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On Computable Field Embeddings and
Difference Closed Fields

Matthew Harrison-Trainor, Alexander Melnikov, and Russell Miller

Abstract. We investigate when a computable automorphism of a computable ûeld can be eòectively
extended to a computable automorphism of its (computable) algebraic closure. We then apply our
results and techniques to study eòective embeddings of computable diòerence ûelds into computable
diòerence closed ûelds.

1 Introduction

_is article is a contribution to eòective ûeld theory, where themain objects of study
are computable ûelds. Recall that an algebraic structure is computable if the elements
of its domain are associated with natural numbers in such a way that the operations
become computable functions upon this domain [Mal61,Rab60]. _ere are a number
of classical results that say that maps between ûelds can be extended tomaps between
their algebraic closures. We consider when this can be done eòectively, i.e., if all of
the ûelds involved are computable, and we are given a computable map, must there
exist a computable extension to the algebraic closures? We obtain both necessary and
suõcient conditions on a computable ûeld F which ensure that these classical theo-
rems hold eòectively for the ûeld F. We also apply our results to computable ûelds
with a distinguished (computable) automorphism; such ûelds are known as diòer-
ence ûelds. We investigate the problem of eòectively embedding diòerence ûelds into
computable diòerence-closed ûelds (these are existentially closed diòerence ûelds, to
be discussed). As we will see, the most naive analogy of the well-known results of
Rabin [Rab60] and Harrington [Har74] fails for computable diòerence ûelds, in all
characteristics. Nonetheless, we will ûnd a broad class of ûelds (including abelian
extensions of a prime ûeld) forwhich a stronger version of the analogous result holds.

1.1 Embeddings into Algebraically Closed Fields

In a pioneering paper, Rabin [Rab60] proved that every computable ûeld F can be
embedded into a computable presentation E of its algebraic closure by a computable
map ı∶F → E. Provided that E is algebraic over the image ı(F), we call such an
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embedding ı a Rabin embedding of F into E, writing F for E since E may thus be
regarded as an algebraic closure of F. In what follows it will be important that, in
general, the image ofF under theRabin embedding ı doesnothave to be a computable
subset of F. Rabin showed that the problem of deciding the ı-image of F in F is fully
captured by the notion of the splitting set. Recall that the splitting set SF of F is the
set of all polynomials p ∈ F[X] which are reducible over F. If the splitting set of F is
computable, then we say that F has a splitting algorithm. Rabin showed that for each
computable ûeld F, and for each Rabin embedding ı of F, the image ı(F) of F in
F is Turing equivalent to the splitting set of F, which may be undecidable. We note
that splitting algorithms had been studied long before Rabin. For instance, in 1882,
Kronecker [Kro82] analyzed splitting algorithms for ûnitely generated extensions of
Q.

1.2 The First Main Result

It is well known that every isomorphic embedding α of a ûeld F into an algebraically
closedK extends to an embedding β of the algebraic closure ofF intoK. Sincewe are
interested in eòective embeddings, we ask whether β can always be chosen to be ef-
fective. In our notation, with a ûxed Rabin embedding ı and an arbitrary computable
α, we ask for a computable β such that the following diagram commutes:

F
β
// K

F

ı

OO

α

??

i.e., α = β ○ ı. If a computable solution to the above diagram exists for every choice
of α and of the computable algebraically closed ûeld K, then we say that (F, ı) has
the computable extendability of embeddings property. Notice, however, that if some
Rabin embedding ı of a particular F has the computable extendability of embeddings
property, then so does every other Rabin embedding ȷ of F (into any computable
presentation of F): just apply the computable extendability of embeddings property
for ı,with ȷ as the α, to get an embedding β ȷ that extends ȷ○ ı−1 (andwhichmust be an
isomorphism). _en given any other α, the computable extendability of embeddings
property for ı yields a β such that β ○ β−1

ȷ satisûes the computable extendability of
embeddings property for ȷ and this α. _erefore, we usually simply say that F itself
has the computable extendability of embeddings property.

