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Abstract
Alzheimer’s disease (AD) is the most common major neurocognitive disorder of ageing. Although largely ignored until about a decade ago,
accumulating evidence suggests that deteriorating brain energy metabolism plays a key role in the development and/or progression of
AD-associated cognitive decline. Brain glucose hypometabolism is a well-established biomarker in AD but was mostly assumed to be a con-
sequence of neuronal dysfunction and death. However, its presence in cognitively asymptomatic populations at higher risk of AD strongly
suggests that it is actually a pre-symptomatic component in the development of AD. The question then arises as to whether progressive
AD-related cognitive decline could be prevented or slowed down by correcting or bypassing this progressive ‘brain energy gap’. In this review,
we provide an overview of research on brain glucose and ketone metabolism in AD and its prodromal condition – mild cognitive impairment
(MCI) – to provide a clearer basis for proposing keto-therapeutics as a strategy for brain energy rescue in AD. We also discuss studies using
ketogenic interventions and their impact on plasma ketone levels, brain energetics and cognitive performance in MCI and AD. Given that exer-
cise has several overlappingmetabolic effects with ketones, we propose that in combination these two approachesmight be synergistic for brain
health during ageing. As cause-and-effect relationships between the different hallmarks of AD are emerging, further research efforts should focus
on optimising the efficacy, acceptability and accessibility of keto-therapeutics in AD and populations at risk of AD.
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Alzheimer’s disease aetiology and treatments

Neurodegenerative diseases of ageing are a cluster of conditions
characterised by deteriorating brain function associated with the
gradual and regionally selective loss of brain cells that have become
a major concern for society(1). The most common neurodegener-
ative disease of ageing is Alzheimer’s disease (AD), a chronic syn-
drome in which progressive cognitive decline ultimately threatens
the individuals’ capacity to reason clearly and perform basic activ-
ities of daily living(2). Despite the broad documentation of multiple
factors affecting the development of AD pathogenesis, the exact
aetiology underlying AD remains unclear(3,4). Normal ageing is
accompanied by some decrease in certain cognitive abilities, but
a large proportion of the population remains cognitively healthy

during their lifetime, indicating that advanced cognitive dysfunction
is not an inevitable consequence of old age(5). Thus, the progres-
sion of brain neuropathology leading to AD is not related to ageing
per se, but to environmental andgenetic factors(6). Todate, thequest
for disease-modifying therapies addressing the amyloid, tau and
neurotransmitters hypotheses(7) has failed to produce an approved
drug in over 20 years, highlighting the difficulty in determining the
right target, type of intervention and/or timing to intervene(8).
At present, only two neurotransmitter-based therapies – cholines-
terase inhibitors and an N-methyl-D-aspartate antagonist – have
been approved for the management of cognitive symptoms,
but they remain ineffective for reversing underlying
AD pathology(9).
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Over the last decade, considerable interest has emerged in the
role of brain energy metabolism in the natural history of
AD-related cognitive decline(10). Long considered as a simple bio-
marker of neuronal death in the progression and manifestation of
clinical symptoms of AD, altered brain glucose utilisation is now
believed to havemore of a causal or aggravating role in the devel-
opment of AD(11). Furthermore, regional brain glucose hypome-
tabolism (BGH) assessed by positron emission tomography
(PET) with 18F-fluorodeoxyglucose (FDG) is a reliable marker
to predict the conversion from cognitively normal adults to mild
cognitive impairment (MCI) and MCI to AD(12,13). Longitudinal
studies in late-onset (sporadic) and autosomal dominant AD have
demonstrated that regional BGH may develop secondarily to
amyloid plaque deposition, but it can also develop prior to the
neuropathology in at least a quarter of sporadic AD(14–18). The pat-
tern of regional cerebral amyloid deposition was previously
reported to not be correlated with brain glucose BGH(19,20), but
recent studies challenged these findings by reporting positive
associations with amyloid and local or distant AD-related brain
regions displaying hypometabolism(21,22). Regardless of whether
impairment in energy metabolism constitutes a primary or secon-
dary event in AD, it is of great interest to better understand its role
in the onset of the disease and determine whether correcting it
could be an effective treatment or preventive strategy. AD path-
ologies can be present over 20 years before the onset of clinical
symptoms(23) which offers a critical window of opportunity to ini-
tiate treatments and hopefully change the course of the disease
after which reversing neurological damage and functional decline
might prove to be more difficult(24).

Lifestyle improvement including dietary modifications is rec-
ommended as the first-line treatment for most chronic diseases.
Observational studies show that increased consumption of single
nutrient classes (n-3(25), antioxidants(26)), certain food groups
(vegetables(27), fish(28)) as well as energetic restriction(29) offer
some protection against AD, but results from adequately powered
randomised controlled trials (RCT) in humans have yieldedmixed
results or are simply lacking(30,31). In healthy adults(32) and adults
with MCI(33), adherence to nutrient-rich dietary patterns
(Mediterranean, Dietary approaches to stop hypertension
(DASH), Mediterranean-DASH intervention for neurodegener-
ative delay (MIND)) has been shown to improve cognitive func-
tion and reduce the risk of AD but, again, most of these findings
are based on epidemiological studies and donot establish a causal
relationship. Diets with high glycaemic load and sugar content
are associated with increased levels of cerebral amyloid and
lower global cognitive performance, respectively, in older adults,
potentially highlighting a link between diet composition and
brain health(34). At the other end of the dietary spectrum, very-
low-carbohydrate ketogenic diets (KD), which have a marked
effect on brain energy metabolism(35), have yielded encouraging
preliminary results in populations with cognitive deficits(36).

Since the brain possesses very limited glycogen storage capac-
ity, sufficient and continuous substrate and oxygen delivery from
the periphery is critical to ensure optimal brain health and resil-
ience throughout the lifespan. Under normal circumstances, glu-
cose is the main fuel for the brain and accesses the intracellular
space via specific glucose transporters GLUT-1 and GLUT-3,
and to a lesser extent insulin-stimulatedGLUT-4(37).Whenglucose

availability is severely limited for a prolonged period such as dur-
ing fasting or a KD, the ketones – acetoacetate (AcAc) and
β-hydroxybutyrate (βHB) – are synthesised by the liver at an
increased rate and contribute significantly to the energetic
demands of the brain(38). The recent advent of exogenous ketones
now allows individuals to similarly increase circulating ketones
without having to make dietary changes. In this review, we will
present evidence supporting the use of ketogenic interventions
as a principal component of ‘brain energy rescue’ strategies to
bypass BGH, maintain brain fuel supply and improve cognitive
health during ageing(39).

