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Abstract
We give a conditional bound for the average analytic rank of elliptic curves over an arbitrary number field. In
particular, under the assumptions that all elliptic curves over a number field K are modular and have L-functions
which satisfy the Generalized Riemann Hypothesis, we show that the average analytic rank of isomorphism classes
of elliptic curves over K is bounded above by (9 deg(𝐾) + 1)/2, when ordered by naive height. A key ingredient in
the proof is giving asymptotics for the number of elliptic curves over an arbitrary number field with a prescribed
local condition; these results are obtained by proving general results for counting points of bounded height on
weighted projective stacks with a prescribed local condition, which may be of independent interest.
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2 T. Phillips

1. Introduction

1.1. Average analytic ranks of elliptic curves

Let E be an elliptic curve over a number field K. The Mordell–Weil theorem states that the set of
K-rational points 𝐸 (𝐾) of E forms a finitely generated abelian group 𝐸 (𝐾) � 𝐸 (𝐾)tor ⊕ Z𝑟 , where
𝐸 (𝐾)tor is the finite torsion subgroup and 𝑟 ∈ Z≥0 is the rank. The study of ranks of elliptic curves has
become a central topic in number theory. Despite this attention, ranks remain a mystery in many ways.

Birch and Swinnerton-Dyer [BSD65] famously conjectured that the rank of an elliptic curve equals
its analytic rank (i.e., the order of vanishing of its L-function at 𝑠 = 1).

To get an understanding of ranks of elliptic curves in general, one can hope to determine the average
rank of elliptic curves. As there are infinitely many elliptic curves, in order to make sense of this average,
one must order elliptic curves in some way. Throughout this article, we order elliptic curves by their naive
height, as defined at the end of Section 2. The average analytic rank of elliptic curves over the rational
numbers was first bounded by Brumer [Bru92], who gave an upper bound of 2.3 under the assumption
of the Generalized Riemann Hypothesis for elliptic L-functions.1 Under the same conditions, this bound
was improved to 2 by Heath-Brown [HB04], and then to 25/14 ≈ 1.8 by Young [You06]. In a remarkable
series of papers [BS15a, BS15b, BS13a, BS13b], Bhargava and Shankar bounded the average size of
2-, 3-, 4- and 5-Selmer groups of elliptic curves, leading to an unconditional upper bound of 0.885 for
the average rank of elliptic curves over Q.

Surprisingly little is known about average ranks of elliptic curves over number fields beyond Q. In
Shankar’s doctoral thesis [Sha13], he extends his work with Bhargava on bounding 2-Selmer groups
to show that the average rank of elliptic curves over number fields is bounded above by 1.5. However,
Shankar’s result counts reduced Weierstrass equations, which differs from counting isomorphism
classes. In particular, counting reduced Weierstrass equations coincides with counting isomorphism
classes of elliptic curves only for the finitely many number fields with unit group {±1} and class num-
ber 1 – namely, Q and the imaginary quadratic extensions Q(

√
−𝑑) for 𝑑 ∈ {2, 7, 11, 19, 43, 67, 163}.

Outside of these cases, there can be multiple reduced Weierstrass equations within the same isomor-
phism class of elliptic curves.

In this article, we prove a conditional bound for the average analytic rank of isomorphism classes
of elliptic curves over an arbitrary number field. This appears to be the first known bound on average
ranks of isomorphism classes of elliptic curves over arbitrary number fields, as well as the first bound
for average analytic ranks of elliptic curves over number fields other than Q.
Theorem 1.1.1. Let K be a number field of degree d. Assume that all elliptic curves over K are modular
and that their L-functions satisfy the Generalized Riemann Hypothesis. Then, the average analytic rank
of isomorphism classes of elliptic curves over K, when ordered by naive height, is bounded above by
(9𝑑 + 1)/2.

One of the main difficulties in extending methods for counting elliptic curves over the rational
numbers to elliptic curves over more general number fields is that one may no longer have a bijection
between reduced short Weierstrass models and isomorphism classes of elliptic curves. We overcome
this difficulty by exploiting the geometry of the moduli stack of elliptic curves. In particular, the
(compactified) moduli stack of elliptic curves is isomorphic to the weighted projective stack P (4, 6).
From this perspective, questions about counting elliptic curves of bounded height turn into questions
about counting points of bounded height on weighted projective stacks. Such questions can then be
studied using various tools from Diophantine geometry.

One of the key ingredients in the proof of Theorem 1.1.1 is estimating the number of elliptic curves
with prescribed local conditions over number fields. To state our results on counting elliptic curves, we
introduce some notation. Let K be a number field with ring of integers O𝐾 , discriminant Δ𝐾 , class
number ℎ𝐾 , regulator 𝑅𝐾 , and which contains 𝜛𝐾 roots of unity. Let Val(𝐾) denote the set of places

1Brumer also assumed that all elliptic curves over Q were modular, which was unknown at the time, but later confirmed in a
series of papers by Andrew Wiles and his students.
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Table 1. Local conditions..

ℒ 𝜅ℒ 𝜖ℒ

good 𝑞−1
𝑞

𝑞10

𝑞10−1 q

bad 𝑞9−1
𝑞10

𝑞10

𝑞10−1 q

multiplicative 𝑞−1
𝑞2

𝑞10

𝑞10−1 1

split multiplicative 𝑞−1
2𝑞2

𝑞10

𝑞10−1 1

nonsplit multiplicative 𝑞−1
2𝑞2

𝑞10

𝑞10−1 1

additive 𝑞8−1
𝑞10

𝑞10

𝑞10−1 q

I𝑚 𝑞2−2𝑞+1
𝑞𝑚+2

𝑞10

𝑞10−1 q

II 𝑞−1
𝑞3

𝑞10

𝑞10−1 1

III 𝑞−1
𝑞4

𝑞10

𝑞10−1 1

IV 𝑞−1
𝑞5

𝑞10

𝑞10−1 1

I∗0
𝑞−1
𝑞6

𝑞10

𝑞10−1 q

I∗𝑚
𝑞2−2𝑞+1
𝑞𝑚+7

𝑞10

𝑞10−1 q

II∗ 𝑞−1
𝑞10

𝑞10

𝑞10−1 1/𝑞2

III∗ 𝑞−1
𝑞9

𝑞10

𝑞10−1 1/𝑞3

IV∗ 𝑞−1
𝑞8

𝑞10

𝑞10−1 1/𝑞

of K, let Val0 (𝐾) denote the set of finite places, and let Val∞(𝐾) denote the set of infinite places. Let
𝜁𝐾 denote the Dedekind zeta function of K. Let 𝐻 (·) denote the Hurwitz-Kronecker class number (see
Subsection 5.1 for the definition). For a prime 𝔭 ⊂ O𝐾 , above a rational prime 𝑝 ∈ Z, we will write
deg(𝔭) for the index of fields [O𝐾 /𝔭 : Z/𝑝], which we will refer to as the degree of 𝔭.

Theorem 1.1.2. Let K be a degree d number field, and let 𝔭 be a prime ideal of O𝐾 of norm q such
that 2 � 𝑞 and 3 � 𝑞. Let ℒ be one of the local conditions listed in Table 1. Then the number of elliptic
curves over K with naive height less than B, and which satisfy the local condition ℒ at 𝔭, is

𝜅𝜅ℒ𝐵
5/6 +𝑂

(
𝜖ℒ𝐵

5
6−

1
3𝑑

)
,

where

𝜅 =
ℎ𝐾 (2𝑟1+𝑟2𝜋𝑟2)2𝑅𝐾10𝑟1+𝑟2−1 gcd(2, 𝜛𝐾 )

𝜛𝐾 |Δ𝐾 |𝜁𝐾 (10) ,

and where 𝜅ℒ and 𝜖ℒ are as in Table 1.

We also give asymptotics for counting elliptic curves with a prescribed trace of Frobenius:

Theorem 1.1.3. Let K be a degree d number field, and let 𝔭 be a degree n prime ideal of O𝐾 above
a rational prime 𝑝 > 3. Set 𝑞 = 𝑁𝐾/Q(𝔭) = 𝑝𝑛, the norm of 𝔭. Let 𝑎 ∈ Z be an integer satisfying
|𝑎 | ≤ 2√𝑞. Then, the number of elliptic curves over K with naive height less than B, good reduction
at 𝔭, and which have trace of Frobenius a at 𝔭, is

𝜅𝜅𝑛,𝑎𝐵
5/6 +𝑂

(
𝜖𝑛,𝑎𝐵

5
6−

1
3𝑑

)
,
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4 T. Phillips

Table 2. Constants for Theorem 1.1.3..

n a 𝜅𝑛,𝑎 𝜖𝑛,𝑎

any |𝑎 | < 2√𝑞 and 𝑝 � 𝑎 𝑞10

𝑞10−1 (𝑞 − 1)𝐻 (𝑎2 − 4𝑞)/𝑞2 𝐻 (𝑎2 − 4𝑞)
odd 𝑎 = 0 𝑞10

𝑞10−1 (𝑞 − 1)𝐻 (−4𝑝)/𝑞2 𝐻 (−4𝑝)
odd 𝑎 ≠ 0 and 𝑝 |𝑎 0 0
even 𝑎2 = 4𝑞 𝑞10

𝑞10−1
𝑞−1
12𝑞2

(
𝑝 + 6 − 4

(−3
𝑝

)
− 3
(−4
𝑝

) )
𝑝 + 6 − 4

(−3
𝑝

)
− 3
(−4
𝑝

)
even 𝑎2 = 𝑞 𝑞10

𝑞10−1 (𝑞 − 1)
(
1 −
(−3
𝑝

) )
/𝑞2 1 −

(−3
𝑝

)
even 𝑎2 = 0 𝑞10

𝑞10−1 (𝑞 − 1)
(
1 −
(−4
𝑝

) )
/𝑞2 1 −

(−4
𝑝

)
even 𝑎2 ∉ {4𝑞, 𝑞, 0} and 𝑝 |𝑎 0 0

where

𝜅 =
ℎ𝐾 (2𝑟1+𝑟2𝜋𝑟2)2𝑅𝐾10𝑟1+𝑟2−1 gcd(2, 𝜛𝐾 )

𝜛𝐾 |Δ𝐾 |𝜁𝐾 (10) ,

and where 𝜅𝑛,𝑎 and 𝜖𝑛,𝑎 are as in Table 2.

Theorem 1.1.2 and Theorem 1.1.3 generalize a result of Cho and Jeong [CJ23b, Theorem 1.4] for
elliptic curves overQ to elliptic curves over arbitrary number fields. For more results on counting elliptic
curves with prescribed local conditions, see the work of Cremona and Sadek [CS23].

1.2. Counting points on weighted projective stacks

Our results for counting isomorphism classes of elliptic curves are special cases of a more general
theorem for counting points of bounded height on weighted projective stacks.

In [Sch79], Schanuel proved an asymptotic for the number of rational points of bounded height
on projective spaces over number fields. This was generalized to weighted projective stacks by Deng
[Den98] (see also the work of Darda [Dar21], which gives a proof using height zeta functions). In this
paper, we extend these results to count points of bounded height which satisfy finitely many prescribed
local conditions (see Theorem 4.0.5).

Remark 1.2.1. Let us briefly mention some additional results related to counting points of bounded
height on weighted projective stacks. Recently, Bruin and Manterola Ayala [MA21, BMA23] have
generalized Deng’s result to count points whose images, with respect to a morphism of weighted
projective stacks, are of bounded height. Using the geometric sieve, Bright, Browning and Loughran
[BBL16] have proven a generalization of Schanuel’s theorem which allows one to impose infinitely
many local conditions on the points of projective space being counted. In [Phi22], the author combines
these results to count points whose images, with respect to a morphism of weighted projective stacks,
are of bounded height and satisfy prescribed local conditions. Such a result has applications to counting
elliptic curves with certain prescribed level structures and local conditions. Building from this result,
Cho, Jeong and Park [CJP23] have given a conditional bound for average analytic ranks of isomorphism
classes of elliptic curves over number fields with a prescribed level structure.

1.3. Asymptotic notation

Let 𝑓 : R>0 → R and 𝑔 : R>0 → R be real valued functions. Throughout the article, we will
write 𝑓 = 𝑂 (𝑔) (or 𝑓 � 𝑔) if there exist constants 𝐶, 𝐷 ∈ R>0 such that for all 𝑥 ≥ 𝐷, we have
| 𝑓 (𝑥) | ≤ 𝐶 · 𝑔(𝑥). We refer to any such C as the implied constant. If the implied constant depends on a
parameter t, then we will write 𝑓 = 𝑂𝑡 (𝑔) (or 𝑓 �𝑡 𝑔).
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1.4. Organization

In Section 2, we cover basic facts about weighted projective stacks and heights defined on weighted
projective stacks. In Section 3, we prove a result for counting points of bounded height satisfying
prescribed local conditions on affine spaces over number fields. In Section 4, we prove our main result
for counting points of bounded height on weighted projective stacks (Theorem 4.0.5). In Section 5, we
apply Theorem 4.0.5 to count elliptic curves with prescribed local conditions. This is where we prove
Theorem 1.1.2 and Theorem 1.1.3. Finally, in Section 6, we use the explicit formula for L-functions,
together with our results for counting elliptic curves with prescribed local conditions, to bound the
average analytic rank of elliptic curves over number fields. This is where we prove Theorem 1.1.1.

2. Preliminaries on weighted projective stacks

In this section, we recall basic facts about weighted projective stacks with an emphasis on heights.

2.1. Heights on weighted projective stacks

Given an (𝑛 + 1)-tuple of positive integers w = (𝑤0, . . . , 𝑤𝑛), the weighted projective stack P (w) is
the quotient stack

P (w) def
= [(A𝑛+1 − {0})/G𝑚],

where the multiplicative group scheme, G𝑚, acts on the punctured affine space, A𝑛+1 − {0}, as follows:

G𝑚 × (A𝑛+1 − {0}) → (A𝑛+1 − {0})

(𝜆, (𝑥0, . . . , 𝑥𝑛)) ↦→ 𝜆 ∗w (𝑥0, . . . , 𝑥𝑛)
def
= (𝜆𝑤0𝑥0, . . . , 𝜆

𝑤𝑛𝑥𝑛).

In the special case when w = (1, . . . , 1), this recovers the usual projective space P𝑛.
The point [(𝑎0, . . . , 𝑎𝑛)] ∈ P (𝑤0, . . . , 𝑤𝑛) has stabilizer 𝜇𝑚, where 𝑚 = gcd(𝑤𝑖 : 𝑎𝑖 ≠ 0). When K

is a field of characteristic zero, we have that 𝜇𝑚 is finite and reduced over K. It follows that, over fields
of characteristic zero, P (𝑤0, . . . , 𝑤𝑛) is a Deligne–Mumford stack.

For any field F, let P (w) (𝐹) denote the set of isomorphism classes of the groupoid of F-points
of P (w). More concretely, P (w) (𝐹) is in canonical bijection with the quotient

(𝐹𝑛+1 − {0})/𝐹×,

where 𝐹× acts on 𝐹𝑛+1 − {0} by the weighted action

𝐹× × (𝐹𝑛+1 − {0}) → (𝐹𝑛+1 − {0})
(𝜆, (𝑎0, . . . , 𝑎𝑛)) ↦→ (𝜆𝑤0𝑎0, . . . , 𝜆

𝑤𝑛𝑎𝑛).

Throughout this article, unless otherwise stated, we assume all weighted projective stacks P (w) are
defined over a number field K.

For each finite place 𝑣 ∈ Val0(𝐾), let𝔭𝑣 be the corresponding prime ideal, and let 𝜋𝑣 be a uniformizer
for the completion 𝐾𝑣 of K at v. For 𝑥 = (𝑥0, . . . , 𝑥𝑛) ∈ 𝐾𝑛+1 − {0}, set |𝑥𝑖 |w,𝑣

def
= |𝜋𝑣 | �𝑣 (𝑥𝑖 )/𝑤𝑖 �𝑣 , and set

|𝑥 |w,𝑣
def
=

{
max𝑖{|𝑥𝑖 |w,𝑣 } if 𝑣 ∈ Val0(𝐾)
max𝑖{|𝑥𝑖 |1/𝑤𝑖𝑣 } if 𝑣 ∈ Val∞(𝐾).
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6 T. Phillips

Definition 2.1.1 (Height). The (exponential) height of a point 𝑥 = [𝑥0 : · · · : 𝑥𝑛] ∈ P (w) (𝐾) is
defined as

Htw(𝑥)
def
=

∏
𝑣 ∈Val(𝐾 )

| (𝑥0, . . . , 𝑥𝑛) |w,𝑣 .

It is straightforward to check that this height function does not depend on the choice of representative
of x.
Definition 2.1.2 (Scaling ideal). Define the scaling ideal ℑw(𝑥) of 𝑥 = (𝑥0, . . . , 𝑥𝑛) ∈ 𝐾𝑛+1 − {0} to be
the fractional ideal

ℑw(𝑥)
def
=

∏
𝑣 ∈Val0 (𝐾 )

𝔭min𝑖 { �𝑣 (𝑥𝑖)/𝑤𝑖 � }
𝑣 .