_e ûrst problem that we address in the paper is the following.
● Find anecessary and suõcient condition for a computableF tohave the computable
extendability of embeddings property.
Before we give a necessary and suõcient condition, we discuss a subtlety that

would not occur in the classical case. _e desired extension β clearly depends on
the choice of the Rabin embedding ı. Classically, the dependence on ı is o�en sup-
pressed, since we can identify F with its ı-image. However, as noted above, such an
identiûcation is generally impossible eòectively: the membership problem for ı(F)

may be undecidable. To emphasize the dependence on the embedding ı∶F → F, we
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say that β ı-extends α if it is a solution to the diagram above. Later in the paper we
will allow ı to vary, but for now we ûx a concrete choice of a Rabin embedding ı.

We may further restrict ourselves and ask for a uniform procedure, i.e., a Turing
functional, that takes the open diagram of an algebraically closed ûeldK and an em-
bedding α∶F →K and outputs an embedding ofF intoK ı-extending α. For uniform
extendability we do not requireK or α to be computable, but we still ûx ı. _e reader
may ûnd it somewhat unexpected that this uniform version is equivalent to the com-
putable extendability of embeddings property.

_eorem 1.1 Let F be a computable ûeld together with a computable embedding
ı∶F → F of F into its algebraic closure. _en the following are equivalent:
(i) F has a splitting algorithm;
(ii) F has the computable extendability of embeddings property;
(iii) there exists a Turing functional which, given as its oracle the open diagram of an

algebraically closed ûeldK and an embedding α∶F →K, computes an embedding
of F into K ı-extending α.

_e property captured by_eorem 1.1 above is also equivalent to an a prioriweaker
uniform extendability condition, namely, the existence of a uniform procedure that
takes indices of computable K and α∶F → K and outputs an index of a computable
β∶F → K extending α. Indeed, this weaker uniform property follows from the uni-
form extendability condition in_eorem 1.1 and implies the computable extendability
property.

In the language of reversemathematics,_eorem1.1would say that in the ω-model
REC consisting of the computable sets, a ûeld has a unique algebraic closure if and
only if that ûeld has a splitting algorithm. _us, while RCA0 proves that every ûeld
with a splitting algorithm has a unique algebraic closure, it is consistent that every
other ûeld has more than one algebraic closure. We note that it was already known
from work in reversemathematics (and is easy to see) that in the situation described
above there is always a low ı-extension of α, and in characteristic zero if F has a split-
ting algorithm, then there is a computable extension of α (see [DHS13, _eorem 9]
and [FSS83,_eorem 3.3]). In our result we do not restrict ourselves to ûelds of char-
acteristic 0; the issue that we face in the case of a positive characteristic will be cir-
cumvented using purely inseparable extensions (to be deûned). We remark that the
essential part of our proof of _eorem 1.1 is based on a certain preservation strategy
combined with a variation of the Henkin construction; such a combination has not
yet been seen in eòective algebra.

1.3 The Second Main Result

Another classical result says that every automorphism of a ûeld F extends to an auto-
morphism of its algebraic closure. In our notation, the diagram

F
ı //

α
��

F

β
��

F
ı // F
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always has a solution β such that the diagram commutes, i.e., ı ○α = β ○ ı. Once again
this is dependent on the embedding ı∶F → F, and, slightly abusing our terminology,
we say that β ı-extends α. We ask when β can be computed eòectively. In the setting
of automorphisms, it is natural to look at normal algebraic extensions of the prime
ûeld (as we will see in Proposition 4.2). In this case, we can apply _eorem 1.1 to
fully characterize existence of such ı-extensions in terms of a splitting algorithm; the
exact statement will be given in §4 (Corollary 4.1). Although the reader may ûnd
Corollary 4.1 interesting in its own right, the above discussed dependence on ı makes
it somewhat unsatisfying. Also, aswewilldiscuss in thenext subsection,wewould like
to apply our results to diòerence ûelds, and there this dependence on ı is an obstacle.
_erefore, in contrast to the situation of the computable extendability of embeddings
property above, we would like to allow the embedding ı to vary.

Deûnition 1.2 We say that a computable ûeld F has the computable extendability
of automorphisms property if for every computable automorphism α∶F → F there
is a Rabin embedding ı∶F → F and a computable automorphism β∶F → F that
ı-extends α.