Regional brain glucose hypometabolism in individuals
with or at risk of Alzheimer’s disease

Starting in 1963, a series of arteriovenous difference studies were
conducted in individuals at different stages of AD and reported
significant reductions of 22–55 % in global brain glucose utilisa-
tion as compared with age-matched controls(40–44), whereas cer-
ebral blood flow and oxygen consumption were far less
impaired(42,43). Using PET with the glucose tracer 18FDG, BGH
has been widely confirmed in AD on many occasions(45–50). As
with cognitive performance, the magnitude of the whole-brain
decline in cerebralmetabolic rate (CMR) of glucoseworsenswith
advancing AD and is usually on the order of ∼10–20 % in mild
AD,with specific regional deficits of 10–50 %. In AD, the regional
pattern seems to affect initially the medial temporal lobe includ-
ing the hippocampus as well as the parietal cortex, and posterior
cingulate(50,51). Along these lines, accumulation in the posterior
cingulate and precuneus regions of certainmetabolites including
glucose has been previously reported in AD and likely reflects
their under-utilisation as an energy source(52).

MCI is a condition characterised by cognitive decline greater
thanwhat is expected during normal ageing but that does not yet
interferewith activities of daily life. It is usually defined by a com-
bination of: (i) subjective concern regarding a change in cogni-
tion, (ii) objective evidence of lower performance in one ormore
cognitive domains and (iii) preservation of independence in
functional abilities in daily life(53). Individuals with MCI, particu-
larly the amnestic subtype which affects memory, are at higher
risk of developing AD(54). In this population, regional BGH starts
in the posterior cingulate cortex(55), progresses to the temporal
and parietal cortices and is considered to be a sensitive marker
of AD risk and progression(56). Since 2000, several studies in MCI
using PET-FDG have reported significant reductions in glucose
utilisation of up to 20 % in AD-vulnerable brain regions(50,57–60).
These findings suggest that MCI represents an intermediary state
of metabolic decline in which BGH is more pronounced com-
pared with healthy older adults but in which the decline is still
lower in magnitude and spatial distribution than in AD.
Recently, the longest PET-FDG study in MCI (median follow-
up of 72 months) clearly demonstrated the progressive decline
in glucose utilisation potentially leading to AD-onset and
observed a significantly higher rate of decline in ApoE ϵ4 carriers
as comparedwith non-carriers in several brain regions(61). Taken
together, these reports clearly indicate that BGH is already
present in individuals with various levels of cognitive deficit,
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but they do not provide information as to the chronological
sequence of cognitive, pathological and brain energetic impair-
ment over time.

In cognitively healthy older people, mild BGH is observed
almost exclusively in the frontal cortex(62). Hence, BGH changes
qualitatively and quantitatively from normal ageing to MCI and
AD; the qualitative change is in the brain regions affected, while
the quantitative change is that the magnitude of BGH increases
as objective signs of cognitive decline become apparent. Less
decline in glucose utilisation in the anterior cingulate cortex
and the anterior temporal lobes of older adults (80þ years
old) has recently been associated with both cognitive resilience
and vascular health and proposed as a disease-targeting, modi-
fiable risk factor for AD(63). Hence, the cognitively healthy older
person is an important reference to set the baseline for the
energy deficit inMCI andADbut, equally, is also a target for brain
energy modifying interventions aiming to reduce the risk of pro-
gression to MCI or AD.

For decades, BGH in AD was considered to result from
advanced neuronal dysfunction, which correlates well with
the degree of cognitive impairment(64), but emerging evidence
reporting its occurrence years prior to the onset of AD clinical
symptoms challenges this interpretation(39,65). Indeed, popula-
tions at high risk for AD including the ones carrying genetic
mutations presenilin-1(66), young adults carrying the APOE 4
gene(67) or with a family history of AD(68) display reduced
regional PET-FDG uptake in the brain decades before the onset
of the cognitive deficit. Individuals with risk factors for AD such
as age> 65 years(69), IR(70) and subjective memory complaints(71)

also present impairments in brain glucose utilisation. The
reported reduction in regional brain glucose utilisation in these
populations ranged from 8 to up to 25 % and, as in AD, affected
the parietal cortex, posterior cingulate and temporal cortex.
Clearly, BGH can develop pre-symptomatically so it is conceiv-
able that it plays a contributing role in the development of brain
energy deficit and AD-associated cognitive decline. This does
not exclude the possibility that neuronal dysfunction and death
further exacerbate BGH as part of a vicious cycle. BGH may not
be the first detectable formof dysfunction in the ageing brain, but
it has an upstream place in the cascade of events leading to AD.

Underlying mechanisms of impaired brain glucose
utilisation

The disruption of glucose utilisation in the brain of individuals
with cognitive decline is widely observed, but its underlying
causes are still not fully understood. In AD, numerous abnormal-
ities in brain glucose transport (e.g. cerebral perfusion, blood–
brain barrier, cerebral blood flow and GLUT1 and GLUT3
expression) and metabolism (e.g. glycolysis, pentose phosphate
pathway, tricarboxylic acid cycle, oxidative phosphorylation)
have been reported(72–76). Normally, brain glucose delivery
largely exceeds local consumption thereby almost always avoid-
ing a potential brain energy shortage(77). Brain regions vulner-
able to AD can display glucose accumulation, suggesting that
glucose transport might not be the initial limiting factor in brain
glucose utilisation(73).

In AD, mitochondrial dysfunction is part of a vicious cycle con-
tributing to amyloid beta and tau pathology, both closely associated
with oxidative damage which promotes further mitochondrial dys-
function, proteotoxicity, cell dysfunction and death(74,78).
Mitochondrial structure and function differ significantly between
ADandhealthyolder adults including total number, protein expres-
sion, antioxidant capacity and enzymatic activity in the tricarboxylic
acid cycle and oxidative phosphorylation complexes I, III and IV 96.
Such pathological changes reduceATPproduction fromglucose by
20–50% in sporadic AD(41). Thus, mitochondrial dysfunction is a
major and early defect responsible for the reduction in brain glu-
cose utilisation in AD(79). However, glycolysis is up-regulated dur-
ing brain activation(77) and glycolytic impairment in specific brain
regions has also been proposed as a fundamental feature contrib-
uting to AD symptoms(73). In addition to limiting ATP production,
dysregulation in glycolysis would also reduce the amount of ana-
plerotic intermediates entering the citric acid cycle which in turn
would limit oxidative phosphorylation and the synthesis of acetyl-
choline and γ-aminobutyric acid.