The scaling ideal ℑw(𝑥) can be characterized as the intersection of all fractional ideals 𝔞 of O𝐾 such
that 𝑥 ∈ 𝔞𝑤0 × · · · × 𝔞𝑤𝑛 ⊆ 𝐾𝑛+1. It has the property that

ℑw(𝑥)−1 = {𝑎 ∈ 𝐾 : 𝑎𝑤𝑖𝑥𝑖 ∈ O𝐾 for all 𝑖}.

The height can be written in terms of the scaling ideal as follows:

Htw([𝑥0 : · · · : 𝑥𝑛]) =
1

𝑁𝐾/Q(ℑw(𝑥))
∏

𝑣 ∈Val∞ (𝐾 )
max
𝑖

{|𝑥𝑖 |1/𝑤𝑖𝑣 }.

It is straightforward to check that this agrees with the height from Definition 2.1.1.
Remark 2.1.3. The height Htw was first defined by Deng [Den98]. In the case of projective spaces,
P𝑛 = P (1, . . . , 1), this height corresponds to the usual Weil height. In more geometric terms, this height
on weighted projective stacks can be viewed as the ‘stacky height’ associated to the tautological bundle
of P (w) (see [ESZB23, §3.3] for this and much more about heights on stacks).

The (compactified) moduli stack of elliptic curves, XGL2 (Z) , is isomorphic to the weighted projective
stack P (4, 6). This isomorphism can be given explicitly as

XGL2 (Z)
∼−→ P (4, 6)

𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 ↦→ [𝐴 : 𝐵] .

Under this isomorphism, the tautological bundle onP (4, 6) corresponds to the Hodge bundle onXGL2 (Z) .
The usual naive height of an elliptic curve E over K with a reduced integral short Weierstrass equation
𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 is defined as

Ht(𝐸) def
=

∏
𝑣 ∈Val∞ (𝐾 )

max{|𝐴|3𝑣 , |𝐵 |2𝑣 }.

One can show that this naive height is the same as the stacky height on XGL2 (Z) with respect to the
twelfth power of the Hodge bundle [ESZB23, §3.3]. For any short Weierstrass equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏
of E, the naive height is given by

Ht(𝐸) def
= Ht(4,6) ( [𝑎 : 𝑏])12.

3. Weighted geometry of numbers over number fields

Let K be a number field. In this section, we prove asymptotics for the number of K-rational points of
bounded height with prescribed local conditions on affine spaces with respect to a weighting. For these
asymptotics, we give a power savings error term which is independent of the local conditions.
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3.1. O-minimal geometry

We briefly cover the basics of o-minimal geometry which will be needed in this article. A general
reference for this subsection is [vdD98, §1]. Let 𝑚𝐿 denote Lebesgue measure on R𝑛.
Definition 3.1.1 (Semi-algebraic set). A (real) semi-algebraic subset of R𝑛 is a finite union of sets of
the form

{𝑥 ∈ R𝑛 : 𝑓1(𝑥) = · · · = 𝑓𝑘 (𝑥) = 0 and 𝑔1 (𝑥) > 0, . . . , 𝑔𝑙 (𝑥) > 0},

where 𝑓1, . . . , 𝑓𝑘 , 𝑔1, . . . , 𝑔𝑙 ∈ R[𝑋1, . . . , 𝑋𝑛].
Definition 3.1.2 (Structure). A structure is a sequence, S = (S𝑛)𝑛∈Z>0 , where each S𝑛 is a set of subsets
of R𝑛 with the following properties:

(i) If 𝐴, 𝐵 ∈ S𝑛, then 𝐴 ∪ 𝐵 ∈ S𝑛 and R𝑛 − 𝐴 ∈ S𝑛 (i.e., S𝑛 is a Boolean algebra).
(ii) If 𝐴 ∈ S𝑚 and 𝐵 ∈ S𝑛, then 𝐴 × 𝐵 ∈ S𝑛+𝑚.

(iii) If 𝜋 : R𝑛 → R𝑚 is the projection to m distinct coordinates and 𝐴 ∈ S𝑛, then 𝜋(𝐴) ∈ S𝑚.
(iv) All real semi-algebraic subsets of R𝑛 are in S𝑛.
A subset is definable in S if it is contained in some S𝑛. Let 𝐷 ⊆ 𝑆𝑛. A function 𝑓 : 𝐷 → R𝑚 is said to
be definable in S if its graph, Γ( 𝑓 ) def

= {(𝑥, 𝑓 (𝑥)) : 𝑥 ∈ 𝐷} ⊆ R𝑚+𝑛, is definable in S .
Note that the intersection of definable sets is definable by property (i).

Definition 3.1.3 (O-minimal structure). An o-minimal structure is a structure in which the following
additional property holds:
(v) The boundary of each set in S1 is a finite set of points.

The class of semialgebraic sets is an example of an o-minimal structure (see, for example,
[vdD98, §2]). The main structure we will use is Rexp, which is defined to be the smallest structure
in which the real exponential function, exp: R → R, is definable. Observe that the function log(𝑥) is
definable in Rexp since its graph,

Γ(log(𝑥)) = {(𝑥, log(𝑥)) : 𝑥 ∈ R>0} = {(exp(𝑦), 𝑦) : 𝑦 ∈ R} ⊂ R2,

is clearly definable in Rexp.
Theorem 3.1.4 [Wil96]. The structure Rexp is o-minimal.

From now on, we will call a subset of R𝑛 definable if it is definable in some o-minimal structure.

3.2. Weighted geometry-of-numbers

The following proposition is a version of the Principle of Lipschitz, which gives estimates for the number
of lattice points in a weighted homogeneous space.
Proposition 3.2.1. Let 𝑅 ⊂ R𝑛 be a bounded set definable in an o-minimal structure. Let Λ ⊂ R𝑛 be a
rank n lattice with successive minima 𝜆1, . . . , 𝜆𝑛 (with respect to the origin-centered unit ball in R𝑛). Set

𝑅(𝐵) = 𝐵 ∗w 𝑅 = {𝐵 ∗w 𝑥 : 𝑥 ∈ 𝑅}.

Then, for sufficiently large2 B,

#(Λ ∩ 𝑅(𝐵)) = 𝑚𝐿 (𝑅)
detΛ

𝐵 |w | +𝑂
(
𝜆𝑛 det(Λ)−1𝐵 |w |−𝑤min

)
,

where the implied constant depends only on R and w.

2Here, just how large sufficiently large is depends on the lattice Λ.
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Proof. This will follow from a general version of the Principle of Lipschitz due to Barroero and Widmer
[BW14, Theorem 1.3]. Since 𝑚𝐿 (𝑅(𝐵)) = 𝐵 |w |𝑚𝐿 (𝑅), [BW14, Theorem 1.3] gives the desired leading
term. Let𝑉 𝑗 (𝑅(𝐵)) denote the sum of the j-dimensional volumes of the orthogonal projections of 𝑅(𝐵)
onto each j-dimensional coordinate subspace of R𝑛. The error term given in [BW14, Theorem 1.3] is

𝑂
�	
1 +

𝑛−1∑
𝑗=1

𝑉 𝑗 (𝑅(𝐵))
𝜆1 · · · 𝜆 𝑗

�
�, (1)

where the implied constant depends only on R. In our case, one observes that𝑉𝑖 (𝑅(𝐵)) = 𝑂 (𝑉 𝑗 (𝑅(𝐵)))
for all 𝑖 ≤ 𝑗 . Moreover, 𝑉𝑛−1 (𝑅(𝐵)) = 𝑂 (

∑
𝑖≤𝑛 𝐵

|w |−𝑤𝑖 ) = 𝑂 (𝐵 |w |−𝑤min), where the implied constant
depends only on R and w. By dimension considerations, we see that if 𝐵 |w |−𝑤min = 𝑂 (𝑉𝑖 (𝑅(𝐵))), then
we must have 𝑖 ≥ 𝑛 − 1. From these observations, it follows that

𝑂
�	
1 +

𝑛−1∑
𝑗=1

𝑉 𝑗 (𝑅(𝐵))
𝜆1 · · · 𝜆 𝑗

�
� = 𝑂
(
𝑉𝑛−1 (𝑅(𝐵))
𝜆1 · · · 𝜆𝑛−1

)
.

By Minkowski’s second theorem [Min07] (for a more modern reference see, for example, [Cas59,
p. 203]),

𝜆1 · · · 𝜆𝑛 ≥ 2𝑛

𝑛! · 𝑚𝐿 (ℬ𝑛)
det(Λ),

where ℬ𝑛 is the unit ball in R𝑛. From this, we obtain the desired expression for the error term,

𝑂

(
𝑉𝑛−1 (𝑅(𝐵))
𝜆1 · · · 𝜆𝑛−1

)
= 𝑂

(
𝜆𝑛𝐵

|w |−𝑤min

det(Λ)

)
. �

Definition 3.2.2 (Boxes). A (Zn
p)-box is a subset B𝑝 ⊂ Z𝑛𝑝 for which there exist closed balls

B𝑝, 𝑗 = {𝑥 ∈ Z𝑝 : |𝑥 − 𝑎 𝑗 |𝑝 ≤ 𝑏𝑝, 𝑗 } ⊂ Z𝑝 ,

where 𝑎 𝑗 ∈ Z𝑝 and 𝑏𝑝, 𝑗 ∈ {𝑝−𝑘 : 𝑘 ∈ Z≥0}, such that B𝑝 equals the Cartesian product
∏𝑛

𝑗=1 B𝑝, 𝑗 . Let S
be a finite set of primes. An S-box is a subset B ⊂

∏
𝑝∈𝑆 Z

𝑛
𝑝 for which there exist Z𝑛𝑝-boxes B𝑝 such that

B =
∏
𝑝∈𝑆

B𝑝 =
∏
𝑝∈𝑆

𝑛∏
𝑗=1

B𝑝, 𝑗 .

Lemma 3.2.3 (Box Lemma). Let Ω∞ ⊂ R𝑛 be a bounded subset definable in an o-minimal structure.
Let S be a finite set of primes and B =

∏
𝑝∈𝑆 B𝑝 an S-box. Then, for each 𝐵 ∈ R>0, we have

#
⎧⎪⎨⎪⎩𝑥 ∈ Z𝑛 ∩ (𝐵 ∗w Ω∞) : 𝑥 ∈

∏
𝑝∈𝑆

B𝑝

⎫⎪⎬⎪⎭
=
�	
𝑚𝐿 (Ω∞)

∏
𝑝∈𝑆

𝑚𝑝 (B𝑝)
�
�𝐵 |w | +𝑂 �	
max

𝑗

⎧⎪⎨⎪⎩
∏
𝑝∈𝑆

𝑏−1
𝑝, 𝑗

⎫⎪⎬⎪⎭�	

∏
𝑝∈𝑆

𝑚𝑝 (B𝑝)
�
�𝐵 |w |−𝑤min�
�,

where the implied constant depends only on Ω∞ and w.

Proof. We have that B𝑝 =
∏𝑛

𝑗=1 B𝑝, 𝑗 with B𝑝, 𝑗 = {𝑥 ∈ Z𝑝 : |𝑥 − 𝑎 𝑗 |𝑝 ≤ 𝑏𝑝, 𝑗 }, where 𝑎 𝑗 ∈ Z𝑝 and
𝑏𝑝, 𝑗 ∈ {𝑝−𝑘 : 𝑘 ∈ Z≥0}. Observe that for each 𝑗 ∈ {1, . . . , 𝑛}, the set Z ∩ B𝑝, 𝑗 is a translate of the
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sublattice 〈𝑏−1
𝑝, 𝑗〉 ⊆ Z. By the Chinese Remainder Theorem, the set Z ∩

∏
𝑝∈𝑆 B𝑝, 𝑗 is a translate of the

sublattice
〈∏

𝑝∈𝑆 𝑏
−1
𝑝, 𝑗

〉
⊆ Z. Taking a Cartesian product, we find that the set

𝑛∏
𝑗=1

�	
Z ∩
∏
𝑝∈𝑆

B𝑝, 𝑗
�
� = Z𝑛 ∩

∏
𝑝∈𝑆

B𝑝

is a translate of a sub-lattice of Z𝑛 whose successive minima are
∏

𝑝∈𝑆 𝑏
−1
𝑝, 𝑗 . In particular, the n-th

successive minimum of the sublattice is

max
𝑗

⎧⎪⎨⎪⎩
∏
𝑝∈𝑆

𝑏−1
𝑝, 𝑗

⎫⎪⎬⎪⎭,
and the determinant of the sublattice is

𝑛∏
𝑗=1

∏
𝑝∈𝑆

𝑏−1
𝑝, 𝑗 =

∏
𝑝∈𝑆

𝑚𝑝 (B𝑝)−1.

The lemma then follows from Proposition 3.2.1. �

Let Λ be a free Z-module of finite rank n. Set Λ∞ = Λ ⊗Z R and Λ𝑝 = Λ ⊗Z Z𝑝 . Equip Λ∞ and Λ𝑝

with Haar measures 𝑚∞ and 𝑚𝑝 , respectively, normalized so that 𝑚𝑝 (Λ𝑝) = 1 for all but finitely many
primes p. As Λ𝑝 � Z𝑛𝑝 , we define a (𝚲p)-box to be a subset of Λ𝑝 isomorphic to a (Z𝑛𝑝)-box.

Lemma 3.2.4. Let Λ be a free Z-module of finite rank n, let Ω∞ ⊂ Λ∞ be a bounded definable subset,
and, for each prime p in a finite subset S, let Ω𝑝 =

∏
𝑗 {𝑥 ∈ Z𝑝 : |𝑥 − 𝑎𝑝, 𝑗 |𝑝 ≤ 𝜔𝑝, 𝑗 } ⊂ Λ𝑝 be a

(Λ𝑝)-box. Let w = (𝑤1, . . . , 𝑤𝑛) be an n-tuple of positive integers. Then,

#{𝑥 ∈ Λ ∩ (𝐵 ∗w Ω∞) : 𝑥 ∈ Ω𝑝 for all primes 𝑝 ∈ 𝑆}

=
�	
 𝑚∞(Ω∞)
𝑚∞(Λ∞/Λ)

∏
𝑝∈𝑆

𝑚𝑝 (Ω𝑝)
𝑚𝑝 (Λ𝑝)

�
�𝐵 |w | +𝑂 �	
max
𝑗

⎧⎪⎨⎪⎩
∏
𝑝∈𝑆

𝜔−1
𝑝, 𝑗

⎫⎪⎬⎪⎭�	

∏
𝑝∈𝑆

𝑚𝑝 (Ω𝑝)
𝑚𝑝 (Λ𝑝)

�
�𝐵 |w |−𝑤min�
�,
where the implied constant depends only on Λ, Ω∞, and w.

Proof. Fix an isomorphism Λ � Z𝑛. The measures 𝑚∞ and 𝑚𝑝 on Λ∞ and Λ𝑝 induce measures on R𝑛
and Z𝑛𝑝 which differ from the usual Haar measures by𝑚∞(Λ∞/Λ) and𝑚𝑝 (Λ𝑝), respectively. It therefore
suffices to prove the result in the case Λ = Z𝑛, and 𝑚∞ = 𝑚𝐿 and 𝑚𝑝 are the usual Haar measures; but
this case is precisely the Box Lemma (Lemma 3.2.3). �

If K is a number field of degree d over Q with discriminant Δ𝐾 , then its ring of integers O𝐾 may
naturally be viewed as a rank d lattice in 𝐾∞

def
= O𝐾 ⊗Z R =

∏
𝑣 |∞ 𝐾𝑣 . This lattice has covolume

|Δ𝐾 |1/2 with respect to the usual Haar measure 𝑚∞ on 𝐾∞ (which differs from Lebesgue measure
on 𝐾∞ � R𝑟1+2𝑟2 by a factor of 2𝑟2 ) [Neu99, Chapter I Proposition 5.2]. More generally, any nonzero
integral ideal 𝔞 ⊆ O𝐾 may be viewed as a lattice in 𝐾∞ with covolume 𝑁𝐾/Q(𝔞) |Δ𝐾 |1/2. For an n-tuple
of positive integers w = (𝑤1, . . . , 𝑤𝑛), define the lattice

𝔞w def
= 𝔞𝑤1 × · · · × 𝔞𝑤𝑛 ⊂ 𝐾𝑛

∞,

where we view each 𝔞𝑤𝑖 as a subset of 𝐾∞. This lattice has covolume 𝑁𝐾/Q(𝔞) |w | |Δ𝐾 |𝑛/2. For example,
in the case that 𝔞 = O𝐾 and 𝑤𝑖 = 1 for all i, one has the lattice 𝔞w = O𝑛

𝐾 of covolume |Δ𝐾 |𝑛/2.

https://doi.org/10.1017/fms.2024.127 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.127


10 T. Phillips

For any rational prime p, we have O𝐾 ⊗Z Z𝑝 =
∏

𝔭 |𝑝 O𝐾,𝔭. Equip each O𝐾,𝔭 with the Haar measure
𝑚𝔭, normalized so that 𝑚𝔭 (O𝐾,𝔭) = 1. This measure induces a measure on O𝑛

𝐾 ,𝔭, which we will also
denote by𝑚𝔭. Similarly, the measure𝑚∞ on 𝐾∞ induces a measure on 𝐾𝑛

∞, which we will denote by𝑚∞.
For 𝑣 ∈ Val0(𝐾) a finite place, let 𝑞𝑣 denote the size of the residue field O𝐾 /𝔭𝑣 . Let 𝔞𝔭 denote the

image of 𝔞 in O𝐾,𝔭.
Definition 3.2.5 (Local condition). An (affine) local condition at a finite place 𝑣 ∈ Val0(𝐾) will refer to
a subset Ω𝑣 ⊆ O𝑛

𝐾 ,𝔭𝑣
. We call a local condition Ω𝑣 irreducible if it is an (O𝑛

𝐾 ,𝔭𝑣
)-box – that is, if there

exist 𝑎 𝑗 ∈ O𝐾,𝔭𝑣 and 𝜔 𝑗 ∈ {𝑞−𝑘𝑣 : 𝑘 ∈ Z≥0} such that Ω𝑣 =
∏

𝑗 {𝑥 ∈ O𝐾,𝔭𝑣 : |𝑥−𝑎 𝑗 |𝑣 ≤ 𝜔 𝑗 } ⊂ O𝑛
𝐾 ,𝔭𝑣

.
Remark 3.2.6. Though our results will mostly concern irreducible local conditions, by taking unions
and complements, one can easily extend these results to many other local conditions.

