact varieties in the
interval [NB2 ∨ Ap, B2 ∨ Mp] that are contained in NB2 ∨ Gn other than NB2 ∨ Ap.

On the other hand, B2 ∨ Mp ⊆ [xn yn
= (xn yn)n+1

], so that by part (i), there are no
exact varieties in the interval that are not contained in NB2 ∨ Gn other than B2 ∨ Mp,

so the claim holds. 2

Note that the interval [NB2 ∨ Ap, B2 ∨ Mp] contains more than just the endpoints,
so that B2 ∨ Mp does not cover NB2 ∨ Ap. For instance, with T1 as in Section 7,
B2 ∨ A2 ∨ V (T1) belongs to the interval [B2 ∨ A2, B2 ∨ Mp] and differs from both
endpoints (but is not exact).

9. Conclusion

We can now achieve Kublanovsky’s goal with a characterization of the Rees–
Sushkevich varieties that are exact.
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FIGURE 1. The ‘lattice’ of exact Rees–Sushkevich varieties in L(RSn) for n > 1.

THEOREM 9.1. Let V ∈ L(RSn). Then V is exact if and only if any of the following
holds:

(i) A2 ∈ V;

(ii) N1 6∈ V;

(iii) V ∈ [B2, NB2 ∨ Gn];

(iv) B2, Mp ∈ V for some prime p dividing n, A0 6∈ V.
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PROOF. Let V be an exact variety. By Theorem 2.1, we know that either (i) or (ii)
holds or

B2 ∈ V, A0 6∈ V.

By Proposition 2.6, this translates to

V ∈ [B2, [xn yn
= (xn yn)n+1

] ∩ RSn].

If (iii) does not hold, then by Theorem 8.2, V contains a variety of the form B2 ∨ Mp,
so that (iv) holds. Thus one of the conditions (i)–(iv) must hold.

Conversely, if either (i) or (ii) holds, then V is exact by Theorem 2.1. If (iii) holds,
then V is exact by Theorem 6.2 and Corollary 6.3. If (iv) holds, then V is exact by
Theorem 8.1. 2

Let V ∈ L(RSn) satisfy the condition that N1 6∈ V. By Theorem 2.1, V is exact and
generated by completely 0-simple semigroups. However, if S =M0(I, G, 3; P) ∈ V
then there can be no zero entries in P , since otherwise N1 would divide S. Hence the
completely 0-simple semigroups in V must be either completely simple or completely
simple with a zero adjoined (the latter case including a two-element semilattice).
Thus V is a variety of normal bands of groups of exponent dividing n. Let NBGn
be the variety of normal bands of groups of exponent dividing n. By Petrich–Reilly
[8, Theorem IV.1.6], every subvariety of NBGn is exact. Thus, for V ∈ L(RSn),

N1 6∈ V ⇐⇒ V ∈ L(NBGn).

Let p1, p2, . . . , pm denote the distinct prime divisors of n > 1. Then, from
Theorem 9.1 and the above remarks, we can conclude the following.

COROLLARY 9.2. The exact subvarieties of RSn are precisely those varieties in the
following intervals (see Figure 1):

[T, NBGn], [B2, NB2 ∨ Gn],

[B2 ∨ Mpi , [xn yn
= (xn yn)n+1

] ∩ RSn] (i = 1, 2, . . . , m),

[A∗

2, RSn].
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