In the brain, insulin’s role goes beyond glucose homoeostasis(80)

and impairment in its signalling pathways is now recognised as an
important characteristic of AD(81). Brain insulin resistance (IR) can
develop in the absence of systemic IR(82), but epidemiological and
neuroimaging studies consistently report a strong association
between type 2 diabetes and AD, suggesting that both peripheral
and central IR usually co-exist(83,84). In patients with AD, impaired
insulin actionmay contribute to abnormal brain energetics in several
ways including impaired mitochondrial oxidative metabolism and
ATP-dependent maintenance processes that are critical to neuronal
survival(85). Moreover, increased production of reactive species and
inflammatory cytokines resulting from reduced brain insulin signal-
ling damage brain cell structure and functional integrity(86). It is also
possible that IR down-regulates the utilisation of glucose through the
blood–brain barrier and by altering GLUT4 trafficking, though the
impact on overall brain glucose homoeostasis remains to be deter-
mined(87). While it is unclear whether IR on its own is enough to
cause neuronal damage, it can exacerbate (and be exacerbated
by) the pathophysiological mechanisms underlying AD, particularly
amyloid β accumulation (via the competitive inhibition of its degra-
dation) or neuronal loss (via apoptosis)(78).

Brain ketone metabolism in health and Alzheimer’s
disease

The common perception that glucose is the obligatory and pre-
ferred fuel for the brain originates from the observations that
insulin-induced hypoglycaemia leads to severe sensory and cog-
nitive disturbances that can be reversed by the administration of
glucose(88) and that, under normal conditions, glucose is the
dominant source of energy for the brain(89). However, βHB infu-
sion and prolonged fasting attenuate the physiological response
to severe hypoglycaemia including autonomic symptoms(90–92),
neuronal death(93) and cerebral energy metabolism(94).
Moreover, under circumstances in which the ketone:glucose
ratio in the blood is increased allowing for potential substrate
competition, brain glucose utilisation is displaced by ketones
and its oxidation by the normal brain is reduced(35). Generally,
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an increase of 0·1 mM in plasma βHB is usually paralleled by an
increase of 1·0–1·2 % in the contribution of ketones to total brain
energy metabolism(95). In extreme physiological ketosis (∼6–7
mM of βHB) such as a 30–40-d fast, ketones can become the
major fuel of the brain and provide up to 2/3 of its total energy
needs(89). Some evidence suggests that the ketone contribution
to total brain energy metabolism does not surpass this 2/3 value
even when βHB levels are as high as 8 mM in humans(92) and 17
mM in rats(96) unless a high level of insulin is infused simultane-
ously(92). One possible explanation is that, like fatty acids,
ketones ‘burn in the flame of carbohydrates’ and thus require
the presence of an anaplerotic substrate like glucose to replenish
tricarboxylic acid intermediates and ensure the complete oxida-
tion of ketones to ATP(97). Excessive ketone metabolism in the
brain at the expense of glucose could potentially have a detri-
mental impact on neuronal signalling driven by glutamate(98).
Contrary to brain glucose utilisation, which is mainly dependent
on neuronal activity, brain ketone utilisation is directly related to
ketone concentrations in circulation over a broad range of con-
centrations, that is, from 0·1 to at least 6–7 mM of βHB(95), thus
ensuring a continuous supply of energy to the brain during glu-
cose scarcity.

Despite the widespread characterisation of lower brain glucose
utilisation in AD, few studies have evaluated the capacity of the
brain to utilise its main alternative fuel – ketones – in AD. To the
best of our knowledge, only four studies have directly evaluated
brain glucose and ketone metabolism concomitantly in AD
(Table 1). Using the arteriovenous difference method, Lying-
Tunell et al. and Ogawa et al., reported that while CMR of glucose
was impaired in moderate-advanced AD, CMR of AcAc and βHB
remained similar to cognitively healthy, age-matched
controls(42,44). Decades later, these findings were confirmed using
PET inmild-AD.Wehave also demonstrated that plasmaAcAc con-
centrations andAcAcutilisation in healthy older adults,MCI andAD
were all positively correlated with the same slope indicating a sim-
ilar capacity of the brain to extract and utilise ketones despite the
progression of cognitive decline(47,50). Using a 4-year longitudinal
study in healthy older adults, we later showed that while declining
regional brain glucose utilisation (–6 to –12%) was paralleled by
deteriorating cognitive performance, AcAc utilisation remained
unchanged over the same period(99). A study in postmortem AD
brains recently supported these in vivo observations by showing
that while glycolytic gene expression was impaired in all cell types,
ketolytic gene expression was normal in neurons, astrocytes and
microglia but sub-normal in oligodendrocytes(100). Overall, the
impairment in brain energy metabolism in AD clearly seems to
be specific to glucose, which opens the possibility of providing
ketones as an alternative substrate to the brain to reduce or bypass
the energetic deficit in AD caused by BGH.

Ketogenic interventions

Research into the potential therapeutic applications of ketones has
grown exponentially over the past decade and suggests that
ketones may be clinically beneficial in several diseases including
heart failure, diabetes and AD(101–103). Nutritional ketosis is usually
defined as having a blood concentration of βHB or AcAc higher

than 0·5 mM (104). It should be differentiated from pathological
ketoacidosis in which plasma ketones are much higher (often≥ 10
mM βHBþ AcAc) but also because nutritional ketosis occurs with-
out either an underlying disease or metabolic acidosis(105). Fasting
and other dietary modifications resulting in mild endogenous keto-
sis have been used to treat a variety of diseases for
centuries, including epilepsy(106), IR(107), obesity(108) and neurode-
generative diseases(39). Recently, the development of exogenous
sources of ketones such as salts and esters permits plasma ketones
to be raised independent of plasma glucose or insulin levels, wid-
ening the spectrumof potential therapeutic applications of this form
of exogenous nutritional ketosis(109).