We now apply Lemma 3.2.4 to the rank 𝑛𝑑 lattice 𝔞w, and with the (𝑛𝑑)-tuple of weights
w̃ = (𝑤1, . . . , 𝑤1, 𝑤2, . . . , 𝑤2, . . . , 𝑤𝑛, . . . , 𝑤𝑛), obtained by repeating each of the weights in the n-tuple
w exactly d times. Observing that |w̃| = 𝑑 |w| and �̃�min = 𝑤min, we obtain the following proposition:
Proposition 3.2.7. Let Ω∞ ⊂ 𝐾𝑛

∞ be a bounded definable subset. Let S be a finite set of prime ideals
of O𝐾 . For each 𝔭 ∈ 𝑆, let Ω𝔭 =

∏
𝑗 {𝑥 ∈ O𝐾,𝔭 : |𝑥 − 𝑎𝔭, 𝑗 |𝔭 ≤ 𝜔𝔭, 𝑗 } ⊂ O𝑛

𝐾 ,𝔭 be an irreducible local
condition. Then,

#{𝑥 ∈ 𝔞w ∩ (𝐵 ∗w Ω∞) : 𝑥 ∈ Ω𝔭 for all primes 𝔭 ∈ 𝑆} = 𝜅𝐵𝑑 |w | +𝑂
(
𝜖𝐵𝑑 |w |−𝑤min

)
,

where

𝜅 =
𝑚∞(Ω∞)

𝑁𝐾/Q (𝔞) |w | |Δ𝐾 |𝑛/2

(∏
𝔭∈𝑆

𝑚𝔭 (Ω𝔭 ∩ 𝔞w
𝔭 )

𝑚𝔭 (𝔞w
𝔭 )

)
,

𝜖 = max
𝑗

{∏
𝔭∈𝑆

𝜔−1
𝔭, 𝑗

}(∏
𝔭∈𝑆

𝑚𝔭 (Ω𝔭 ∩ 𝔞w
𝔭 )

𝑚𝔭 (𝔞w
𝔭 )

)
,

and where the implied constant depends only on K, Ω∞ and w.

4. Counting points on weighted projective stacks

In this section, we prove our results for counting points of bounded height on weighted projective stacks.
Definition 4.0.1 (Local condition). A (projective) local condition at a place 𝑣 ∈ Val(𝐾) will refer to a
subset Ω𝑣 ⊆ P (w) (𝐾𝑣 ).

For a projective local condition Ω𝑣 ⊆ P (w) (𝐾𝑣 ), we denote the affine cone of Ω𝑣 by Ωaff
𝑣 ⊆

(A𝑛+1 − {0})(𝐾𝑣 ) (i.e., Ωaff
𝑣 is the preimage of Ω with respect to the map (A𝑛+1 − {0}) → P (w)).

For 𝑣 ∈ Val0 (𝐾), the set Ωaff
𝑣 ∩ O𝑛+1

𝐾,𝔭𝑣
is an affine local condition, but not an irreducible affine local

condition (see Definition 3.2.5).
Example 4.0.2. Let 𝑣 ∈ Val0(𝐾) be a finite place. Consider the projective local condition

Ω𝑣 = {[𝑎 : 𝑏] ∈ P (1, 1) (𝐾𝑣 ) : 𝑣(𝑎) = 0, 𝑣(𝑏) = 1}.

Then,

Ωaff
𝑣 ∩O2

𝐾,𝑣 = {(𝜆𝑎, 𝜆𝑏) ∈ O2
𝐾,𝑣 : 𝑣(𝑎) = 0, 𝑣(𝑏) = 1, 𝜆 ∈ 𝐾×

𝑣 }.

Though this is not an irreducible affine local condition, it contains the irreducible affine local condition

Ωaff
𝑣,0

def
= {(𝑎, 𝑏) ∈ O2

𝐾,𝑣 : 𝑣(𝑎) = 0, 𝑣(𝑏) = 1}.
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Letting 𝜋𝑣 be a uniformizer of O𝐾,𝑣 , we have

Ωaff
𝑣 ∩O2

𝐾,𝑣 =
⋃
𝑡≥0

(
𝜋𝑡𝑣 ∗(1,1) Ωaff

𝑣,0

)
,

where 𝜋𝑡𝑣 ∗(1,1) Ωaff
𝑣,0 is an irreducible affine local condition for each t.

This example motivates the following definition:

Definition 4.0.3 (Irreducible projective local condition). A projective local condition Ω𝑣 ⊆ P (w) (𝐾𝑣 )
is said to be irreducible if there exists an irreducible affine local condition Ωaff

𝑣,0 such that

Ωaff
𝑣 ∩O𝑛+1

𝐾,𝑣 =
⋃
𝑡≥0

(
𝜋𝑡𝑣 ∗w Ωaff

𝑣,0

)
.

In analogy to the archimedean setting, for any ideal 𝔞𝑣 ⊆ O𝐾,𝑣 , set

𝔞w
𝑣

def
= 𝔞𝑤0

𝑣 × · · · × 𝔞𝑤𝑛𝑣 ⊂ 𝐾𝑛+1
𝑣 .

Proposition 4.0.4. Let Ω𝑣 � P (w) (𝐾𝑣 ) be a nontrivial irreducible projective local condition with

Ωaff
𝑣,0 =

𝑛∏
𝑗=0

{𝑥 ∈ O𝐾,𝑣 : |𝑥 − 𝑎 𝑗 |𝑣 ≤ 𝜔 𝑗 }.

For 𝑡 ∈ Z≥0, set Ωaff
𝑣,𝑡 = 𝜋

𝑡
𝑣 ∗w Ωaff

𝑣,0. Then we have the following:

(a) There exists a j for which |𝑎 𝑗 |𝑣 > 𝜔 𝑗 .
(b) For 𝑡 ≠ 𝑠, we have Ωaff

𝑣,𝑡 ∩Ωaff
𝑣,𝑠 = ∅.

(c) For 𝑠, 𝑡 ∈ Z≥0 with 𝑠 < 𝑡, we have Ωaff
𝑣,𝑠 ∩ (𝜋𝑡𝑣 )w = ∅.

Proof. (a) We first prove the contrapositive of part (a). Suppose that |𝑎 𝑗 |𝑣 ≤ 𝜔 𝑗 for all j. If each 𝜔 𝑗 = 1,
then Ωaff

𝑣,0 = O𝑛+1
𝐾,𝑣 = Ωaff

𝑣 ∩ O𝑛+1
𝐾,𝑣 , but then Ω𝑣 = P (w) (𝐾𝑣 ) would be the trivial projective local

condition. Therefore, there must exist an index j for which 𝜔 𝑗 ≠ 1. By possibly reordering, we may
assume 𝜔1 ≠ 1. As |𝑎1 |𝑣 ≤ 𝜔1 < 1, we have that |1 − 𝑎1 |𝑣 = 1 > 𝜔1 (by the ultrametric triangle
inequality). Let 𝑏 ∈ O𝐾,𝑣 − {0} be such that |𝑏 − 𝑎1 |𝑣 ≤ 𝜔1. Then (𝑏, 0, . . . , 0) and (1, 0, . . . , 0) are
points in the affine cone 𝐾𝑛+1

𝑣 − {0} of P (w) (𝐾𝑣 ), each above the point [1 : 0 : · · · : 0] ∈ P (w) (𝐾𝑣 ),
but only one is contained in Ωaff

𝑣 . We conclude that Ωaff
𝑣 cannot be the entire subset of the affine cone

above a projective local condition.
(b) We now show that if |𝑎 𝑗 |𝑣 > 𝜔 𝑗 for some j, then for 𝑡 ≠ 𝑠, we have Ωaff

𝑣,𝑡 ∩Ωaff
𝑣,𝑠 = ∅. Observe that

Ωaff
𝑣,𝑡 =

𝑛∏
𝑗=0

{𝑥 ∈ O𝐾,𝑣 : |𝑥 − 𝜋𝑡𝑤𝑗𝑣 𝑎 𝑗 |𝑣 ≤ 𝑞−𝑡𝑤𝑗𝑣 𝜔 𝑗 }

is a product of v-adic balls centered at 𝜋𝑡𝑤𝑗𝑣 𝑎 𝑗 with radius 𝑞−𝑡𝑤𝑗𝑣 𝜔 𝑗 . Without loss of generality, we may
assume 𝑠 < 𝑡. Using |𝑎 𝑗 |𝑣 > 𝜔 𝑗 , we have that

|𝜋𝑡𝑤𝑗𝑣 𝑎 𝑗 − 𝜋
𝑠𝑤𝑗
𝑣 𝑎 𝑗 |𝑣 = 𝑞

−𝑠𝑤𝑗
𝑣 · |𝑎 𝑗 |𝑣 > 𝑞

−𝑠𝑤𝑗
𝑣 𝜔 𝑗 > 𝑞

−𝑡𝑤𝑗
𝑣 𝜔 𝑗 .

In particular, the distance between the centers of the balls

{𝑥 ∈ O𝐾,𝑣 : |𝑥 − 𝜋𝑡𝑤𝑗𝑣 𝑎 𝑗 |𝑣 ≤ 𝑞−𝑡𝑤𝑗𝑣 𝜔 𝑗 } and {𝑥 ∈ O𝐾,𝑣 : |𝑥 − 𝜋𝑠𝑤𝑗𝑣 𝑎 𝑗 |𝑣 ≤ 𝑞−𝑠𝑤𝑗𝑣 𝜔 𝑗 }

is larger than either of the radii, and thus, the balls must be disjoint (since we are in an ultrametric space).

https://doi.org/10.1017/fms.2024.127 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.127


12 T. Phillips

(c) We will show that if Ωaff
𝑣,𝑠 ∩ (𝜋𝑡𝑣 )w is nonempty, then Ω𝑣 is not a projective local condition. Let

𝑦 = (𝑦0, . . . , 𝑦𝑛) ∈ Ωaff
𝑣,𝑠 ∩ (𝜋𝑡𝑣 )w and let 𝑦′ = (𝑦′0, . . . , 𝑦

′
𝑛) ∈ O𝑛+1

𝐾,𝑣 be such that 𝑦 = 𝜋𝑡𝑣 ∗w 𝑦
′. It will

suffice to show that 𝑦′ is not in Ωaff
𝑣 .

By part (a), we may choose j to be such that |𝑎 𝑗 |𝑣 > 𝜔 𝑗 . From this, together with the fact that
𝑦 𝑗 ∈ 𝜋

𝑡𝑤𝑗
𝑣 satisfies |𝑦 𝑗 −𝜋

𝑠𝑤𝑗
𝑣 𝑎 𝑗 |𝑣 ≤ 𝑞−𝑠𝑤𝑗𝑣 𝜔 𝑗 , implies that we must have |𝑦 𝑗 |𝑣 = 𝑞

−𝑠𝑤𝑗
𝑣 |𝑎 𝑗 |𝑣 . Therefore,

|𝑦′𝑗 |𝑣 = 𝑞
(𝑡−𝑠)𝑤𝑗
𝑣 |𝑎 𝑗 |𝑣 . Since 𝑠 < 𝑡, this implies that |𝑦′𝑗 |𝑣 ≠ |𝜋𝑟𝑤𝑗𝑣 𝑎 𝑗 |𝑣 for any 𝑟 ∈ Z≥0, and thus, 𝑦′ is

not contained in Ωaff
𝑣 ∩O𝑛+1

𝐾,𝑣 =
⋃

𝑡 Ω
aff
𝑣,𝑡 . �

For any set of projective local conditions (Ω𝑣 )𝑣 , define the sets

Ω
def
= {𝑥 ∈ P (w) (𝐾) : 𝑥 ∈ Ω𝑣 for all 𝑣 ∈ Val(𝐾)},

Ω∞
def
= {𝑥 ∈ P (w) (𝐾) : 𝑥 ∈ Ω𝑣 for all 𝑣 ∈ Val∞(𝐾)},

Ω0
def
= {𝑥 ∈ P (w) (𝐾) : 𝑥 ∈ Ω𝑣 for all 𝑣 ∈ Val0 (𝐾)}.

Set 𝜛𝐾,w
def
= 𝜛𝐾 /gcd(𝜛𝐾 , 𝑤0, . . . , 𝑤𝑛), where we recall that 𝜛𝐾 is the number of roots of unity in K.

Theorem 4.0.5. Let K be a degree d number field overQ. Let 𝑆 ⊂ Val0(𝐾) be a finite set of finite places.
For each 𝑣 ∈ Val∞(𝐾) ∪ 𝑆, let Ω𝑣 ⊂ P (w) (𝐾𝑣 ) be a projective local condition. Suppose that Ωaff

∞ is a
bounded definable subset of 𝐾𝑛+1

∞ and that Ω𝑣 is irreducible for all 𝑣 ∈ 𝑆 with

Ωaff
𝑣,0 =

𝑛∏
𝑗=0

{𝑥 ∈ O𝐾,𝑣 : |𝑥 − 𝑎𝑣, 𝑗 |𝑣 ≤ 𝜔𝑣, 𝑗 },

where 𝑎𝑣, 𝑗 ∈ O𝐾,𝑣 and 𝜔𝑣, 𝑗 ∈ {𝑞−𝑘𝑣 : 𝑘 ∈ Z≥0} (see Definitions 4.0.3 and 3.2.5). Then,

#{𝑥 ∈ P (w) (𝐾) : Htw (𝑥) ≤ 𝐵, 𝑥 ∈ Ω} = 𝜅𝐵 |w | +
{
𝑂 (𝜖Ω𝐵 log(𝐵)) if w=(1,1)

and 𝐾=Q,

𝑂
(
𝜖Ω𝐵

𝑑 |w|−𝑤min
𝑑

)
else,

where the leading coefficient is

𝜅 = 𝜅Ω
ℎ𝐾 (2𝑟1+𝑟2𝜋𝑟2)𝑛+1𝑅𝐾 |w|𝑟1+𝑟2−1

𝜛𝐾,w |Δ𝐾 | (𝑛+1)/2𝜁𝐾 (|w|)
,

where

𝜅Ω =
∏
𝑣 |∞

𝑚𝑣 ({𝑥 ∈ Ωaff
𝑣 : Htw,𝑣 (𝑥) ≤ 1})

𝑚𝑣 ({𝑥 ∈ 𝐾𝑛+1
𝑣 : Htw,𝑣 (𝑥) ≤ 1})

∏
𝑣 ∈𝑆

𝑚𝑣 (Ωaff
𝑣 ∩O𝑛+1

𝐾,𝑣 ),

where the factor in the error term is

𝜖Ω =
∞∑
𝑡=0

max
𝑗

{∏
𝑣 ∈𝑆

𝑁𝐾/Q(𝔭𝑣 )𝑡𝑤𝑗
𝜔𝑣, 𝑗

}
1

𝑁𝐾/Q(𝔭𝑣 )𝑡 |w |

∏
𝑣 ∈𝑆

𝑚𝑣 (Ωaff
𝑣,0),

and where the implied constant is independent of the local conditions Ω𝑣 with 𝑣 ∈ 𝑆.
Proof. Let 𝔠1, . . . , 𝔠ℎ be a set of integral ideal representatives of the ideal class group of K. Then, we
get the following partition of P (w) (𝐾) into points whose scaling ideals are in the same ideal class:

P (w) (𝐾) =
ℎ⊔
𝑖=1

{𝑥 ∈ P (w) (𝐾) : [ℑw(𝑥)] = [𝔠𝑖]}.
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This is well defined since the ideal class of a scaling ideal [ℑw(𝑥)] does not depend on the representative
of x [Den98, Proposition 3.3].

For each 𝔠 ∈ {𝔠1, . . . , 𝔠ℎ}, consider the counting function

𝑀 (Ω, 𝔠, 𝐵) def
= #{𝑥 ∈ P (w) (𝐾) : Htw(𝑥) ≤ 𝐵, [ℑw(𝑥)] = [𝔠], 𝑥 ∈ Ω}.

Note that

#{𝑥 ∈ P (w) (𝐾) : Htw(𝑥) ≤ 𝐵, 𝑥 ∈ Ω} =
ℎ∑
𝑖=1
𝑀 (Ω, 𝔠𝑖 , 𝐵).

Following Schanuel [Sch79], we shall find an asymptotic for 𝑀 (Ω, 𝔠, 𝐵) by counting integral points
in affine space and then moding out by an action of the unit group, followed by an action of principal
ideals.