Endogenous ketosis

A KD will trigger metabolic and enzymatic adaptations that make
the brain less reliant on glucose and favour the utilisation of
ketones(35,110). The blood profile that accompanies endogenous
ketosis on KD (or fasting) differs from the onewith exogenous keto-
sis(111). First, given the low amount of carbohydrates consumed on a
KD, glucose and insulin fluctuations are greatly reduced. Second, a
KD promotes the release of NEFA from adipocytes through reduced
insulin(112), and increased counterregulatory hormones (e.g. gluca-
gon, catecholamines, cortisol, growth hormones)(113,114) while βHB
inhibits their mobilisation(115). The effect of cortisol and glucagon
on adipocytes is heavily influenced by insulin; when insulin is
low, they promote lipolysis and ketogenesis and when insulin is
high, they promote fat storage and lipogenesis(114,116). In adults,
short-term KD (≤ 4 weeks)(35,117,118) and its forms used for epilepsy
(with or without MCT)(119) can produce moderate ketosis (βHB 1·5–
4·0 mM). Nevertheless, longer-term studies (≥ 6 weeks) in MCI and
AD(120–123) and other populations with(124–126) and without(127–129)

chronic diseases have usually reported more modest βHB levels
(< 1·0 mM). Additionally, since physical fitness, total energy intake,
diet composition and metabolic profile influence ketone kinetics, it
can be difficult to sustainably achieve a blood ketone target with a
diet intervention alone(130). Achieving endogenous ketosis can take
many hours, sometimes days, and adherence to this relatively restric-
tive dietary pattern can be problematic(131), evenmore so if cognition
and autonomy are already suboptimal. Ketogenic medium chain
TAG (kMCT) can be used to supplement a KD to optimise ketone
levels and to allow the introduction of some carbohydrates, thereby
facilitating long-term adherence(132). The beneficial effects of a KD in
reducing risk factors for AD such as IR, impaired glycaemic control,
inflammation, andelevatedbloodpressure andbodyweight canout-
weigh the difficulties of adjusting to a KD(133). While weight loss is
usually beneficial for metabolic health in those who are overweight,
it could potentially have deleterious effect in older people who are
frail, sarcopenic or cachectic(134). Similar to reports in populations
without cognitive impairment(126,135,136), studies inMCI andADusing
KD have reported significant improvements in body weight as well
as circulating glucose, insulin and TAG, while both HDL- and
LDL-cholesterol were increased(120,122,137).

Not all fat sources are equally efficient in raising blood
ketones(138). In the absence of carbohydrate restriction, among
dietary fatty acids only octanoic acid and to a lesser extent, decanoic
acid are truly ketogenic(139–142). Since kMCT are only found at very
low levels in adipocytes and in the diet, they need to be repeatedly
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ingested to ensure their transformation into ketones within the
liver(143). In cognitively healthy youngandolder adults, kMCT reduce
postprandial glucose(144), have a neutral effect on fasting lipids and
glucose and can moderately reduce body weight (–0·5 kg)(145,146).
The consumption of kMCT in MCI and AD for 4–24 weeks is safe
and has no significant effects on body weight or plasma cardiome-
tabolic and inflammatorymarker profiles(147,148). Their consumption,
especially at high doses, can be associated with mild gastrointestinal
issues in some patients, but they are usually transitory and can be
tempered by dose titration(139). Certain dietary patterns including
intermittent fasting, time-restricted feeding(149), energetic restric-
tion(29) and even coconut oil(150,151) do not necessarily raise blood
ketones, so their clinical and physiological implications fall outside
the scope of this report.

Exogenous ketosis

Racemic ketone salts and βHBmonoester produce plasmaD-βHB
of∼1 and∼3mM for 24 g dose, respectively(152). In both cases, no
dietary carbohydrate restriction is required, but given the transient
nature of exogenous ketones, multiple daily ingestions may be
necessary for therapeutic efficacy.Most but not all(153) ketone salts
are racemic, that is, containing both the D and the L formof βHB (of
which only the D form ismetabolisable into energy intermediates).
Like with the esters, their half-life is too short to achieve a specific,
sustained βHBblood level(109). Nevertheless, ketone esters allowa
similar level of blood βHB to be attained within 30 min to those
observed after several days of fasting or following a KD(154).
Moreover, they contain onlyD-βHBand are salt free(155). Their bit-
ter taste and high price, however, currently limit their utility. The
acute consumption of ketone salts and βHB monoesters

transiently and mildly raise insulin secretion, an effect unlikely
to be of clinical significance(152,154). While both ketone salts and
the βHB monoester raise blood βHB and lower blood glucose,
NEFA and blood pressure, they have different metabolic and
safety effects(152,154,156,157): Ketone salts transiently raise urine
pHwhile ketone esters transiently decrease it and, when compar-
ing equimolar doses, the ketone monoester raises chloride more
than ketone salts(152,158). On the other hand, the Na content to
achieve therapeutic levels of blood βHB using most commercially
available ketone salts exceeds the recommended upper limit. To
date, noRCT has investigated the effect of oral ketone supplemen-
tation in populations with cognitive decline although one is cur-
rently in progress (Clinicaltrials.gov identifier: NCT04466735).

The understanding of the acute and short- to medium-term
(1–24 weeks) effect of different ketogenic interventions on car-
diometabolic markers has considerably expanded in recent
years (summarised in Table 2), but whether there are potential
long-term side effects of the non-physiological environment
accompanying exogenous ketosis (i.e. elevated glucose,
ketones and insulin simultaneously) is still unknown and will
need to be determined in order to optimise the safety and effi-
cacy of ketogenic interventions in different therapeutic contexts.

Fuel efficiency: a core feature of ketones

Besides substituting for glucose as a fuel, there are three reasons
why ketones are a more efficient source of carbon to fuel the mito-
chondrial respiratory chain than glucose or NEFA: First, ketones are
more reduced than pyruvate (higher hydrogen to carbon ratio), so
have a higher redox potential or potential to generate ATP(159).

Table 1. Cerebral metabolic rate of ketones but not glucose remains normal in Alzheimer’s disease compared with healthy age-matched controls
(Mean values and standard deviations)

Older controls Alzheimer

Mean SD Mean SD Effect of Alzheimer

Early Alzheimer CMR-PET (μmol/100 g/min)
Croteau et al. 2018(50)

Age 73 6 73 5
AcAc 0·28 0·19 0·30 0·20 ↔
βHBþ AcAc 0·71 0·51 0·89 0·62 ↔
Glucose 29·7 2·5 27·0 3·3 ↓*

Castellano et al. 2015(47)

Age 72 5 76 4
AcAc 0·35 0·16 0·31 0·24 ↔
Glucose 38·3 4·9 34·2 5·0 ↓*
Advanced Alzheimer CMR-AVD (μmol/100 g/min)

Ogawa et al. 1996(42)

Age 63 9 66 8
AcAc 0·18 0·13 0·09 0·04 ↔
βHB 0·11 0·06 0·14 0·08 ↔
Glucose 24·9 7·2 11·6 4·0 ↓*

Median Range Median Range
Lying-Tunell et al. 1981(44)

Age 64 54–71 60 52–67
AcAc 0·44 –0·6–1·7 0·39 0·0–2·5 ↔
βHB 0·62 0·0–1·6 0·45 0·2–1·4 ↔
Glucose 24·8 18·8–32·1 18·7 11·9–30·3 ↓*

CMR-PET, cerebral metabolic ratemeasured by positron emission tomography; βHB, β-hydroxybutyrate; AcAc, acetoacetate; CMR-AVD, cerebral metabolic ratemeasured using the
arteriovenous difference method.
Data are presented as mean (standard deviation) and as median (range) for as Lying-Tunell et al.
Significantly lower v. cognitively healthy age-matched older adults
* P< 0·05.
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Second, in contrast with fatty acid oxidation which promotes the
expression of uncoupling proteins (via PPARα transcription regula-
tion), ketone oxidation is electrochemically more efficient to
produce ATP. During fatty acid β-oxidation, only half of the reduc-
ing equivalents are NADH while the other half are FADH (which
has a redox potential above that of the NAD couple) resulting in
the synthesis of five instead of the six possible ATP molecules(159).
Third, because of the dual role of succinate dehydrogenase in the
Krebs cycle and electron transport chain, half of the reducing equiv-
alents enter the electron transport chain via Complex II during
ketone β-oxidation instead of Complex I(159). Complex II has a
smaller reduction potential with the Q-couple (which is near equi-
librium) than Complex I (–0·320 mV for the NAD couple(160) v.
þ0·32 mV for the fumarate and succinate couple(161)). This larger
gradient results in more electrochemical energy available to fuel
ATP production during ketones oxidation(162,163). Furthermore,
most reactive oxygen species in the cell are produced inmitochon-
dria, principally at the electron transfer stepbetweenComplex I and
theQ-couple. Since ketone oxidation preserves theQ-couple in the
oxidised state (as opposed to glucose or fatty acid β-oxidation),
fewer reactive oxygen species are produced during ketolysis than
during β-oxidation. Ketolysis also expands the citric cycle metabo-
lite pool, despite a lower concentration of glycolysis intermediates.

Keto-therapeutics for brain energetics, cognition and
neuroprotection

In healthy humans(35) and rodentmodels(164), total brain energy lev-
els remain unchanged following aKDbecause the increase in brain
ketone utilisation is paralleled by a compensatory reduction in glu-
cose utilisation. This homoeostatic mechanism is not observed in

populations with cognitive impairments in whom ketones help fill
in the energetic deficit and increase total energy levels in the brain
without reducing brain glucose utilisation(122,141,165). Even at low
levels of ketosis (βHB ∼0·6 mM), we previously showed using
11C-AcAc- and 18FDG-PET that long-term consumption of 30 g/d
of kMCT significantly increased whole-brain CMR of ketones by
230% in MCI and 144% in AD without affecting CMR of glucose.
The result was a net improvement in total brain energy consump-
tion of 3–4% in both groups(141,165). Neth et al. also observed
increased brain perfusion and ketone body utilisation in individuals
with subjective memory complaints or MCI on a KD(122). Thus,
ketones effectively compensate for at least part of the energy deficit
in older populations with cognitive decline. Importantly, Neth
et al.(122) and Fortier et al.(107) included cognitive performance as
a secondary outcome in their trial. While both studies reported
some improvement in cognition following the use of a ketogenic
Mediterranean diet(122) or kMCT(141) in subjective memory com-
plaints and MCI, they were not powered to adequately assess cog-
nitive changes post-intervention. Thus, the first phase of the
BENEFIC trial reported by Fortier et al.(141) was extended by dou-
bling the sample size so as tobetter evaluate cognitiveoutcomes. As
compared with an energy-matched drink, the consumption of
kMCT for 6 months led to clinically meaningful improvements in
several cognitive domains related to the risk of progression towards
AD including episodic memory, language, executive function and
processing speed(166).

Several other trials aswell as a few case studies using ketogenic
interventions inMCI andADhave reported benefits onglobal cog-
nition (ADAS-CoG) andmemory(120,121,123,140,142,148,167–169) or qual-
ity-of-life and activities of daily living(137) as compared with
placebo or pre-intervention status (Table 3). Two systematic

Table 2. Characteristics and general effects of ketogenic interventions

Ketogenic diet kMCT Ketone salts βHB monoester

Doses CHO < 50 g/d 15–40 g Racemic βHB: 12–25 g, Pure
D-βHB: 12 g

10–50 g

D-βHB (mM) 0·4–4·0 0·4–0·7 mM Racemic βHB: 0·4–1·0 mM,
Pure D-βHB: 0·8 mM

1·5–5·0 mM

βHB : AcAc 2–4:1 2:1 2:1 3–4:1
Time to ketosis Days to weeks 1–2 h < 30 min < 30 min
Insulin ↓↓ ↔ ↔ ↑ ↔ ↑
Glycaemia ↓↓ ↔ ↓ ↔ ↓ ↔ ↓
NEFA ↑ ↔ ↔ ↓ ↔ ↓
LDL-cholesterol ↑ ↔ ? ?

HDL-cholesterol ↑ ↔ ? ?

TAG ↓↓ ↔ ↔ ↓ ↔ ↓
CRP ↓ ↔ ? ↓
Blood pressure ↓ ↔ ↔ ↓ ↔ ↓
Blood pH ↔ ↔↔ ↔ ↑ ↔ ↓
Body weight ↓ ↔ ↓ ↔ ↔
Cost Low-moderate Low-moderate Low-moderate High
Adherence Low-moderate Moderate-high Moderate Low-moderate
Taste Multiple choices Tasteless Usually sweet Very bitter
Potential limitations Sensitive to dietary trans-

gressions,
keto-induction symp-
toms, adherence,
LDL-cholesterol

Gastrointestinal issues, mild
and transient ketosis

Cation overload,
transient ketosis

Expensive, taste aversion, transient
ketosis, adherence

kMCT, ketogenic medium chain TAG (C8 and C8C10 combined); βHB:AcAc, β-hydroxybutyrate:acetoacetate ratio in the blood; BW, body weight; CHO, carbohydrates; IR, insulin
resistance; AD, Alzheimer’s disease.
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Table 3. Nutritional studies using keto-therapeutics in populations with cognitive impairment linked to Alzheimer’s disease

Design Population Interventions Duration Therapy Ketone level
Domains/tests showing cognitive
improvement