Consider the (weighted) action of the unit group O×
𝐾 on 𝐾𝑛+1 − {0} given by

𝑢 ∗w (𝑥0, . . . , 𝑥𝑛) = (𝑢𝑤0𝑥0, . . . , 𝑢
𝑤𝑛𝑥𝑛),

and let (𝐾𝑛+1−{0})/O×
𝐾 denote the corresponding set of orbits. Let Ωaff be the affine cone of Ω. We may

describe 𝑀 (Ω, 𝔠, 𝐵) in terms of O×
𝐾 -orbits of an affine cone. In particular, there is a bijection between

{[𝑥0 : · · · : 𝑥𝑛] ∈ P (w) (𝐾) : Htw(𝑥) ≤ 𝐵, [ℑw(𝑥)] = [𝔠], 𝑥 ∈ Ω}

and {
[(𝑥0, . . . , 𝑥𝑛)] ∈ (𝐾𝑛+1 − {0})/O×

𝐾 :
Htw,∞(𝑥)
𝑁𝐾/Q(𝔠)

≤ 𝐵, ℑw(𝑥) = 𝔠, 𝑥 ∈ Ωaff
}

given by

[𝑥0 : · · · : 𝑥𝑛] ↦→ [(𝑥0, . . . , 𝑥𝑛)],

and therefore,

𝑀 (Ω, 𝔠, 𝐵) = #
{
𝑥 ∈ (𝐾𝑛+1 − {0})/O×

𝐾 :
Htw,∞(𝑥)
𝑁𝐾/Q(𝔠)

≤ 𝐵, ℑw(𝑥) = 𝔠, 𝑥 ∈ Ωaff
}
.

Our general strategy will be to first find an asymptotic for the counting function

𝑀 ′(Ω, 𝔠, 𝐵) def
= #
{
𝑥 ∈ (𝐾𝑛+1 − {0})/O×

𝐾 :
Htw,∞(𝑥)
𝑁𝐾/Q(𝔠)

≤ 𝐵, ℑw(𝑥) ⊆ 𝔠, 𝑥 ∈ Ωaff
}

and then use Möbius inversion to obtain an asymptotic formula for 𝑀 (Ω, 𝔠, 𝐵).
We are now going to construct a fundamental domain for the (w-weighted) action of the unit group

O×
𝐾 on 𝐾𝑛+1

∞ − {0}. This will be done using Dirichlet’s Unit Theorem. Let 𝜛(𝐾) denote the set of roots
of unity in K.

Theorem 4.0.6 (Dirichlet’s Unit Theorem). The image Λ of the map

𝜆 : O×
𝐾 → R𝑟1+𝑟2

𝑢 ↦→ (log |𝑢 |𝑣 )𝑣 ∈Val∞ (𝐾 )

is a rank 𝑟 def
= 𝑟1 + 𝑟2 − 1 lattice in the hyperplane H defined by

∑
𝑣 ∈Val∞ (𝐾 ) 𝑥𝑣 = 0 and ker(𝜆) = 𝜛(𝐾).
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For each 𝑣 ∈ Val∞(𝐾), define a map

𝜂𝑣 : 𝐾𝑛+1
𝑣 − {0} → R

(𝑥0, . . . , 𝑥𝑛) ↦→ log max
𝑖

|𝑥𝑖 |1/𝑤𝑖𝑣 .

Combine these maps to obtain a single map

𝜂 :
∏

𝑣 ∈Val∞ (𝐾 )
(𝐾𝑛+1

𝑣 − {0}) → R𝑟1+𝑟2

𝑥 ↦→ (𝜂𝑣 (𝑥𝑣 )).

Let H be the hyperplane in Dirichlet’s unit theorem, and let

pr : R𝑟1+𝑟2 → 𝐻

be the projection along the vector (𝑑𝑣 )𝑣 ∈Val∞ (𝐾 ) , where 𝑑𝑣 = 1 if v is real and 𝑑𝑣 = 2 if v is complex.
More explicitly,

(pr(𝑥))𝑣 = 𝑥𝑣 −
�	
 1
𝑑

∑
𝑣′ ∈Val∞ (𝐾 )

𝑥𝑣′
�
�𝑑𝑣 .

The reason for choosing this projection is to ensure that a certain expanding region (which we are about
to construct) will be weighted homogeneous (see Lemma 4.0.7).

Let {𝑢1, . . . , 𝑢𝑟 } be a basis for the image of O×
𝐾 in the hyperplane H, and let {�̌�1, . . . , 𝑢𝑟 } be the dual

basis. Then the set

F̃ def
= {𝑦 ∈ 𝐻 : 0 ≤ �̌� 𝑗 (𝑦) < 1 for all 𝑗 ∈ {1, . . . , 𝑟}}

is a fundamental domain for H modulo Λ, and F def
= (pr ◦ 𝜂)−1F̃ is a fundamental domain for the

(w-weighted) action of O×
𝐾 on

∏
𝑣 ∈Val∞ (𝐾 ) (𝐾𝑛+1

𝑣 − {0}).
Define the sets

D(𝐵) def
=

⎧⎪⎪⎨⎪⎪⎩𝑥 ∈
∏

𝑣 ∈Val∞ (𝐾 )
(𝐾𝑛+1

𝑣 − {0}) : Htw,∞(𝑥) ≤ 𝐵
⎫⎪⎪⎬⎪⎪⎭

and F (𝐵) def
= F ∩D(𝐵). The sets D(𝐵) are O×

𝐾 -stable, in the sense that if 𝑢 ∈ O×
𝐾 and 𝑥 ∈ D(𝐵), then

𝑢 ∗w 𝑥 ∈ D(𝐵); this can be seen by the following computation:

Htw,∞(𝑢 ∗w 𝑥) =
∏
𝑣 |∞

max
𝑖

|𝑢𝑤𝑖𝑥𝑣,𝑖 |1/𝑤𝑖𝑣

=
∏
𝑣 |∞

|𝑢 |𝑣
∏
𝑣 |∞

max
𝑖

|𝑥𝑣,𝑖 |1/𝑤𝑖𝑣

=
∏
𝑣 |∞

max
𝑖

|𝑥𝑣,𝑖 |1/𝑤𝑖𝑣

= Htw,∞(𝑥).

Similarly, for any 𝑡 ∈ R, we have that

Htw,∞(𝑡 ∗w 𝑥) =
∏
𝑣 |∞

max
𝑖

|𝑡𝑤𝑖𝑥𝑣,𝑖 |1/𝑤𝑖𝑣 =
∏
𝑣 |∞

|𝑡 |𝑣
∏
𝑣 |∞

max
𝑖

|𝑥𝑣,𝑖 |1/𝑤𝑖𝑣 = |𝑡 |𝑑Htw,∞(𝑥).

This shows that D(𝐵) = 𝐵1/𝑑D(1) for all 𝐵 > 0.
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However, F is stable under the weighted action of 𝑡 ∈ R×, in the sense that 𝑡 ∗w F = F . To see this,
note that for any 𝑥 ∈

∏
𝑣 |∞(𝐾𝑛+1

𝑣 − {0}),

𝜂(𝑡 ∗w 𝑥) = (𝑑𝑣 )𝑣 |∞ log(|𝑡 |) + 𝜂(𝑥).

Since the projection pr is linear and annihilates the vector (𝑑𝑣 )𝑣 |∞, we have that

pr ◦ 𝜂(𝑡 ∗w 𝑥) = pr ◦ 𝜂(𝑥),

as desired. From our observations, we obtain the following lemma:

Lemma 4.0.7. The regions F (𝐵) are weighted homogeneous, in the sense that F (𝐵) = 𝐵1/𝑑 ∗w F (1)
for all 𝐵 > 0.

We are now going to count lattice points in F (𝐵). In [Sch79], this is done by using the classical
Principle of Lipschitz [Dav51] (see also [Lan94, VI §2 Theorem 2]). One of the cruxes of Schanuel’s
argument is verifying that a fundamental domain (analogous to our F (1)) has Lipschitz parameterizable
boundary, so that he can apply the Principle of Lipschitz. Though one can modify this part of Schanuel’s
argument to work in our case, we will instead take a slightly different route, using an o-minimal version
of the Principle of Lipschitz (Proposition 3.2.1). This allows one to give a more streamlined proof of
this part of Schanuel’s argument, which may be useful in future generalizations.

Lemma 4.0.8. The set F (1) is bounded.

Proof. Let �̃� ⊂
∏

𝑣 |∞ R𝑣 be the subset defined by
∑

𝑣 |∞ 𝑥𝑣 ≤ 0. Note that F (1) = 𝜂−1(�̃� ∩ pr−1(F̃)).
It follows from the definition of 𝜂 that, in order to show F (1) is bounded, it suffices to show that the set

𝑆
def
= �̃� ∩ pr−1(F̃) ⊂ R𝑟1+𝑟2

is bounded above (i.e., there exist constants 𝑐1, . . . , 𝑐𝑟1+𝑟2 such that for each

𝑥 = (𝑥1, . . . , 𝑥𝑟1+𝑟2) ∈ 𝑆,

we have 𝑥𝑖 ≤ 𝑐𝑖 for all i). For this, note that any 𝑥 ∈ 𝑆 can be written as

𝑥 = pr(𝑥) + (𝑑𝑣 )𝑣
1
𝑑

∑
𝑣′ |∞

𝑥𝑣′ ,

and thus, the components of S are bounded above, noting that the first term, pr(𝑥), has components
bounded above, and the second term has negative components. �

Lemma 4.0.9. The set F (1) is definable in Rexp .

Proof. We make the following straightforward observations:

◦ The product
∏

𝑣 |∞(𝐾𝑛+1
𝑣 − {0}), viewed as a subset of R(𝑟1+2𝑟2) (𝑛+1) , is semi-algebraic since it is

clearly the complement of a semi-algebraic set.
◦ The set D(1) is semi-algebraic.
◦ The set

F = {𝑥 ∈
∏
𝑣 |∞

(𝐾𝑛+1
𝑣 − {0}) : pr ◦ 𝜂(𝑥) ∈ F̃ }

=

⎧⎪⎪⎨⎪⎪⎩𝑥 ∈
∏
𝑣 |∞

(𝐾𝑛+1
𝑣 − {0}) : 0 ≤ �̌� 𝑗

�	
log(max
𝑖

|𝑥𝑖 |1/𝑤𝑖𝑣 ) − 𝑑𝑣
�	
 1
𝑑

∑
𝑣 |∞

log(max
𝑖

|𝑥𝑖 |1/𝑤𝑖𝑣′ )�
��
�𝑣 < 1∀ 𝑗
⎫⎪⎪⎬⎪⎪⎭
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is definable in Rexp since it can be described in terms of polynomials and log, and log is definable in
Rexp (as observed in Subsection 3.1).
It follows that the intersection F (1) = F ∩D(1) is definable in Rexp. �

We now analyze 𝑀 ′(Ω, 𝔠, 𝐵). Note that if ℑw(𝑥) ⊆ 𝔠, then we must have that x is contained in the
lattice

𝔠w = 𝔠𝑤0 × · · · × 𝔠𝑤𝑛 .

Therefore, we can write 𝑀 ′(Ω, 𝔠, 𝐵) as

𝑀 ′(Ω, 𝔠, 𝐵) = #
{
𝑥 ∈ (𝔠w − {0})/O×

𝐾 :
Htw,∞(𝑥)
𝑁𝐾/Q(𝔠)

≤ 𝐵, 𝑥 ∈ Ωaff
}
.

We now stratify Ω. For each 𝑡 ∈ Z≥0, set

Ωaff
𝑣,𝑡 = 𝜋

𝑡
𝑣 ∗w Ωaff

𝑣,0 =
𝑛∏
𝑗=0

{𝑥 ∈ O𝐾,𝑣 : |𝑥 − 𝜋𝑤𝑗 𝑡𝑣 𝑎𝑣, 𝑗 |𝑣 ≤ 𝑞−𝑤𝑗 𝑡𝑣 𝜔𝑣, 𝑗 }.

For t = (𝑡𝑣 )𝑣 ∈𝑆 ∈ Z#𝑆
≥0, set

Ωaff
t

def
= {𝑥 ∈ Ωaff : 𝑥 ∈ Ωaff

𝑣,𝑡𝑣 for all 𝑣 ∈ 𝑆}.

Since each Ω𝑣 is irreducible, we have

Ωaff ∩O𝑛+1
𝐾,𝑣 =

⊔
t∈Z#𝑆

≥0

Ωaff
t .

Set

𝜖t = max
𝑗

{∏
𝔭∈𝑆

𝑞
𝑡𝑣𝑤𝑗
𝑣 𝜔−1

𝑣, 𝑗

}(∏
𝔭∈𝑆

𝑚𝔭 (Ωaff
𝑣,𝑡𝑣

∩ 𝔠w
𝔭 )

𝑚𝔭 (𝔠w
𝔭 )

)
.

Note that each 𝜛(𝐾)-orbit (with respect to the w-weighted action) of an element of (𝐾 − {0})𝑛+1

contains 𝜛𝐾,w elements. Thus,

𝑀 ′(Ω, 𝔠, 𝐵) =
∑

t∈Z#𝑆
≥0

(
#
{
Ωaff

t ∩ F
(
𝑁𝐾/Q(𝔠)𝐵

)
∩ 𝔠w}

𝜛𝐾,w
+𝑂

(
𝜖t𝐵

|w |−𝑤min/𝑑
))
, (2)

where each error term accounts for the points of 𝑀 ′(Ω, 𝔠, 𝐵) contained in the intersection of Ωaff
t and

the subvariety of the affine cone of P (w) (𝐾) consisting of points with at least one coordinate equal to
zero; by Proposition 3.2.7, this error is at most 𝑂

(
𝜖t
(
𝐵1/𝑑 )𝑑 |w |−𝑤min

)
.

By Lemma 4.0.8 and Lemma 4.0.9, we may apply Proposition 3.2.7, with 𝔞 = 𝔠 and the local
conditions Ωaff

𝑣 ∩ F (1) for 𝑣 |∞ and Ωaff
𝑣,𝑡 for 𝑣 ∈ 𝑆. Doing so, we have

#{Ωaff
t ∩ F (𝑁𝐾/Q(𝔠)𝐵) ∩ 𝔠w} =

𝑚∞(Ωaff
∞ ∩ F (1))

|Δ𝐾 | (𝑛+1)/2

(∏
𝔭∈𝑆

𝑚𝔭 (Ωaff
𝑣,𝑡𝑣

∩ 𝔠w
𝔭 )

𝑚𝔭 (𝔠w
𝔭 )

)
𝐵 |w | +𝑂

(
𝜖t𝐵

|w |− 𝑤min
𝑑

)
.

Let 𝑣(𝔠) denote the v-adic valuation of the ideal 𝔠 ⊆ O𝐾 (i.e., the valuation of any (and all)
embeddings of 𝔠 into O𝐾,𝑣 ). By Proposition 4.0.4(c), if 𝑡 < 𝑣(𝔠), then 𝑚𝔭 (Ωaff

𝑣,𝑡 ∩ 𝔠w
𝔭 ) = 0. However,

when 𝑡 ≥ 𝑣(𝔠), we compute
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𝑚𝔭 (Ωaff
𝑣,𝑡 ∩ 𝔠w

𝔭 )
𝑚𝔭 (𝔠w

𝔭 )
=

1
𝑚𝔭 (𝔠w

𝔭 )
𝑚𝔭
�	


𝑛∏
𝑗=0

{𝑥 ∈ 𝔠
𝑤𝑗
𝔭 : |𝑥 − 𝜋𝑡𝑤𝑗𝑣 𝑎 𝑗 |𝑣 ≤ 𝑞−𝑡𝑤𝑗𝑣 𝜔 𝑗 }

�
�
=

1
𝑚𝔭 (𝔠w

𝔭 )
𝑚𝔭
�	


𝑛∏
𝑗=0

{𝑥 ∈ O𝐾,𝔭 : |𝜋𝑣 (𝔠)𝑤𝑗𝑣 𝑥 − 𝜋𝑡𝑤𝑗𝑣 𝑎 𝑗 |𝑣 ≤ 𝑞−𝑡𝑤𝑗𝑣 𝜔 𝑗 }
�
�

= 𝑚𝔭

(
Ωaff
𝑣,𝑡−𝑣 (𝔠)

)
.

By Proposition 4.0.4, we know that the Ωaff
𝑣,𝑡 are disjoint for distinct values of t. Therefore, summing

over all 𝑡 ∈ Z≥0, it follows that∑
𝑡≥0

𝑚𝔭 (Ωaff
𝑣,𝑡 ∩ 𝔠w

𝔭 )
𝑚𝔭 (𝔠w

𝔭 )
=
∑
𝑠≥0

𝑚𝔭 (Ωaff
𝑣,𝑠) = 𝑚𝔭 (Ωaff

𝑣 ∩O𝑛+1
𝐾,𝑣 ),

and we obtain the asymptotic

𝑀 ′(Ω, 𝔠, 𝐵) =
𝑚∞(Ωaff

∞ ∩ F (1))
𝜛𝐾,w |Δ𝐾 | (𝑛+1)/2

(∏
𝔭∈𝑆

𝑚𝔭 (Ωaff
𝑣 ∩O𝑛+1

𝐾,𝑣 )
)
𝐵 |w | +𝑂

(
𝜖Ω𝐵

|w |−𝑤min/𝑑
)
. (3)

Note that as 𝑚∞ is the product of measures (𝑚𝑣 )𝑣 |∞, one has

𝑚∞(Ωaff
∞ ∩ F (1))

𝑚∞(F (1)) =
∏
𝑣 |∞

𝑚𝑣 ({𝑥 ∈ Ωaff
𝑣 : Ht𝑣 (𝑥) ≤ 1})

𝑚𝑣 ({𝑥 ∈ 𝐾𝑛+1
𝑣 : Ht𝑣 (𝑥) ≤ 1})

,

and thus,

𝑚∞(Ωaff
∞ ∩ F (1)) = 𝑚∞(F (1))

∏
𝑣 |∞

𝑚𝑣 ({𝑥 ∈ Ωaff
𝑣 : Ht𝑣 (𝑥) ≤ 1})

𝑚𝑣 ({𝑥 ∈ 𝐾𝑛+1
𝑣 : Ht𝑣 (𝑥) ≤ 1})

. (4)

Computing the volume of F (1) as in [Den98, Proposition 5.3], we obtain

𝑚∞(F (1)) =
(
2𝑟1+𝑟2𝜋𝑟2

)𝑛+1
𝑅𝐾 |w|𝑟1+𝑟2−1.

This differs by a factor of 2(𝑛+1)𝑟2 from Deng’s result since we are using the usual Haar measure on 𝐾∞,
rather than the Lebesgue measure.

Observe that the leading cofficient of the asymptotic (3) equals 𝜁𝐾 (|w|)𝜅/ℎ𝐾 , where 𝜅 is as in the
statement of Theorem 4.0.5.

Note that for 𝑥 ∈ 𝔠w, ℑw(𝑥) = 𝔞𝔠 for some ideal 𝔞 ⊆ O𝐾 . Then, Htw(𝑥) = Htw,∞(𝑥)/𝑁𝐾/Q (𝔞𝔠).
Therefore,

𝑀 ′(Ω, 𝔠, 𝐵) =
∑

𝔞⊆O𝐾
𝑀 (Ω, 𝔞𝔠, 𝐵/𝑁𝐾/Q(𝔞)) =

∑
𝔞⊆O𝐾

𝑁𝐾/Q (𝔞) ≤𝐵

𝑀 (Ω, 𝔞𝔠, 𝐵/𝑁𝐾/Q(𝔞)),

where the inequality 𝑁𝐾/Q (𝔞) ≤ 𝐵 comes from the fact that 𝑀 (Ω, 𝔠, 𝐵) = 0 if 𝐵 < 1, since all points
have height greater than or equal to 1.

Since the ideals of O𝐾 form a poset (ordered by inclusion), we may use Möbius inversion (see, for
example, [Sta97, §3.7] for details about Möbius inversion for posets). Applying Möbius inversion, and
using our asymptotic (3) for 𝑀 ′(Ω, 𝔠, 𝐵), we have that
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𝑀 (Ω, 𝔠, 𝐵) =
∑

𝔞⊆O𝐾
𝑁𝐾/Q (𝔞) ≤𝐵

𝜇(𝔞)
(
𝜁𝐾 (|w|)𝜅
ℎ𝐾

(
𝐵

𝑁𝐾/Q(𝔞)

) |w |
+𝑂

(
𝜖Ω

(
𝐵

𝑁𝐾/Q(𝔞)

) |w |−𝑤min/𝑑
))

=
𝜁𝐾 (|w|)𝜅
ℎ𝐾

𝐵 |w |
�			

∑

𝔞⊆O𝐾
𝜇(𝔞) 1

𝑁𝐾/Q(𝔞) |w | −
∑

𝔞⊆O𝐾
𝑁𝐾/Q (𝔞)>𝐵

𝜇(𝔞) 1
𝑁𝐾/Q(𝔞) |w |

�


�
+𝑂

�			
𝜖Ω𝐵
|w |−𝑤min/𝑑

∑
𝔞⊆O𝐾

𝑁𝐾/Q (𝔞) ≤𝐵

1
𝑁𝐾/Q(𝔞) |w |−𝑤min/𝑑

�


�
=
𝜁𝐾 (|w|)𝜅
ℎ𝐾

𝐵 |w |
(

1
𝜁𝐾 (|w|) −𝑂

(
𝐵−|w |+1

))
+
{
𝑂 (𝜖Ω𝐵 log(𝐵)) if w=(1,1)

and 𝐾=Q,

𝑂
(
𝜖Ω𝐵

|w |−𝑤min/𝑑
)

else,

=
𝜅

ℎ𝐾
𝐵 |w | +

{
𝑂 (𝜖Ω𝐵 log(𝐵)) if w = (1, 1) and 𝐾 = Q,

𝑂
(
𝜖Ω𝐵

|w |−𝑤min/𝑑
)

else.

Summing over the ℎ𝐾 ideal class representatives 𝔠𝑖 , we arrive at Theorem 4.0.5. �

5. Counting elliptic curves

In this section, we apply Theorem 4.0.5 to the moduli stack of elliptic curves.

5.1. Counting elliptic curves with a prescribed local condition

An application of Theorem 4.0.5 gives the following result:

Corollary 5.1.1. Let E𝐾 (𝐵) denote the set of isomorphism classes of elliptic curves over K with height
less than B. Then,

#E𝐾 (𝐵) = 𝜅𝐵5/6 +𝑂 (𝐵5/6−1/3𝑑),

where

𝜅 =
ℎ𝐾 (2𝑟1+𝑟2𝜋𝑟2)2𝑅𝐾10𝑟1+𝑟2−1 gcd(2, 𝜛𝐾 )

𝜛𝐾 |Δ𝐾 |𝜁𝐾 (10) .

Proof. Recall that the moduli stack of elliptic curves, XGL2 (Z) , is isomorphic to the weighted projective
stack P (4, 6). Also recall that the naive height on XGL2 (Z) corresponds to the twelfth power of the height
on P (4, 6) with respect to the tautological bundle (i.e., the height Ht(4,6) ). Therefore, the desired result
follows from applying Theorem 4.0.5 to P (4, 6) with trivial local conditions (i.e., 𝑆 = ∅). �

We now use Theorem 4.0.5 to count elliptic curves with a prescribed local condition.

Theorem 1.1.2. Let K be a degree d number field, and let 𝔭 ⊂ O𝐾 be a prime ideal of norm q such
that 2 � 𝑞 and 3 � 𝑞. Let ℒ be one of the local conditions listed in Table 1. Then the number of elliptic
curves over K with naive height less than B and which satisfy the local condition ℒ at 𝔭 is

𝜅𝜅ℒ𝐵
5/6 +𝑂

(
𝜖ℒ𝐵

5
6−

1
3𝑑

)
,
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where

𝜅 =
ℎ𝐾 (2𝑟1+𝑟2𝜋𝑟2)2𝑅𝐾10𝑟1+𝑟2−1 gcd(2, 𝜛𝐾 )

𝜛𝐾 |Δ𝐾 |𝜁𝐾 (10) ,

and where 𝜅ℒ and 𝜖ℒ are as in Table 1.

Proof. Good reduction case. Note that the number of elliptic curves over F𝑞 with good reduction is

#{(𝑎, 𝑏) ∈ F𝑞 × F𝑞 : 4𝑎3 + 27𝑏2 � 0 (mod 𝑞)} = 𝑞2 − 𝑞.

For each pair (𝑎, 𝑏) in the above set, fix a lift in O2
𝐾,𝑣 , which, by an abuse of notation, we will also

denote (𝑎, 𝑏). Then, consider the irreducible local condition

Ωaff
𝔭,0(𝑎, 𝑏)

def
=

{
(𝑥0, 𝑥1) ∈ O2

𝐾,𝑣 : |𝑥0 − 𝑎 |𝑣 ≤ 1
𝑞
, |𝑥1 − 𝑏 |𝑣 ≤ 1

𝑞

}
.

We find the 𝔭-adic measure

𝑚𝔭 (Ωaff
𝔭,0(𝑎, 𝑏)) =

1
𝑞2 .

For 𝑡 ∈ Z≥0, the sets

Ωaff
𝔭,𝑡 (𝑎, 𝑏) = 𝜋𝑡𝑣 ∗(4,6) Ωaff

𝔭,0(𝑎, 𝑏) =
{
(𝑥0, 𝑥1) ∈ O2

𝐾,𝑣 : |𝑥0 − 𝑞4𝑡𝑎 |𝑣 ≤ 1
𝑞4𝑡+1 , |𝑥1 − 𝑞6𝑡𝑏 |𝑣 ≤ 1

𝑞6𝑡+1

}
each have 𝔭-adic measure

𝑚𝔭 (Ωaff
𝔭,𝑡 (𝑎, 𝑏)) =

1
𝑞10𝑡+2 .

Applying Theorem 4.0.5 to each Ωaff
𝔭,0(𝑎, 𝑏), and summing over all the 𝑞2 − 𝑞 possible (𝑎, 𝑏) pairs, it

follows that the number of elliptic curves of bounded height over K with good reduction at 𝔭 is

𝜅𝜅ℒ𝐵
5/6 +𝑂

(
𝜖𝐵

5
6−

1
3𝑑

)
, (5)

where

𝜅ℒ =
∑
(𝑎,𝑏)

∞∑
𝑡=0
𝑚𝔭 (Ωaff

𝔭,𝑡 (𝑎, 𝑏)) = (𝑞2 − 𝑞)
∞∑
𝑡=0

1
𝑞10𝑡+2 = (𝑞2 − 𝑞) 1

𝑞2
𝑞10

𝑞10 − 1
=
𝑞 − 1
𝑞

𝑞10

𝑞10 − 1
,

and

𝜖 =
∑
(𝑎,𝑏)

∞∑
𝑡=0

max{𝑞4𝑡+1, 𝑞6𝑡+1}𝑚𝔭 (Ωaff
𝔭,𝑡 (𝑎, 𝑏)) = (𝑞2 − 𝑞)

∞∑
𝑡=0

𝑞6𝑡+1

𝑞10𝑡+2 =
𝑞5 − 𝑞4

𝑞4 − 1
.

As the error term can be rewritten as𝑂 (𝑞𝐵 5
6−

1
3𝑑 ), we may replace the coefficient 𝜖 in the asymptotic (5)

with 𝜖ℒ = 𝑞.
Kodaira type III* case. By Tate’s algorithm [Tat75], an elliptic curve over𝐾𝔭 given in short Weierstrass

form, 𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, has type III* reduction if and only if 𝑣𝔭 (𝑎) = 3 and 𝑣𝔭 (𝑏) ≥ 5. Observe that

#{(𝑎, 𝑏) ∈ O𝐾 /𝔭5 ×O𝐾 /𝔭5 : 𝑣𝔭 (𝑎) = 3, 𝑣𝔭 (𝑏) ≥ 5} = 𝑞(𝑞 − 1).
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For each pair (𝑎, 𝑏) in the above set, fix a lift in O2
𝐾,𝑣 , which, by an abuse of notation, we will also

denote (𝑎, 𝑏). Then, consider the irreducible local condition

Ωaff
𝔭,0(𝑎, 𝑏)

def
=

{
(𝑥0, 𝑥1) ∈ O2

𝐾,𝑣 : |𝑥0 − 𝑎 |𝑣 ≤ 1
𝑞5 , |𝑥1 − 𝑏 |𝑣 ≤ 1

𝑞5

}
.

We find that the 𝔭-adic measure of this set is

𝑚𝔭 (Ωaff
𝔭,0(𝑎, 𝑏)) =

1
𝑞10 .

The sets

Ωaff
𝔭,𝑡 (𝑎, 𝑏) = 𝜋𝑡𝑣 ∗(4,6) Ωaff

𝔭,0(𝑎, 𝑏) =
{
(𝑥0, 𝑥1) ∈ O2

𝐾,𝑣 : |𝑥0 − 𝑞4𝑡𝑎 |𝑣 ≤ 1
𝑞4𝑡+5 , |𝑥1 − 𝑞6𝑡𝑏 |𝑣 ≤ 1

𝑞6𝑡+5

}
each have 𝔭-adic measure

𝑚𝔭 (Ωaff
𝔭,𝑡 (𝑎, 𝑏)) =

1
𝑞10𝑡+10 .

Applying Theorem 4.0.5 to each Ωaff
𝔭,0(𝑎, 𝑏), and summing over all pairs (𝑎, 𝑏), yields the following

asymptotic for the number of elliptic curves of bounded height over K with reduction of Kodaira type III*
at 𝔭:

𝜅𝜅ℒ𝐵
5/6 +𝑂

(
𝜖𝐵

5
6−

1
3𝑑

)
, (6)

where

𝜅ℒ =
∑
(𝑎,𝑏)

∞∑
𝑡=0
𝑚𝔭 (Ωaff

𝔭,𝑡 (𝑎, 𝑏)) = 𝑞(𝑞 − 1)
∞∑
𝑡=0

1
𝑞10𝑡+10 = (𝑞2 − 𝑞) 1

𝑞10
𝑞10

𝑞10 − 1
=
𝑞 − 1
𝑞9

𝑞10

𝑞10 − 1
,

and

𝜖 =
∑
(𝑎,𝑏)

∞∑
𝑡=0

max{𝑞4𝑡+5, 𝑞6𝑡+5}𝑚𝔭 (Ωaff
𝔭,𝑡 (𝑎, 𝑏)) = (𝑞2 − 𝑞)

∞∑
𝑡=0

𝑞6𝑡+5

𝑞10𝑡+10 =
𝑞 − 1
𝑞4 − 1

.

As the error term can be rewritten as𝑂 (𝑞−3𝐵
5
6−

1
3𝑑 ), we may replace the coefficient 𝜖 in the asymptotic (6)

with 𝜖ℒ = 1/𝑞3.
The other cases can be proven similarly to those given above. �

We now turn to estimating the number of elliptic curves with a prescribed trace of Frobenius. For
𝑏, 𝑐 ∈ F𝑞 , let 𝐸𝑏,𝑐 denote the short Weierstrass model 𝑦2 = 𝑥3 + 𝑏𝑥 + 𝑐, with disciminant Δ (𝑏, 𝑐) =
−16(4𝑏3 + 27𝑐2) and trace of Frobenius 𝑎𝑞 (𝐸𝑏,𝑐). We study the counting function

𝐻 (𝑎, 𝑞) def
= #{(𝑏, 𝑐) ∈ F𝑞 × F𝑞 : Δ (𝑏, 𝑐) ≠ 0, 𝑎𝑞 (𝐸𝑏,𝑐) = 𝑎}. (7)

This function is closely related to Hurwitz-Kronecker class numbers, which we now recall. Let K be an
imaginary quadratic field with ring of integers O𝐾 , and let O be an order in K with class number ℎ(O).
The Hurwitz-Kronecker class number of O, denoted 𝐻 (disc(O)), is defined as

𝐻 (disc(O)) def
=

∑
O⊂O′⊂O𝐾

ℎ(O′)
#O′× . (8)
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This definition of the Hurwitz-Kronecker class number agrees with the definition given in [Len87] but
is half as large as it is sometimes defined (such as in [Cox89]). Let 𝑞 = 𝑝𝑛 be a power of a prime 𝑝 > 3.
Then, a beautiful result, following largely from work of Deuring [Deu41], expresses the number of
elliptic curves over a finite field F𝑞 with a prescribed trace of Frobenius in terms of Hurwitz-Kronecker
class numbers:

𝐻 (𝑎, 𝑞) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑞 − 1)𝐻 (𝑎2 − 4𝑞) if |𝑎 | < 2√𝑞 and 𝑝 � 𝑎
(𝑞 − 1)𝐻 (−4𝑝) if 𝑛 is odd and 𝑎 = 0
𝑞−1
12

(
𝑝 + 6 − 4

(−3
𝑝

)
− 3
(−4
𝑝

) )
if 𝑛 is even and 𝑎2 = 4𝑞

(𝑞 − 1)
(
1 −
(−3
𝑝

) )
if 𝑛 is even and 𝑎2 = 𝑞

(𝑞 − 1)
(
1 −
(−4
𝑝

) )
if 𝑛 is even and 𝑎 = 0

0 otherwise.

(9)

This formula can be derived from [Sch87, Theorem 4.6], which counts the number of isomorphism
classes of elliptic curves over F𝑞 with a prescribed trace of Frobenius. From this, one can deduce
formula (9) by noting that the isomorphism class of each 𝐸𝑏,𝑐 contains exactly 𝑞 − 1 elliptic curves. To
see that each isomorphism class contains exactly 𝑞 − 1 elliptic curves, note that 𝐸𝑏,𝑐 � 𝐸𝑑,𝑒 if and only
if (𝑑, 𝑒) = (𝜆4𝑏, 𝜆6𝑐) for some 𝜆 ∈ F×𝑞 , and since 𝑝 > 3, the pairs (𝜆4𝑏, 𝜆6𝑐) will be distinct for distinct
𝜆 ∈ F×𝑞 . (See [Cox89, Theorem 14.18] for a proof of formula (9) in the case that 𝑞 = 𝑝 is a prime.)