Krikorian et al. 2012(120) RCT – parallel MCI KD (34 (SD 18) g CHO/d) (n 12, 68 (SD 3)
years) or HCLF (n 11, 71 (SD 8) years)

6 weeks Diet Blood βHB:
0·3 mM

Verbal memory

Brandt et al. 2019(121) RCT – parallel MCI, AD KD (30–50 g CHO/d) (n 9, 74 (SD 6) or HCLF
(n 5, 69 (SD 5) years)

12 weeks Diet Urine: 7·5–10
mg/dl

Memory composite score (at week 6)

Neth et al. 2020(122) RCT – cross-
over

SMC, MCI KD (40 (SD 99) g CHO/d) or HCLF (n 20, 64
(SD 6) years)

6 weeks Diet Capillary βHB:
0·9 mM

Improved memory performance (v. base-
line)

Phillips et al. 2021(137) RCT – cross-
over

AD KD (6% net CHO) or HCLF (n 13, 70 (SD 6)
years)

12 weeks Diet Capillary βHB:
0·95 mM

None (under-powered)

Taylor et al. 2018(123) One arm trial AD KD (46 (SD 27) g CHO/d)þMCT (C8C10), 21–
42 g/d (n 10, 73 (SD 9) years)

12 weeks DietþMCT Blood βHB:
0·3–0·5 mM

ADAS-Cog (–4·1 points v. baseline)

Reger et al. 2003(142) RCT – cross-
over

MCI, AD C8, 40 ml (n 20, 75 (SD 7) years) 1 dose MCT Blood βHB:
0·5–0·7 mM

ADAS-Cog (–1·7 points in ApoE4-)

Henderson et al.
2009(140)

RCT – parallel AD C8, 20 g/d (n 77, 77 (SD 9) years) or placebo
(n 63, 77 (SD 7) years)

12 weeks MCT Blood βHB:
0·4 mM

ADAS-Cog (–1·9 ITT, −2·6 DC at day 45)
(–3·4 ITT, −5·3 DC at day 90 in
ApoE4-)

Ohnuma et al. 2016(139) One arm trial AD C8, 20 g/d (n 22, 64 (SD 9) years) 12 weeks MCT Blood βHB:
0·3 mM

None (under-powered)

Xu et al. 2019(148) RCT – cross-
over

AD (APOE4 -/-) C8C10, 17 g/d or placebo (n 46, 75 (SD 8)
years)

4 weeks MCT Not reported ADAS-Cog (–5·2 points)

Ota et al. 2019(167) One arm trial AD C8C10, 20 g/d (n 16, 73 (SD 6) years) 12 weeks MCT Blood BHB:
0·5 mM

Verbal memory and processing speed
(v. baseline)

Fortier et al. 2019(141) RCT – parallel MCI C8C10, 30 g/d (n 19, 74 (SD 6) years) or pla-
cebo (n 20, 75 (SD 7) years)

24 weeks MCT Blood BHB:
0·5 mM

Episodic memory, language, executive
function and processing speed

Fortier et al. 2021(166)* RCT – parallel MCI C8C10, 30 g/d (n 44, 71 (SD 7) years) or pla-
cebo (n 39, 73 (SD 7) years)

24 weeks MCT Blood BHB:
0·5 mM

Episodic memory, language, executive
function and processing speed

ADAS-Cog, Alzheimer’s disease assessment scale-cognitive subscale; AD, Alzheimer’s disease; βHB, β-hydroxybutyrate; C8, caprylic acid; C10, capric acid; CHO, carbohydrates; DC, dosage compliant; HCLF, high-carbohydrate low-fat diet;
ITT, intention-to-treat; KD, ketogenic diet; MCI, mild cognitive impairment; MCT, medium chain TAG; MEC-WOLF, mini examen cognoscitivo (Spanish adaptation of the MMSE); RCT, randomised controlled trial; SMS, subjective memory
complaints.
* Fortier et al. (2021) extended the recruitment from Fortier et al. (2019) by adding forty more participants.
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reviews and meta-analyses recently concluded that, though pre-
liminary, available evidence suggests that ketogenic interventions
constitute an effective and feasible approach to improve cognition
in older populations with cognitive impairment(170,171). While it is
possible that the APOE4 allele induces a lower change in blood
βHB, brain blood flow and cognition in response to a ketogenic
supplement(140,142,172), other studies reported no difference
between APOE phenotypes(121,141). Given the existing hetero-
geneity in the ketogenic interventions, small sample size, and dif-
ferent populations and duration of the studies (see Table 3), it
remains to be determined how best to optimise ketones to
improve cognitive performance in older people.

Our work over the last two decades suggests that ketogenic
interventions improve cognitive performance principally by
reducing the existing brain energy deficit through the provision
of an insulin-independent alternative fuel to glucose, that is,
ketones. However, using keto-therapeutics in rodent models,
several other signalling, metabolic and epigenetic actions that
may confer neuroprotection and improve cognitive impairment
have been suggested (reviewed here(173–177)) (Table 4). So far,
only one human study evaluating the effect of ketogenic inter-
ventions on traditional neuropathological hallmarks of AD has
been reported. In this 6-week pilot study in older adults at risk
for AD, a ketogenic Mediterranean diet increasing βHB levels to
∼1·0 mM increased β-amyloid 42 and reduced tau levels in cer-
ebrospinal fluid, both of which are considered as positive
changes(122). In mouse models of AD, substantial evidence
depicting a reduction in intracellular accumulation and toxicity
of amyloid beta and tau protein on brain cells as well as neuro-
inflammation using both KD and exogenous ketones has been
published(178–182). Given that very different ketogenic interven-
tions (i.e. KD v. ketone ester) seem to provide some cognitive
benefits and potentially very rapidly (within 2 h), it is likely that
the role of ketones themselves as an efficient fuel is directly
involved in the observed benefit, at least in the short term.
The optimal therapeutic levels of ketones to achieve long-term
neuroprotection and cognitive benefits in humans remain
unknown, which could be an order of magnitude lower than
the levels tested so far in most rodent models of AD (3–5
mM). Importantly, part of the clinical benefits attributed to some
ketogenic interventions in populations with cognitive decline

may not be due to the actions of ketones as fuels but rather to
other effects of specific kMCT. For example, as compared with
othermedium-chain TAG, decanoic acidmay offer superior neu-
roprotection through mechanisms that might include increased
peroxisomal proliferator-activated receptor-γ activation, mito-
chondrial biogenesis and inhibition of α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA) receptors (reviewed
here(174)). Given the distinctions that exist between traditional
KD, modified medium-chain TAG KD and kMCT supplementa-
tion (i.e. kMCT and carbohydrate contents), future studies
should investigate whether the effect on cognition in MCI and
AD differs between these two ketogenic strategies.