Theorem 1.1.3. Let K be a degree d number field, and let 𝔭 be a prime ideal of O𝐾 of degree n above
a rational prime 𝑝 > 3. Set 𝑞 = 𝑝𝑛. Let 𝑎 ∈ Z be an integer satisfying |𝑎 | ≤ 2√𝑞. Then, the number
of elliptic curves over K with naive height less than B, good reduction at 𝔭, and which have trace of
Frobenius a at 𝔭 is

𝜅𝜅𝑛,𝑎𝐵
5/6 +𝑂

(
𝜖𝑛,𝑎𝐵

5
6−

1
3𝑑

)
,

where

𝜅 =
ℎ𝐾 (2𝑟1+𝑟2𝜋𝑟2)2𝑅𝐾10𝑟1+𝑟2−1 gcd(2, 𝜛𝐾 )

𝜛𝐾 |Δ𝐾 |𝜁𝐾 (10) ,

and where 𝜅𝑛,𝑎 and 𝜖𝑛,𝑎 are as in Table 2.

Proof. For each of the 𝐻 (𝑎, 𝑞) pairs (𝑏, 𝑐) in the set

{(𝑏, 𝑐) ∈ F𝑞 × F𝑞 : Δ (𝑏, 𝑐) ≠ 0, 𝑎𝑞 (𝐸𝑏,𝑐) = 𝑎},

fix a lift inO2
𝐾,𝑣 , which, by an abuse of notation, we will also denote (𝑏, 𝑐). Then consider the irreducible

local condition

Ωaff
𝔭,0(𝑏, 𝑐)

def
=

{
(𝑥0, 𝑥1) ∈ O2

𝐾,𝑣 : |𝑥0 − 𝑏 |𝑣 ≤ 1
𝑞
, |𝑥1 − 𝑐 |𝑣 ≤ 1

𝑞

}
.

We find that the 𝔭-adic measure of each of these local conditions is

𝑚𝔭 (Ωaff
𝔭,0(𝑏, 𝑐)) =

1
𝑞2 .

More generally, for 𝑡 ∈ Z≥0, the sets

Ωaff
𝔭,𝑡 (𝑏, 𝑐) = 𝜋𝑡𝑣 ∗(4,6) Ωaff

𝔭,0(𝑏, 𝑐) =
{
(𝑥0, 𝑥1) ∈ O2

𝐾,𝑣 : |𝑥0 − 𝑞4𝑡𝑏 |𝑣 ≤ 1
𝑞4𝑡+1 , |𝑥1 − 𝑞6𝑡𝑐 |𝑣 ≤ 1

𝑞6𝑡+1

}
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each have 𝔭-adic measure

𝑚𝔭 (Ωaff
𝔭,𝑡 (𝑏, 𝑐)) =

1
𝑞10𝑡+2 .

Applying Theorem 4.0.5 to each Ωaff
𝔭,0(𝑏, 𝑐), and summing over all the 𝐻 (𝑎, 𝑞) possible (𝑏, 𝑐) pairs, it

follows that the number of elliptic curves of bounded height over K with good reduction at 𝔭 and trace
of Frobenius a at 𝔭 is

𝜅𝜅′𝐵5/6 +𝑂
(
𝜖𝐵

5
6−

1
3𝑑

)
, (10)

where

𝜅′ =
∑
(𝑏,𝑐)

∞∑
𝑡=0
𝑚𝔭 (Ωaff

𝔭,𝑡 (𝑏, 𝑐)) = 𝐻 (𝑎, 𝑞)
∞∑
𝑡=0

1
𝑞10𝑡+2 = 𝐻 (𝑎, 𝑞) 1

𝑞2
𝑞10

𝑞10 − 1
,

and

𝜖 =
∑
(𝑏,𝑐)

∞∑
𝑡=0

max{𝑞4𝑡+1, 𝑞6𝑡+1}𝑚𝔭 (Ωaff
𝔭,𝑡 (𝑏, 𝑐)) = 𝐻 (𝑎, 𝑞)

∞∑
𝑡=0

𝑞6𝑡+1

𝑞10𝑡+2 = 𝐻 (𝑎, 𝑞) 𝑞3

𝑞4 − 1
.

From this, the desired asymptotics can now be derived using (9).
For example, in the case that a is an integer satisfying |𝑎 | < 2√𝑞 and 𝑝 � 𝑎, we have that 𝐻 (𝑎, 𝑞) =

(𝑞 − 1)𝐻 (𝑎2 − 4𝑞). Thus,

𝜅′ =
𝐻 (𝑎, 𝑞)
𝑞2

𝑞10

𝑞10 − 1
=

(𝑞 − 1)𝐻 (𝑎2 − 4𝑞)
𝑞2

𝑞10

𝑞10 − 1
= 𝜅𝑛,𝑎

and

𝜖 = (𝑞 − 1)𝐻 (𝑎2 − 4𝑞) 𝑞3

𝑞4 − 1
.

As the error term can be rewritten as 𝑂
(
𝐻 (𝑎2 − 4𝑞)𝐵 5

6−
1

3𝑑

)
, we may replace the coefficient 𝜖 in the

asymptotic (10) with 𝜖𝑛,𝑎 = 𝐻 (𝑎2 − 4𝑞). �

6. Average analytic ranks

In this section, we use our results from the previous section on counting elliptic curves with prescribed
local conditions in order to give a bound for the average analytic rank of elliptic curves over number
fields. Our strategy will mainly follow that of Cho and Jeong [CJ23b, CJ23a] and is related to Brumer’s
strategy (see Remark 6.1.3).

6.1. L-functions of elliptic curves

In this subsection, we recall basic facts about L-functions of elliptic curves. Our exposition mostly
follows [Mil02, Appendix A].

Let E be an elliptic curve of discriminantΔ𝐸 over a number field K. For each finite place 𝑣 ∈ Val0 (𝐾),
let 𝐸𝑣 denote the reduction of E at v, let 𝑞𝑣 be the order of the residue field 𝑘𝑣 of K at v, let
𝑁𝑣 = #𝐸𝑣 (F𝑞𝑣 ), and let 𝑎𝑣 = 𝑞𝑣 + 1 − 𝑁𝑣 . If E has bad reduction at v, set
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𝑏𝑣
def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝐸 has split multiplicative reduction at 𝑣,
−1 if 𝐸 has nonsplit multiplicative reduction at 𝑣,
0 if 𝐸 has additive reduction at 𝑣.

For each 𝑣 ∈ Val0(𝐾), define a polynomial 𝐿𝑣 (𝐸/𝐾,𝑇) by

𝐿𝑣 (𝐸/𝐾,𝑇)
def
=

{
1 − 𝑎𝑣𝑇 + 𝑞𝑣𝑇2 if 𝐸 has good reduction at 𝑣,
1 − 𝑏𝑣𝑇 if 𝐸 has bad reduction at 𝑣.

The Hasse–Weil L-function 𝐿(𝐸/𝐾, 𝑠) of E over K is defined as the Euler product

𝐿(𝐸/𝐾, 𝑠) def
=

∏
𝑣 ∈Val0 (𝐾 )

𝐿𝑣 (𝐸/𝐾, 𝑞−𝑠𝑣 )−1.

The logarithmic derivative of 𝐿(𝐸/𝐾, 𝑠) is

𝐿 ′

𝐿
(𝐸/𝐾, 𝑠) = −

∑
𝑣 ∈Val0 (𝐾 )
𝑣 (Δ𝐸 )>0

𝑑

𝑑𝑠

(
log(1 − 𝑏𝑣𝑞−𝑠𝑣 )

)
−

∑
𝑣 ∈Val0 (𝐾 )
𝑣 (Δ𝐸 )=0

𝑑

𝑑𝑠

(
log(1 − 𝑎𝑣𝑞−𝑠𝑣 + 𝑞1−2𝑠

𝑣 )
)
.

The first sum can be rewritten as

−
∑

𝑣 ∈Val0 (𝐾 )
𝑣 (Δ𝐸 )>0

𝑑

𝑑𝑠

(
log(1 − 𝑏𝑣𝑞−𝑠𝑣 )

)
=

∑
𝑣 ∈Val0 (𝐾 )
𝑣 (Δ𝐸 )>0

𝑑

𝑑𝑠

( ∞∑
𝑘=1

𝑏𝑘𝑣

𝑘𝑞𝑘𝑠𝑣

)
= −

∑
𝑣 ∈Val0 (𝐾 )
𝑣 (Δ𝐸 )>0

∞∑
𝑘=1

𝑏𝑘𝑣 log(𝑞𝑣 )
𝑞𝑘𝑠𝑣

.

For the second sum, factor 1− 𝑎𝑣𝑇 + 𝑞𝑣𝑇2 as (1−𝛼𝑣𝑇) (1− 𝛽𝑣𝑇), where 𝛼𝑣 + 𝛽𝑣 = 𝑎𝑣 and 𝛼𝑣 𝛽𝑣 = 𝑞𝑣 .
Then,

−
∑

𝑣 ∈Val0 (𝐾 )
𝑣 (Δ𝐸 )=0

𝑑

𝑑𝑠

(
log(1 − 𝑎𝑣𝑞−𝑠𝑣 + 𝑞1−2𝑠

𝑣 )
)
= −

∑
𝑣 ∈Val0 (𝐾 )
𝑣 (Δ𝐸 )=0

∞∑
𝑘=1

(𝛼𝑘𝑣 + 𝛽𝑘𝑣 ) log(𝑞𝑣 )
𝑞𝑘𝑠𝑣

.

We thus obtain the following expression for the logarithmic derivative of 𝐿(𝐸/𝐾, 𝑠):

𝐿 ′

𝐿
(𝐸/𝐾, 𝑠) = −

∑
𝑣 ∈Val0 (𝐾 )
𝑣 (Δ𝐸 )>0

∞∑
𝑘=1

𝑏𝑘𝑣 log(𝑞𝑣 )
𝑞𝑘𝑠𝑣

−
∑

𝑣 ∈Val0 (𝐾 )
𝑣 (Δ𝐸 )=0

∞∑
𝑘=1

(𝛼𝑘𝑣 + 𝛽𝑘𝑣 ) log(𝑞𝑣 )
𝑞𝑘𝑠𝑣

.

Define the von Mangoldt function on integral ideals 𝔞 ⊆ O𝐾 as

Λ𝐾 (𝔞) def
=

{
log(𝑞𝑣 ) if 𝔞 = 𝔭𝑘𝑣 for some 𝑘,
0 otherwise.

For prime powers, set

𝑎𝐸 (𝔭𝑘𝑣 ) =
{
𝛼𝑘𝑣 + 𝛽𝑘𝑣 if 𝐸 has good reduction at 𝔭𝑣 ,
𝑏𝑘𝑣 if 𝐸 has bad reduction at 𝔭𝑣 ,
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and for 𝔞 not a power of a prime, set 𝑎𝐸 (𝔞) = 0. Then our expression for the logarithmic derivative of
𝐿(𝐸/𝐾, 𝑠) becomes

𝐿 ′

𝐿
(𝐸/𝐾, 𝑠) = −

∑
𝔞⊆O𝐾

𝑎𝐸 (𝔞)Λ𝐾 (𝔞)
𝑁𝐾/Q(𝔞)𝑠

, (11)

where the sum is over the nonzero integral ideals of O𝐾 .
Let Γ(𝑠) def

=
∫ ∞

0 𝑡𝑠−1𝑒−𝑡𝑑𝑡 be the usual gamma function. Let Γ𝐾 (𝑠) be the gamma factor

Γ𝐾 (𝑠) def
= ((2𝜋)−𝑠Γ(𝑠)) [𝐾 :Q] .

Let 𝔣𝐸/𝐾 be the conductor of E over K, and define a constant

𝐴𝐸/𝐾
def
= 𝑁𝐾/Q(𝔣𝐸/𝐾 )Δ2

𝐾 .

Define the completed Hasse–Weil L-function, Λ(𝐸/𝐾, 𝑠), as

Λ(𝐸/𝐾, 𝑠) def
= 𝐴𝑠/2

𝐸/𝐾Γ𝐾 (𝑠)𝐿(𝐸/𝐾, 𝑠).

We now assume that our elliptic curve E is modular over K, so that the L-function 𝐿(𝐸/𝐾, 𝑠) is
automorphic. This implies that the Hasse–Weil conjecture holds true for E, and thus,

Λ(𝐸/𝐾, 𝑠) = 𝜖 (𝐸)Λ(𝐸/𝐾, 2 − 𝑠),

where 𝜖 (𝐸) ∈ {±1} is the root number. We see that the logarithmic derivative of Λ(𝐸/𝐾, 𝑠) is

Λ′

Λ
(𝐸/𝐾, 𝑠) =

log(𝐴𝐸/𝐾 )
2

+
Γ′
𝐾

Γ𝐾
(𝑠) + 𝐿

′

𝐿
(𝐸/𝐾, 𝑠) = −Λ′

Λ
(𝐸/𝐾, 2 − 𝑠). (12)

We now state the explicit formula for L-functions of elliptic curves over number fields:

Proposition 6.1.1 (Explicit Formula). Let 𝜙 : C→ C be a partial function that is even and analytic in
the strip | Im(𝑠) | ≤ 1

2 + 𝜖 for some 𝜖 > 0, and assume that on this strip |𝜙(𝑠) | � (1 + |𝑠 |)−(1+𝛿) for
some 𝛿 > 0 as |Re(𝑠) | → ∞. For 𝑥 ∈ R, assume that 𝜙(𝑥) ∈ R, and set

𝜙(𝑡) def
=
∫
R

𝜙(𝑥)𝑒−2𝜋𝑖𝑡 𝑥𝑑𝑥,

the Fourier transform. Let E be a modular elliptic curve over a number field K. Suppose that the
L-function 𝐿(𝐸/𝐾, 𝑠) associated to E satisfies the Generalized Riemann Hypothesis, so that all nontrivial
zeros 𝜌 𝑗 of 𝐿(𝐸/𝐾, 𝑠) are of the form

𝜌 𝑗 = 1 + 𝑖𝛾 𝑗 for some 𝛾 𝑗 ∈ R.

Let 𝑟 (𝐸) def
= ord𝑠=1 (𝐿(𝐸/𝐾, 𝑠)) be the analytic rank of E. Then, we have

𝑟 (𝐸)𝜙(0) +
∑
𝜌 𝑗≠1

𝜙(𝛾 𝑗 )

=
𝜙(0)
2𝜋

log(𝐴𝐸/𝐾 ) +
1
𝜋

∫
R

Γ′
𝐾

Γ𝐾
(1 + 𝑖𝑦)𝜙(𝑦)𝑑𝑦 − 1

𝜋

∑
𝔞⊆O𝐾

𝑎𝐸 (𝔞)Λ𝐾 (𝔞)
𝑁𝐾/Q(𝔞)

· 𝜙
( log(𝑁𝐾/Q(𝔞))

2𝜋

)
,

where the sum on the left-hand side is over the zeros 𝜌 𝑗 ≠ 1 with relevant multiplicity.
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Proposition 6.1.1 is a slight generalization of [IK04, Theorem 5.12] (see also [Mes86] and [Mil02,
Appendix A] for the specific case of L-functions of elliptic curves). In [IK04], the condition on the test
function 𝜙 is that it is a Schwartz function. However, as observed in [GG07, Lemma 1], the proof of
[IK04, Theorem 5.12] can be adapted to work for the set of functions 𝜙 satisfying the conditions in
Proposition 6.1.1. We will use the following modified version of the explicit formula:

Corollary 6.1.2 (Modified Explicit Formula). Maintaining the notation from Proposition 6.1.1 and
letting X be a parameter, we have that

𝑟 (𝐸)𝜙(0) +
∑
𝛾 𝑗≠0

𝜙

(
𝛾 𝑗

log(𝑋)
2𝜋

)
=
𝜙(0) log(𝐴𝐸/𝐾 )

log(𝑋) − 2
log(𝑋)

∑
𝔞⊆O𝐾

𝑎𝐸 (𝔞)Λ𝐾 (𝔞)
𝑁𝐾/Q(𝔞)

· 𝜙
( log(𝑁𝐾/Q(𝔞))

log(𝑋)

)
+𝑂

(
1

log(𝑋)

)
.

(13)

Proof. From the explicit formula (Proposition 6.1.1), it follows that

𝑟 (𝐸)𝜙(0) +
∑
𝛾 𝑗≠0

𝜙

(
𝛾 𝑗

log(𝑋)
2𝜋

)
=
𝜙(0) log(𝐴𝐸/𝐾 )

log(𝑋) + 1
𝜋

∫
R

Γ′
𝐾

Γ𝐾
(1 + 𝑖𝑦)𝜙

(
𝑦

log(𝑋)
2𝜋

)
𝑑𝑦

− 2
log(𝑋)

∑
𝔞⊆O𝐾

𝑎𝐸 (𝔞)Λ𝐾 (𝔞)
𝑁𝐾/Q(𝔞)

· 𝜙
( log(𝑁𝐾/Q(𝔞))

log(𝑋)

)
. (14)

A classical estimate for the logarithmic derivative of the gamma function is****Γ′

Γ
(1 + 𝑖𝑦)

**** = 𝑂 (log(|𝑦 | + 2)).

From this, and the fact that 𝜙 is absolutely integrable (since |𝜙(𝑠) | � (1 + |𝑠 |)−(1+𝛿) ), it follows that∫
R

Γ′
𝐾

Γ𝐾
(1 + 𝑖𝑦)𝜙

(
𝑦

log(𝑋)
2𝜋

)
𝑑𝑦 = 𝑂

(
1

log(𝑋)

)
.

Substituting this into (14) gives the modified explicit formula. �

We now use the modified explicit formula to obtain an expression that bounds the analytic rank. Let
E be an elliptic curve with minimal discriminant 𝔇𝐸/𝐾 and of height less than or equal to X. For each
such E, we have that 𝑁𝐾/Q(𝔇𝐸/𝐾 ) � 𝑋 , and therefore,

log
(
𝑁𝐾/Q (𝔇𝐸/𝐾 )

)
≤ log(𝑋) +𝑂 (1).

But since the conductor 𝔣𝐸/𝐾 divides the minimal discriminant 𝔇𝐸/𝐾 , one has 𝑁𝐾/Q(𝔣𝐸/𝐾 ) ≤
𝑁𝐾/Q (𝔇𝐸/𝐾 ), and thus,

log(𝑁𝐾/Q(𝔣𝐸/𝐾 ))/log(𝑋) ≤ 1 +𝑂 (1/log 𝑋).

It follows that log(𝐴𝐸/𝐾 )/log(𝑋) ≤ 1 + 𝑂 (1/log 𝑋). By Corollary 6.1.2, this observation gives the
inequality

𝑟 (𝐸)𝜙(0) +
∑
𝛾 𝑗≠0

𝜙

(
𝛾 𝑗

log(𝑋)
2𝜋

)
≤ 𝜙(0) − 2

log(𝑋)
∑

𝔞⊆O𝐾

𝑎𝐸 (𝔞)Λ𝐾 (𝔞)
𝑁𝐾/Q(𝔞)

· 𝜙
( log(𝑁𝐾/Q(𝔞))

log(𝑋)

)
+𝑂

(
1

log 𝑋

)
.
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We further simplify by rewriting the sum on the right-hand side as

∑
𝔞⊆O𝐾

𝑎𝐸 (𝔞)Λ𝐾 (𝔞)
𝑁𝐾/Q (𝔞)

· 𝜙
( log(𝑁𝐾/Q(𝔞))

log(𝑋)

)
=

∑
𝑣 ∈Val0 (𝐾 )

∑
𝑘≥1

𝑎𝐸 (𝔭𝑘𝑣 ) log(𝑞𝑣 )
𝑞𝑘𝑣

· 𝜙
(
𝑘 log(𝑞𝑣 )
log(𝑋)

)
.

By the Weil Conjectures for Elliptic curves, |𝛼𝑣 | = |𝛽𝑣 | =
√
𝑞𝑣 (see, for example, [Sil09, §V Theorem

2.3.1(a)]). From this, and the fact that |𝑏𝑣 | ≤ 1, we have |𝑎𝐸 (𝔭𝑘𝑣 ) | ≤ 2𝑞𝑘/2
𝑣 . Using this, we bound the

𝑘 ≥ 3 part of the sum:

∑
𝑣 ∈Val0 (𝐾 )

∑
𝑘≥3

𝑎𝐸 (𝔭𝑘𝑣 ) log(𝑞𝑣 )
𝑞𝑘𝑣

· 𝜙
(
𝑘 log(𝑞𝑣 )
log(𝑋)

)
≤

∑
𝑣 ∈Val0 (𝐾 )

∑
𝑘≥3

2 log(𝑞𝑣 )
𝑞𝑘/2
𝑣

| |𝜙 | |∞

≤
∑

𝑣 ∈Val0 (𝐾 )

2 log(𝑞𝑣 )
𝑞3/2
𝑣 (1 − 𝑞−1/2

𝑣 )
| |𝜙 | |∞

= 𝑂 (1),

where | | 𝑓 | |∞ is the usual 𝐿∞-norm defined as

| | 𝑓 | |∞
def
= inf{𝑎 ≥ 0 : 𝑚𝐿 ({𝑥 : | 𝑓 (𝑥) | > 𝑎}) = 0},

where 𝑚𝐿 is the Lebesgue measure on R. Also note that for any finite set of places 𝑆 ⊂ Val0(𝐾), we
clearly have

∑
𝑣 ∈𝑆

2∑
𝑘=1

𝑎𝐸 (𝔭𝑘𝑣 ) log(𝑞𝑣 )
𝑞𝑘𝑣

· 𝜙
(
𝑘 log(𝑞𝑣 )
log(𝑋)

)
= 𝑂 (1).

Therefore, setting

𝑈𝑘 (𝐸, 𝜙, 𝑋)
def
=

∑
𝑣 ∈Val0 (𝐾 )
2�𝑞𝑣 , 3�𝑞𝑣

𝑎𝐸 (𝔭𝑘𝑣 ) log(𝑞𝑣 )
𝑞𝑘𝑣

· 𝜙
(
𝑘 log(𝑞𝑣 )
log(𝑋)

)
,

we have

𝑟 (𝐸)𝜙(0) +
∑
𝛾 𝑗≠0

𝜙

(
𝛾 𝑗

log(𝑋)
2𝜋

)
≤ 𝜙(0) − 2

log(𝑋) (𝑈1 (𝐸, 𝜙, 𝑋) +𝑈2 (𝐸, 𝜙, 𝑋)) +𝑂
(

1
log 𝑋

)
.

We now average over isomorphism classes of elliptic curves. For each elliptic curve E, let
𝜌𝐸, 𝑗 = 1 + 𝑖𝛾𝐸, 𝑗 be the nontrivial zeros of the L-function 𝐿(𝐸/𝐾, 𝑠). Let E𝐾 (𝐵) denote the set of
isomorphism classes of elliptic curves over K with height bounded by B. Setting

𝑆𝑘 (𝜙, 𝐵)
def
=

2
log(𝐵)#E𝐾 (𝐵)

∑
𝐸 ∈E𝐾 (𝐵)

𝑈𝑘 (𝐸, 𝜙, 𝐵)

=
2

log(𝐵)#E𝐾 (𝐵)
∑

𝑣 ∈Val0 (𝐾 )
2�𝑞𝑣 , 3�𝑞𝑣

log(𝑞𝑣 )
𝑞𝑘𝑣

· 𝜙
(
𝑘 log(𝑞𝑣 )

log(𝐵)

) ∑
𝐸 ∈E𝐾 (𝐵)

𝑎𝐸 (𝔭𝑘𝑣 ),
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we have that

𝜙(0) 1
#E𝐾 (𝐵)

∑
𝐸 ∈E𝐾 (𝐵)

𝑟 (𝐸) + 1
#E𝐾 (𝐵)

∑
𝐸 ∈E𝐾 (𝐵)

∑
𝛾𝐸, 𝑗≠0

𝜙

(
𝛾𝐸, 𝑗

log(𝐵)
2𝜋

)
≤ 𝜙(0) − 𝑆1 (𝜙, 𝐵) − 𝑆2(𝜙, 𝐵) +𝑂

(
1

log(𝐵)

)
.

(15)

Remark 6.1.3. So far, we have followed the same strategy as Brumer [Bru92]. The main difficulty in
estimating the 𝑆𝑘 (𝜙, 𝐵) is estimating the sums of the 𝑎𝐸 (𝔭𝑘𝑣 ). Brumer does this by relating the sums
to certain exponential sums. Following Cho and Jeong [CJ23b, CJ23a], we will take a slightly different
approach, instead estimating the sums using our estimates for the number of elliptic curves with a
prescribed trace of Frobenius (Theorem 1.1.3).

For our applications, we shall use the test function

𝜙(𝑦) =
⎧⎪⎪⎨⎪⎪⎩
(

sin(𝜋𝜈𝑦)
2𝜋𝑦

)2
if 𝑦 ≠ 0,

𝜈2/4 if 𝑦 = 0,

whose Fourier transform is

𝜙(𝑡) =
{

1
2

(
𝜈
2 − |𝑡 |

2

)
for |𝑡 | ≤ 𝜈

0 for |𝑡 | > 𝜈.

Observe that this test function satisfies the conditions of Proposition 6.1.1 (despite not being a Schwartz
function).

Our strategy will be to show that

−𝑆1 (𝜙, 𝐵) − 𝑆2(𝜙, 𝐵) =
𝜙(0)

2
+ 𝑜(1).

This will imply the following upper bound for the average analytic rank of elliptic curves over the
number field K:

𝜙(0)
𝜙(0) +

1
2
=

1
𝜈
+ 1

2
.

6.2. Class number estimates

In this subsection, we give some estimates for the counting functions 𝐻 (𝑎, 𝑞), which were defined in
Subsection 5.1 equation (7). These results will be used in the next subsection.

Proposition 6.2.1. For any 𝑎 ∈ Z, we have

𝐻 (𝑎, 𝑞) �𝜖 𝑞
3/2+𝜖 ,

as a function of q for any 𝜖 > 0.

Proof. By formula (9) for 𝐻 (𝑎, 𝑞), it suffices to show 𝐻 (𝑎2 − 4𝑞) �𝜖 𝑞
1/2+𝜖 and 𝐻 (−4𝑝) �𝜖 𝑞

1/2+𝜖 ,
and for this, it will suffice to show that for all possible n, we have 𝐻 (𝑛) �𝜖 |𝑛|1/2+𝜖 . As n must be the
discriminant of an order in an imaginary quadratic field, it must be negative, non-square and congruent
to 0 or 1 modulo 4.

Let sqf(𝑛) denote the squarefree part of n (e.g., sqf(12) = 3), and let sq(𝑛) be such that
𝑛 = sqf(𝑛) · sq(𝑛)2 (e.g., sq(12) = 2). For non-square negative integers D that are congruent to
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0 or 1 modulo 4, let O𝐷 denote the imaginary quadratic order of discriminant D. We can rewrite
equation (8) as

𝐻 (𝑛) =
∑

𝑑 |sq(𝑛)
𝑛/𝑑2≡0,1 (mod 4)

ℎ(O𝑛/𝑑2 )
#O×

𝑛/𝑑2

.

Define a quadratic character

𝜒𝐷 : Z→ C×

𝑚 ↦→
(
𝐷

𝑚

)
.

Observe that

lim
𝑠→1

(𝑠 − 1)𝜁O𝐷 (𝑠) =
∞∑
𝑚=1

𝜒𝐷 (𝑚)
𝑚

=
∞∑
𝑚=1

𝜒𝐷 (𝑚)
∫ ∞

𝑚

1
𝑥2 𝑑𝑥. (16)

For any positive integer 𝑟 ∈ Z≥1, the Pólya–Vinogradov inequality gives***** 𝑟∑
𝑚=1

𝜒𝐷 (𝑚)

***** ≤ 2
√
|𝐷 | log(|𝐷 |).

In particular, the functions 𝑓𝑟 (𝑥) =
∑𝑟
𝑚=1 𝜒𝐷 (𝑚)/𝑥2 are dominated by 2

√
|𝐷 | log(|𝐷 |)/𝑥2 on R≥1.

Therefore, by the dominated convergence theorem, we may switch the sum and integral in (16), so that

∞∑
𝑚=1

𝜒𝐷 (𝑚)
∫ ∞

𝑚

1
𝑥2 𝑑𝑥 =

∫ ∞

1

(
𝑥∑

𝑚=1
𝜒𝐷 (𝑚)

)
1
𝑥2 𝑑𝑥.

Splitting this integral and again applying the Pólya–Vinogradov inequality, we find that for any 𝜖 > 0,

lim
𝑠→1

(𝑠 − 1)𝜁O𝐷 (𝑠) =
∫ √

|𝐷 |

1

(
𝑥∑

𝑚=1
𝜒𝐷 (𝑚)

)
1
𝑥2 𝑑𝑥 +

∫ ∞

√
|𝐷 |

(
𝑥∑

𝑚=1
𝜒𝐷 (𝑚)

)
1
𝑥2 𝑑𝑥

�
∫ √

|𝐷 |

1

𝑥

𝑥2 𝑑𝑥 +
∫ ∞

√
|𝐷 |

√
|𝐷 | log(|𝐷 |)

𝑥2 𝑑𝑥

� log(|𝐷 |) + log(|𝐷 |)
� |𝐷 | 𝜖 .

From this and the analytic class number formula [JP20, Theorem 1.1], we have the following upper
bound for class numbers of orders in imaginary quadratic fields:

ℎ(O𝐷) � |𝐷 |1/2+𝜖 .

Let 𝜏(𝑛) denote the number of divisors of n, and recall that 𝜏(𝑛) �𝜖 |𝑛| 𝜖 for any 𝜖 > 0. Combining the
above observations, we have

𝐻 (𝑛) ≤
∑

𝑑 |sq(𝑛)
𝑛/𝑑2≡0,1 (mod 4)

ℎ(O𝑛/𝑑2 ) � 𝜏(sq(𝑛)) |𝑛|1/2+𝜖 �𝜖 |𝑛|1/2+𝜖 . �

The next proposition gives estimates for certain sums involving 𝐻 (𝑎, 𝑞).
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Proposition 6.2.2. Let q be a power of a prime 𝑝 > 3. For any 𝜖 > 0, we have the following estimates:∑
|𝑎 | ≤2√𝑞

𝐻 (𝑎, 𝑞) = 𝑞2 − 𝑞,∑
|𝑎 | ≤2√𝑞

𝑎𝐻 (𝑎, 𝑞) = 0,∑
|𝑎 | ≤2√𝑞

𝑎2𝐻 (𝑎, 𝑞) = 𝑞3 +𝑂
(
𝑞

5
2+𝜖
)
.

Proof. The first sum: We have that∑
|𝑎 | ≤2√𝑞

𝐻 (𝑎, 𝑞) = #{(𝑏, 𝑐) ∈ F𝑞 × F𝑞 : Δ (𝑏, 𝑐) ≠ 0} = 𝑞2 − 𝑞.

The second sum: Pairing positive and negative terms, we have that∑
|𝑎 | ≤2√𝑞

𝑎𝐻 (𝑎, 𝑞) =
∑

0<𝑎≤2√𝑞
(𝑎𝐻 (𝑎, 𝑞) − 𝑎𝐻 (𝑎, 𝑞)) = 0,

where we have used that 𝐻 (𝑎, 𝑞) = 𝐻 (−𝑎, 𝑞).
The third sum: This sum is the most subtle. As observed in Subsection 5.1, each isomorphism class

of elliptic curves over F𝑞 contains exactly 𝑞 − 1 elliptic curves, which can be thought of as the size of
the orbit of an elliptic curve E with respect to the weighted G𝑚 (F𝑞) action, with weights 4 and 6. Let
EF𝑞 denote the set of isomorphism classes of elliptic curves over F𝑞 . By the orbit stabilizer theorem,

𝐻 (𝑎, 𝑞) =
∑

𝐸 ∈EF𝑞
𝑎𝑞 (𝐸)=𝑎

𝑞 − 1
#AutF𝑞 (𝐸)

.

Therefore, we can rewrite the third sum as∑
|𝑎 | ≤2√𝑞

𝑎2𝐻 (𝑎, 𝑞) = (𝑞 − 1)
∑

|𝑎 | ≤2√𝑞

∑
𝐸 ∈EF𝑞
𝑎𝑞 (𝐸)=𝑎

𝑎2

#AutF𝑞 (𝐸)
= (𝑞 − 1)

∑
𝐸 ∈EF𝑞

𝑎𝑞 (𝐸)2

#AutF𝑞 (𝐸)
.

The final sum can be estimated using work of Birch [Bir68] and Ihara [Iha67], as we now explain. Write
𝑞 = 𝑝𝑟 . Define an indicator function

𝛿2Z(𝑟) =
{

1 if 𝑟 is even
0 if 𝑟 is odd.

Let 𝑇𝑘 (𝑚) be the m-th Hecke operator on the space of weight k cusp forms of level 1, and let Tr(𝑇𝑘 (𝑚))
denote the trace of 𝑇𝑘 (𝑚).

The following result is due to Birch (in the 𝑟 = 1 case) [Bir68] and Ihara (for 𝑟 > 1) [Iha67] (see
[KP17, Theorem 2]):

Theorem 6.2.3 (Birch-Ihara). With notation as above, we have that

1
𝑞

∑
𝐸 ∈EF𝑞

𝑎𝑞 (𝐸)2

#AutF𝑞 (𝐸)
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equals

1
𝑞

(
𝑝3Tr(𝑇4 (𝑝𝑟−2)) − Tr(𝑇4 (𝑞)) +

1
2

(
𝑝3

𝑟−2∑
𝑖=0

min{𝑝𝑖 , 𝑝𝑟−2−𝑖}3 −
𝑟∑
𝑖=0

min{𝑝𝑖 , 𝑝𝑟−𝑖}3

))
+ 𝑝Tr(𝑇2 (𝑝𝑟−2)) − Tr(𝑇2 (𝑞)) +

1
2

(
𝑝
𝑟−2∑
𝑖=0

min{𝑝𝑖 , 𝑝𝑟−2−𝑖} −
𝑟∑
𝑖=0

min{𝑝𝑖 , 𝑝𝑟−𝑖}
)

+
𝑟∑
𝑖=0
𝑝𝑖 − 𝑝

𝑟−2∑
𝑖=0
𝑝𝑖 .

We now show that for any 𝜖 > 0,∑
𝐸 ∈EF𝑞

𝑎𝑞 (𝐸)2

#AutF𝑞 (𝐸)
= 𝑞2 +𝑂 (𝑞3/2+𝜖 ).