Physical activity as an adjunct to keto-therapeutics in
populations with cognitive deficits

Physical inactivity is thought to contribute to ∼8·0% of dementia
cases globally(183). Nevertheless, there are currently no official
physical activity guidelines specifically for individuals with AD
who need to defer to those for healthy older adults and/or for
other health conditions(184). In older adults without cognitive dys-
function, physical activity is inversely associated with the risk of
AD, with the APOE4 allele potentially diminishing(185) or strength-
ening(186) the relationship. Importantly, home-based and group-
based exercise interventions have been shown to be feasible
and improve quality of life, physical performance and the ability
to perform daily activities in both older adults with and without
cognitive deficit(187–189). Though controversial, several recent
meta-analyses in MCI and AD patients themselves support the
idea that exercise interventions, especially the aerobic type, might
slow down the decline of global cognition(190–193). However, most
of the evidence remains of low to moderate quality and has a low
effect sizes, so definitive conclusions would be premature. The
regular practice of physical activity improves several major risk
factors for AD including blood lipids, hypertension, cardiorespira-
tory fitness(194) and peripheral IR(195), the latter being inversely
associatedwith regional BGH(84). It is likely that exercise treatment
should be initiated as early as possible in the AD process to min-
imise the effect of the patients’ potential physical and mental
health decline on their capacity to sustain an exercise dose

Table 4. Potential mechanisms involved in the improvement of cognitive impairment and neuroprotection by ketogenic interventions in AD

Potential mechanisms

Increase total brain energy metabolism by bypassing the issues with glycolysis and brain glucose metabolism
Provide a more efficient metabolic fuel for brain cells in terms of ATP delivered/g
Increase cytoplasmic NADþ:NADH redox state
Reduce the risk of neuroinflammation by increased scavenging of reactive oxygen species
Attenuate the intracellular accumulation and toxicity of amyloid beta and tau protein on brain cells
Attenuate inflammation through HCAR2, NLRP3 inflammasome, PPARγ and sirtuins
Increase antioxidant capacity and resistance to oxidative stress through HDAC inhibition
Inhibit apoptosis and promote mitochondrial function and biogenesis by up-regulating sirtuins, PPARγ and PGC1-α activities
Increase neurotrophic factors expression such as BDNF
Improve TCA cycle activity thereby stimulating acetylcholine and GABA synthesis
Attenuate hyperglycaemia and hyperinsulinaemia leading to diminished insulin signalling pathways

Based on references(174–177).NAD, nicotinamide adenine dinucleotide; NADH, nicotinamide adenine dinucleotide hydrogen; HCAR2, hydroxycarboxylic acid receptor 2; NLRP3,
nucleotide oligomerisation domain-like receptor family pyrin domain containing 3; HDAC, histone deacetylase; PGC1-α, peroxisome proliferator-activated receptor gamma co-acti-
vator-1 alpha; BDNF, brain-derived neurotrophic factor; TCA, tricarboxylic acid; GABA, neurotransmitter γ-aminobutyric acid.
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sufficient to yield health benefits. In rodent experiments, exercise
restores mitochondrial ATP production, lowers reactive oxygen
species emission and improves tau pathology through improved
insulin action in the insulin-resistant brain(196). Exercise also
reduces brain amyloid in transgenic AD mice(197,198), but so far
interventional studies assessing cerebrospinal fluid A β1–42 have
failed to see similar results in AD(199), though some interesting
trends were observed in older adults at risk of AD(200,201).
Determining whether exercise improves cognition by correcting
brain IR will provide important information for future AD therapy.

Multidomain lifestyle interventions including exercise and
cognitive training with and without diet improve and maintain
cognitive function in older adults at risk for AD(202,203), potentially
more than exercise alone(204). While both physical activity(205)

and nutritional ketogenic interventions(171) independently
improve brain health and cognition, no RCT have evaluated their
combined effect on cognitive function in populations at risk of or
living with cognitive decline. To the best of our knowledge, only
a single case study using high-intensity interval training and KD
along with cognitive training for 12 weeks in a 57-year-old
woman with MCI has been published and reported a significant
improvement in cognition (þ8 points; MoCA) and biomarkers of
the metabolic syndrome(206). Although cognition was not
assessed in their studies, Miller et al. did look at the combined
effect of exercise and KD in healthy young individuals and
reported significant improvements in skeletal muscle mitochon-
drial function and efficiency(207). Myette-Côté et al. reported bet-
ter glucose control and endothelial function following a 4-d KD
combined with exercise as compared with both KD alone and a
low-fat low-glycaemic index diet in type 2 diabetes(208,209).

Prolonged glycogen-depleting exercise has long been known
to stimulate ketone turnover and induce a marked rise in blood
ketone concentrations especially during the recovery period
when fatty acid oxidation is elevated(210,211). In normoglycaemic
but not in mildly hyperglycaemic individuals, aerobic exercise
potentiates the plasma ketone response (þ69 %) to kMCT sup-
plementation; whether the same would apply in AD has not
been assessed(212). Along these lines, one study in both mice
and older adults reported that aerobic exercise but not resistance
training was effective at raising blood βHB levels and improving
cognition which might help guide the optimal exercise modality
to select in AD(213).

Factors such as fitness level, pre-exercise ketone levels, exer-
cise intensity and metabolic status can influence muscle ketone
disposal by as much as 2–5-fold(214). Unfortunately, studies on
brain ketones utilisation during exercise are scarce with one
showing no change in brain substrate utilisation (ketones, lac-
tate, glycerol) in young adults during prolonged exercise when
βHB levels remained relatively low ∼0·4 mM(215). More recently,
we showed that in AD, exercise increases ketone transport into
the brain, thereby translating into a higher contribution of
ketones to total brain energy. Indeed, mild to moderate exercise
bouts (50 % VO2max for 40 min) performed over 3 months signifi-
cantly increased both plasma ketones (þ0·3 mM) and tripled
CMR of AcAc (from 0·2 (SD 0·1) μmol/100 g/min to 0·6 (SD
0·4)) without affecting CMR of glucose(216). Thus, combining a
ketogenic intervention and exercise would be expected to have
a more pronounced benefit for brain energy metabolism and

would potentially be associated with better cognitive perfor-
mance. While moderate physical activity level has previously
been associated with higher CMR of glucose in older adults at
risk of AD(217), Gaitan et al. failed to observe a significant change
in CMR of glucose following a 26-week exercise intervention in
the same population(218). Interestingly, Porto et al.(219) and Shah
et al.(220) reported that exercise interventions did improve
regional brain glucose utilisation inMCI and older adults, respec-
tively. Though the reason for this discrepancy remains uncertain,
these interventions all led to some cognitive benefits that were
correlated with changes in regional 18FDG metabolism which
highlights the potential of exercise to improve AD-related symp-
toms through a mechanism linked to improved brain energy
metabolism.

While this has not been evaluated in AD, a recent study
showed that exogenous ketosis improved exercise tolerance
in patients living with Parkinson’s disease suggesting that keto-
genic interventions could improve adherence and, conse-
quently, facilitate access to exercise-induced cognitive
improvements(221). Moreover, βHB produced during exercise
or with ketogenic interventions promoted the expression of
brain-derived neurotrophic factor in healthy humans(222,223),
and in AD, a state characterised by low levels of brain and circu-
lating brain-derived neurotrophic factor (224,225). Increased brain-
derived neurotrophic factor has been proposed as one potential
mechanism to explain the observed cognitive improvement in
AD with ketogenic interventions as it is involved in numerous
neurophysiological processes that contribute to neuronal
growth and survival as well as synaptic plasticity(175).
Importantly, ketogenic interventions and exercise stimulate
mitochondrial biogenesis and ATP generation through oxidative
metabolism in neurons(226,227). Mitochondrial dysfunction and
aberrant energy metabolism constitute critical factors in the
pathogenesis of AD that could potentially be prevented or
slowed down by combining these two therapeutic approaches.
In addition to their effect on energy metabolism, exercise and
ketogenic interventions share different adaptive responses in
the brain that could contribute to cognitive health and resilience
including neurogenesis, synaptic plasticity as well as protection
against neuroinflammation, reactive oxygen species and poten-
tially proteotoxicity(205,228,229). KD and exercise are also potent
stimulators of monocarboxylate transporter expression, which
are responsible for the passage of ketones across the blood–
brain barrier(230,231). Taken together, exercise has several over-
lapping and synergistic effects with keto-therapeutics that could
potentially play a key role in the treatment and maybe preven-
tion of AD. Thus, it is of great interest to further investigate the
practical limits of combining exercise as an adjunct to ketogenic
interventions, bearing in mind that their joint feasibility and
effectiveness will likely depend on factors such as physical
capacity, motivation and disease stage.

Current challenges and future directions

The aetiology of AD is complex andwill most likely require early
initiation of amulti-target treatment to significantly improve clini-
cal outcomes(16). Ketogenic interventions reduce not only the
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brain energy deficit but also oxidative stress and neuroinflamma-
tion, while improving mitochondrial function. BGH alone is
probably not sufficient to cause AD-related cognitive impair-
ment, but it certainly aggravates the deleterious effects of neuro-
pathophysiological processes andworsens clinical prognosis(78).
Equally, the clinical studies reviewed here show that BGH can be
bypassed by a ketogenic intervention and in so doing improve
cognitive outcomes, at least in MCI(141,166). Hence, brain energy
rescue is part of the solution; pharmaceutical or non-pharma-
ceutical interventions in MCI and AD would therefore be pre-
dicted to have a better chance of success if they include some
form of brain energy rescue.

As to future directions for the field, we have a few sugges-
tions: First, the majority of studies using ketogenic interventions
in MCI and AD have been pilot, safety or feasibility trials and
were underpowered to detect differences in cognitive outcomes.
Thus, it will be critical for future trials to include larger sample
sizes to draw more valid conclusions regarding the effectiveness
of such treatments to delay cognitive decline associatedwith AD.
Second, although a KD induces higher overall ketosis than exog-
enous ketones, poor long-term compliance to such a strict diet is
an important barrier to its long-term application. The utilisation
of exogenous ketones alone or with KDmight help alleviate this
barrier by allowing amore permissive diet. In type 2 diabetes, the
use of continuous remote care during KD interventions that pro-
vides patients with access to a healthcare team and biomarkers
tracking tools through a web-based application recently showed
great diet compliance after 2 years(232). This novel system will
hopefully be applied to populationswith AD andMCI attempting
to manage their conditions using KD. As clinical experience with
ketogenic interventions grows, it is becoming clearer that cardi-
ometabolic markers do not change adversely during studies of
up to 6 months, thereby indicating a good margin for safety.

So far, most ketogenic interventions in MCI and AD have
resulted in relatively low plasma βHB concentrations (0·3–0·9
mM, see Table 2). Since neurocognitive test performance in
MCI is directly related to overcoming BGH by brain ketone uti-
lisation in a dose–response relationship(120,140–142), it is likely that
further increasing ketone levels to reduce the brain energy gap
as much as possible might yield additional cognitive or func-
tional benefits. To achieve a somewhat higher plasma ketone
response and better compliance than with a kMCT or KD, we
recently launched the BREAK-AD RCT in MCI using a ketone salt
(25 g/d of D-βHB) (ClinicalTrials.gov Identifier: NCT04466735).
Third, ketones are part of an effective strategy to delay AD but
much work needs to be done to optimise their use in people at
risk of AD because even the simplest option of taking 20–30 g/d
of a ketogenic supplement for the rest of one’s life is still a sig-
nificant lifestyle change. Exercise is important for well-being and
cardiometabolic health and improves ketone delivery to the
brain in AD, so should always be encouraged in moderation.
More broadly, improving sleep and reducing anxiety and
depression will also be beneficial. Correcting impairing hearing
is also important as is social engagement. Existing drugs (or those
in development) for AD could well be more effective with con-
comitant brain energy rescue using a ketogenic intervention.
This is quite plausible because ketones may not improve neuro-
transmitter status or reduce amyloid or P-tau load but remains to

be assessed. Fourth, with a large proportion of the older popu-
lation in nursing homes or homes for assisted living, a concerted
effort to run RCT in such a setting will be important in the near
future. Logistical advantages of such a setting include the prox-
imity of the participants to one another and group meals and
other activities. Finally, we now have a solid rationale for a
multi-modal AD prevention trial starting no later than in MCI;
core components would include a ketogenic intervention, mod-
erate exercise and a MIND-type diet including carbohydrate
reduction. TheWorldwide Fingers network(233) is a solid founda-
tion for a new era of prevention trials in AD and will hopefully
include a trial site using a keto-therapeutic intervention in the
years to come.
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