Using the Ramanujan–Peterson–Deligne bound for Hecke eigenvalues [Del74], one can show that for
any prime power 𝑝𝑠 and any 𝜖 > 0,

Tr(𝑇𝑘 (𝑝𝑠)) �𝑘 𝑝
𝑠 (𝑘−1)/2𝑠 �𝑘 𝑝

𝑠 ( (𝑘−1)/2+𝜖 )

(see, for example, the introduction of [Pet18]). In particular,

𝑝3Tr(𝑇4 (𝑝𝑟−2)) − Tr(𝑇4 (𝑞)) � 𝑝3𝑝 (𝑟−2) (3/2+𝜖 ) + 𝑞3/2+𝜖 � 𝑞3/2+𝜖

and

𝑝Tr(𝑇2 (𝑝𝑟−2)) − Tr(𝑇2 (𝑞)) � 𝑝𝑝 (𝑟−2) (1/2+𝜖 ) + 𝑞1/2+𝜖 � 𝑞1/2+𝜖 .

We now estimate the sums in Theorem 6.2.3. As a function of q, the sum
∑𝑟
𝑖=0 min{𝑝𝑖 , 𝑝𝑟−𝑖}3 has

on the order of log(𝑞) terms, and each term is bounded above by
(
𝑝𝑟/2)3 = 𝑞3/2. Therefore,

𝑟∑
𝑖=0

min{𝑝𝑖 , 𝑝𝑟−𝑖}3 � 𝑞3/2 log(𝑞) � 𝑞3/2+𝜖 .

Similar reasoning shows that

𝑝3
𝑟−2∑
𝑖=0

min{𝑝𝑖 , 𝑝𝑟−2−𝑖}3 � 𝑝3 log(𝑞)𝑝3(𝑟−2)/2 � 𝑞3/2+𝜖 .

We also compute

𝑝
𝑟−2∑
𝑖=0

min{𝑝𝑖 , 𝑝𝑟−2−𝑖} −
𝑟∑
𝑖=0

min{𝑝𝑖 , 𝑝𝑟−𝑖} = −
∑

𝑖∈{0,𝑟 }
min{𝑝𝑖 , 𝑝𝑟−𝑖} = −2,

and

𝑟∑
𝑖=0
𝑝𝑖 − 𝑝

𝑟−2∑
𝑖=0
𝑝𝑖 =

∑
𝑖∈{0,𝑟 }

𝑝𝑖 = 1 + 𝑞.
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Combining the above estimates, we find that

1
𝑞

∑
𝐸 ∈EF𝑞

𝑎𝑞 (𝐸)2

#AutF𝑞 (𝐸)
= O

(
𝑞3/2+𝜖

𝑞

)
+𝑂 (𝑞1/2+𝜖 ) − 2

2
+ (1 + 𝑞) = 𝑞 +𝑂 (𝑞1/2+𝜖 ).

From this, we obtain∑
|𝑎 | ≤2√𝑞

𝑎2𝐻 (𝑎, 𝑞) = (𝑞 − 1)
(
𝑞2 +𝑂 (𝑞3/2+𝜖 )

)
= 𝑞3 +𝑂 (𝑞5/2+𝜖 ). �

6.3. Estimating 𝑆1(𝜙, 𝐵) and 𝑆2 (𝜙, 𝐵)

Lemma 6.3.1. Let 𝔭 ⊂ O𝐾 be a prime ideal of norm 𝑁𝐾/Q (𝔭) = 𝑞 such that 2 � 𝑞 and 3 � 𝑞. Then, for
any 𝜖 > 0, we have the following upper bound:∑

𝐸 ∈E𝐾 (𝐵)
𝑎𝐸 (𝔭) �𝜖

1
𝑞
𝐵5/6 + 𝑞3/2+𝜖 𝐵5/6−1/3𝑑 .

Proof. Let Emult
𝐾 (𝐵) denote the set of elliptic curves over K of naive height bounded by B and multi-

plicative reduction at 𝔭. Then, we have∑
𝐸 ∈E𝐾 (𝐵)

𝑎𝐸 (𝔭) =
∑

|𝑎 | ≤2√𝑞

∑
𝐸 ∈E𝐾 (𝐵)
𝑎𝔭 (𝐸)=𝑎

𝑎𝐸 (𝔭) +
∑

𝐸 ∈Emult
𝐾 (𝐵)

𝑎𝐸 (𝔭).

By Theorem 1.1.2, we have that****** ∑
𝐸 ∈Emult

𝐾 (𝐵)

𝑎𝐸 (𝔭)

****** � #Emult
𝐾 (𝐵) � 1

𝑞
𝐵5/6 + 𝐵5/6−1/3𝑑 . (17)

By Proposition 6.2.2, Proposition 6.2.1 and the proof of Theorem 1.1.3, we have that∑
|𝑎 | ≤2√𝑞

∑
𝐸 ∈E𝐾 (𝐵)
𝑎𝔭 (𝐸)=𝑎

𝑎𝐸 (𝔭) =
∑

|𝑎 | ≤2√𝑞
𝑎

(
𝜅
𝐻 (𝑎, 𝑞)
𝑞2

𝑞10

𝑞10 − 1
𝐵5/6 +𝑂

(
𝑞−1𝐻 (𝑎, 𝑞)𝐵5/6−1/3𝑑

))
= 0 +

∑
|𝑎 | ≤2√𝑞

𝑂
(
𝑎𝑞−1𝐻 (𝑎, 𝑞)𝐵5/6−1/3𝑑

)
� max

|𝑎 | ≤2√𝑞
{𝐻 (𝑎, 𝑞)}𝐵5/6−1/3𝑑

�𝜖 𝑞
3/2+𝜖 𝐵5/6−1/3𝑑 .

This, together with the bound (17), implies the lemma. �

Lemma 6.3.2. Let 𝔭 ⊂ O𝐾 be a prime ideal with norm 𝑁𝐾/Q(𝔭) = 𝑞 such that 2 � 𝑞 and 3 � 𝑞. Then,
we have the following estimate:∑

𝐸 ∈E𝐾 (𝐵)
𝑎𝐸 (𝔭2) = −𝜅𝑞𝐵5/6 +𝑂

(
𝑞1/2+𝜖 𝐵

5
6 + 𝑞2𝐵

5
6−

1
3𝑑

)
,

where the implied constant does not depend on q.
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Proof. Let E𝑔𝑜𝑜𝑑𝐾 (𝐵) (resp. Emult
𝐾 (𝐵)) denote the set of elliptic curves over K with good reduction (resp.

multiplicative reduction) at 𝔭 and height bounded by B. In this case, we have that∑
𝐸 ∈E𝐾 (𝐵)

𝑎𝐸 (𝔭2) =
∑

|𝑎 | ≤2√𝑞

∑
𝐸 ∈E𝑔𝑜𝑜𝑑𝐾 (𝐵)
𝑎𝔭 (𝐸)=𝑎

𝑎𝐸 (𝔭2) +
∑

𝐸 ∈Emult
𝐾 (𝐵)

𝑎𝐸 (𝔭2).

Since 𝑎𝐸 (𝔭2) = 𝑎𝐸 (𝔭)2 = 1 for all 𝐸 ∈ Emult
𝐾 (𝐵), we have, by Theorem 1.1.2, that****** ∑

𝐸 ∈Emult
𝐾 (𝐵)

𝑎𝐸 (𝔭2)

****** = #Emult
𝐾 (𝐵) = 𝜅 𝑞 − 1

𝑞2
𝑞10

𝑞10 − 1
𝐵5/6 +𝑂 (𝐵5/6−1/3𝑑) = 𝑂

(
𝐵5/6

)
. (18)

In the case that E has good reduction at 𝔭, a straightforward computation shows that 𝑎𝐸 (𝔭2) equals
𝑎𝔭 (𝐸)2 − 2𝑞. Therefore, by Proposition 6.2.2 and the proof of Theorem 1.1.3, we have that∑

|𝑎 | ≤2√𝑞

∑
𝐸 ∈E𝑔𝑜𝑜𝑑𝐾 (𝐵)
𝑎𝔭 (𝐸)=𝑎

𝑎𝐸 (𝔭2) =
∑

|𝑎 | ≤2√𝑞

∑
𝐸 ∈E𝑔𝑜𝑜𝑑𝐾 (𝐵)
𝑎𝔭 (𝐸)=𝑎

(𝑎𝔭 (𝐸)2 − 2𝑞)

=
∑

|𝑎 | ≤2√𝑞
(𝑎2 − 2𝑞)

(
𝜅
𝐻 (𝑎, 𝑞)
𝑞2

𝑞10

𝑞10 − 1
𝐵5/6 +𝑂

(
𝑞−1𝐻 (𝑎, 𝑞)𝐵5/6−1/3𝑑

))
=

𝜅𝑞8

𝑞10 − 1
�	

∑

|𝑎 | ≤2√𝑞
𝑎2𝐻 (𝑎, 𝑞) − 2𝑞

∑
|𝑎 | ≤2√𝑞

𝐻 (𝑎, 𝑞)�
�𝐵 5
6 +𝑂

(
𝑞2𝐵

5
6−

1
3𝑑

)
=

−𝜅𝑞11

𝑞10 − 1
𝐵5/6 +𝑂

(
𝑞1/2+𝜖 𝐵

5
6 + 𝑞2𝐵

5
6−

1
3𝑑

)
.

Observe that

𝑞10

𝑞10 − 1
=

∞∑
𝑘=0
𝑞−10𝑘 = 1 +𝑂 (𝑞−10).

Therefore, ∑
|𝑎 | ≤2√𝑞

∑
𝐸 ∈E𝑔𝑜𝑜𝑑𝐾 (𝐵)
𝑎𝔭 (𝐸)=𝑎

𝑎𝐸 (𝔭2) = −𝜅𝑞𝐵5/6 +𝑂
(
𝑞1/2+𝜖 𝐵

5
6 + 𝑞2𝐵

5
6−

1
3𝑑

)
.

This, together with the bound (18), implies the lemma. �

6.4. Bounding the average analytic rank of elliptic curves

We now prove our main result.

Theorem 1.1.1. Let K be a number field of degree d. Assume that all elliptic curves over K are
modular and that their L-functions satisfy the Riemann-Hypothesis. Then the average analytic rank
of isomorphism classes of elliptic curves over K, when ordered by naive height, is bounded above by
(9𝑑 + 1)/2.

https://doi.org/10.1017/fms.2024.127 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.127


Forum of Mathematics, Sigma 33

Proof. By Lemma 6.3.1 and the observation that 𝜙 is supported on the interval [−𝜈, 𝜈], we have that

𝑆1(𝜙, 𝐵) =
2

log(𝐵)#E𝐾 (𝐵)
∑

𝑣 ∈Val0 (𝐾 )
2�𝑞𝑣 , 3�𝑞𝑣

log(𝑞𝑣 )
𝑞𝑣

· 𝜙
(

log(𝑞𝑣 )
log(𝐵)

) ∑
𝐸 ∈E𝐾 (𝐵)

𝑎𝐸 (𝔭𝑣 )

�𝜖
2

log(𝐵)#E𝐾 (𝐵)
∑

𝑣 ∈Val0 (𝐾 )
2�𝑞𝑣 , 3�𝑞𝑣

log(𝑞𝑣 )
𝑞𝑣

· 𝜙
(

log(𝑞𝑣 )
log(𝐵)

) (
1
𝑞𝑣
𝐵5/6 + 𝑞3/2+𝜖

𝑣 𝐵5/6−1/3𝑑
)

� 2
log(𝐵)#E𝐾 (𝐵)

∑
𝑣 ∈Val0 (𝐾 )
𝑞𝑣 ≤𝐵𝜈

2�𝑞𝑣 , 3�𝑞𝑣

log(𝑞𝑣 )
𝑞𝑣

(
1
𝑞𝑣
𝐵5/6 + 𝑞3/2+𝜖

𝑣 𝐵5/6−1/3𝑑
)
.

By Corollary 5.1.1, we know that #E𝐾 (𝐵) = 𝜅𝐵5/6 + 𝑂 (𝐵5/6−1/3𝑑). Using this and the prime ideal
theorem, we have that

𝑆1 (𝜙, 𝐵) �𝜖
2

log(𝐵)
∑

𝑣 ∈Val0 (𝐾 )
𝑞𝑣 ≤𝐵𝜈

2�𝑞𝑣 , 3�𝑞𝑣

log(𝑞𝑣 )
𝑞𝑣

(
1
𝑞𝑣

+ 𝑞3/2+𝜖
𝑣 𝐵−1/3𝑑

)
� 1 + 𝐵 (3/2+𝜖 )𝜈−1/3𝑑

log(𝐵) . (19)

By Lemma 6.3.2, we have

𝑆2 (𝜙, 𝐵) =
2

log(𝐵)#E𝐾 (𝐵)
∑

𝑣 ∈Val0 (𝐾 )
2�𝑞𝑣 , 3�𝑞𝑣

log(𝑞𝑣 )
𝑞2
𝑣

· 𝜙
(

2 log(𝑞𝑣 )
log(𝐵)

) ∑
𝐸 ∈E𝐾 (𝐵)

𝑎𝐸 (𝔭2
𝑣 )

=
2

log(𝐵)#E𝐾 (𝐵)
∑

𝑣 ∈Val0 (𝐾 )
2�𝑞𝑣 , 3�𝑞𝑣

log(𝑞𝑣 )
𝑞2
𝑣

· 𝜙
(

2 log(𝑞𝑣 )
log(𝐵)

) (
−𝜅𝑞𝑣𝐵

5
6 +𝑂 (𝑞

1
2+𝜖
𝑣 𝐵

5
6 + 𝑞2

𝑣𝐵
5
6−

1
3𝑑 )
)
.

Assuming 𝜖 < 1/4 and using #E𝐾 (𝐵) = 𝜅𝐵5/6 +𝑂 (𝐵5/6−1/3𝑑), we have

𝑆2 (𝜙, 𝐵) =
2

log(𝐵)
∑

𝑣 ∈Val0 (𝐾 )
2�𝑞𝑣 , 3�𝑞𝑣

log(𝑞𝑣 )
𝑞2
𝑣

· 𝜙
(

2 log(𝑞𝑣 )
log(𝐵)

) (
−𝑞𝑣 +𝑂 (𝑞1/2+𝜖

𝑣 + 𝑞2
𝑣𝐵

−1/3𝑑)
)

=
−2

log(𝐵)
∑

𝑣 ∈Val0 (𝐾 )
2�𝑞𝑣 , 3�𝑞𝑣

log(𝑞𝑣 )
𝑞𝑣

· 𝜙
(

2 log(𝑞𝑣 )
log(𝐵)

)
+𝑂

�				

1

log 𝐵

∑
𝑣 ∈Val0 (𝐾 )
𝑞𝑣 ≤𝐵𝜈/2

(
1

𝑞3/2−𝜖
𝑣

+ log(𝑞𝑣 )𝐵−1/3𝑑

)�



�
=

−1
log(𝐵)

∑
𝑣 ∈Val0 (𝐾 )
𝑞𝑣 ≤𝐵𝜈/2

2�𝑞𝑣 , 3�𝑞𝑣

(
𝜈 log(𝑞𝑣 )

2𝑞𝑣
− log(𝑞𝑣 )2

𝑞𝑣 log(𝐵)

)
+𝑂

(
1 + 𝐵𝜈/2−1/3𝑑

log(𝐵)

)
.

Arguments using the prime ideal theorem show that∑
𝑣 ∈Val0 (𝐾 )
𝑞𝑣 ≤𝑋

log(𝑞𝑣 )
𝑞𝑣

= log(𝑋) +𝑂 (1)
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and ∑
𝑣 ∈Val0 (𝐾 )
𝑞𝑣 ≤𝑋

log(𝑞𝑣 )2

𝑞𝑣
=

log(𝑋)2

2
+𝑂 (log log(𝑋)).

From this, it follows that∑
𝑣 ∈Val0 (𝐾 )
𝑞𝑣 ≤𝐵𝜈/2

2�𝑞𝑣 , 3�𝑞𝑣

(
𝜈 log(𝑞𝑣 )

2𝑞𝑣
− log(𝑞𝑣 )2

𝑞𝑣 log(𝐵)

)

=
𝜈

2

(
log(𝐵𝜈/2) +𝑂 (1)

)
− 1

log(𝐵)

(
log(𝐵𝜈/2)2

2
+𝑂 (log log(𝐵𝜈/2))

)
=

(
𝜈2

4
log(𝐵) +𝑂 (1)

)
−
(
𝜈2

8
log(𝐵) +𝑂 (1)

)
=
𝜈2

8
log(𝐵) +𝑂 (1).

Therefore,

𝑆2 (𝜙, 𝐵) =
−𝜙(0)

2
+𝑂

(
1 + 𝐵𝜈/2−1/3𝑑

log(𝐵)

)
.

Taking 𝜈 = (3𝑑 (3/2 + 𝜖))−1 and combining the above estimate for 𝑆2 with our bound (19) for 𝑆1, we
obtain

−𝑆1 (𝜙, 𝐵) − 𝑆2 (𝜙, 𝐵) =
𝜙(0)

2
+ 𝑜(1).

Substituting this into (15) and taking the limit superior as B goes to infinity gives the following upper
bound for the average analytic rank of elliptic curves over K:

1
𝜈
+ 1

2
= 3𝑑 (3/2 + 𝜖) + 1

2
,

for any 0 < 𝜖 < 1/4. Since the limit superior exists, and since 𝜖 can be taken arbitrarily small, we obtain
the bound (9𝑑 + 1)/2. �
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