_e second problem we address in the paper is the following.
● Find anecessary and suõcient condition for a computableF tohave the computable
extendability of automorphisms property.
Aswementioned above, the computable extendability of automorphisms property

is the propertywhich is of interest in constructing embeddings of diòerence ûelds into
diòerence closed ûelds (as we will see in _eorem 1.5). It is not diõcult to see that
if a normal extension F of the prime ûeld has a splitting algorithm, then F has the
computable extendability of automorphisms property. Is having a splitting algorithm
implied by computable extendability of automorphisms property? Although we do
not know if this is true in general (and we conjecture that perhaps not), we give a
condition on theGalois group of F over the prime ûeld—the non-covering property—
under which the computable extendability of automorphisms property is equivalent
to having a splitting algorithm.

Deûnition 1.3 We say that a group G has the non-covering property if for all ûnite
index normal subgroups M ⊊ N of G and g ∈ G, there is h ∈ gN such that for all
x ∈ G, x−1hx ∉ gM.

In Lemma 4.5 we will give an equivalent condition in the language of ûeld exten-
sions, using Galois correspondence.
Beforewe state our secondmain result,we note that groupswith the non-covering

property include abelian and simple groups, and the class of proûnite groupswith the
non-covering property is closed under direct products.

_eorem 1.4 Let F be a computable normal extension of Fp , for some prime p, such
that Gal(F/Fp) has the non-covering property. _e following are equivalent:
(i) F has a splitting algorithm;
(ii) F has the computable extendability of automorphisms property;
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(iii) F has the uniform extendability of automorphisms property.

In characteristic p > 0, all Galois groups are abelian, and so everyGalois group has
the non-covering property. _us, in characteristic p > 0 the computable extendability
of automorphisms property is equivalent to having a splitting algorithm.

1.4 Applications to Difference Closed Fields

Rabin [Rab60] showed that every computable ûeld can be computably embedded
into its computable algebraic closure, andHarrington [Har74] later showed that every
computable diòerential ûeld can be computably embedded into a diòerential closure.
We consider the possibility of such a result for ûelds with a distinguished automor-
phism; such structures are called diòerence ûelds [CH99]. An existential closure of
such a structure analogous to an algebraically closed ûeld exists and is called a dif-
ference closed ûeld. (We note that there is no such a thing as the diòerence closure
since there might be no “smallest” diòerence closed ûeld containing a given diòer-
ence ûeld. _e formal deûnitions will follow later.) In what follows next, we refer to
this hypothetical analogous result as the Rabin–Harrington _eorem.

We note that a diòerence ûeld (F, σ) may distinguish a rather boring automor-
phism σ , e.g., the identity, for which the Rabin–Harrington theorem clearly holds.
On the other hand, we will see that there exist computable diòerence ûelds that do
not embed into any computable diòerence closed ûeld. _us, the same ûeldmay have
two diòerent automorphisms, one witnessing the Rabin–Harrington _eorem, and
the other witnessing its failure, and ûnding a satisfactory characterization in this set-
ting seems rather hopeless (yet the readermay try to ûnd one). On the other hand,we
are mostly interested in the properties of the underlying ûeld which make the Rabin–
Harrington _eorem hold, and we are not that much concerned with the proper-
ties of some “pathological” automorphism that may witness the failure of the Rabin-
Harrington _eorem. _us, we arrive at the third main question addressed in the
paper.

● For which F does (F, σ) satisfy the Rabin-Harrington _eorem for all σ?

Here of course F is a computable ûeld and σ ranges over all computable automor-
phisms of F. We show in _eorem 5.1 that the Rabin–Harrington _eorem holds for
diòerence ûeldswith underlying ûeld F if and only if F has the computable extension
of automorphisms property. Using our results on extending automorphisms, namely
the secondmain result of the paper (_eorem 1.4), we can ûnd a large class of diòer-
ence ûeldswhich satisfy the Rabin–Harrington _eorem for any interpretation of the
distinguished automorphism.

_eorem 1.5 Let F be a computable normal extension of Fp , for some prime p, such
that Gal(F/Fp) has the non-covering property. _en the following are equivalent:

(i) F has a splitting algorithm;
(ii) for any computable σ , (F, σ) can be computably embedded into a computable

diòerence closed ûeld.
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Even without the non-covering property, (i) implies (ii). In particular, this theo-
rem gives a complete answer to the third main question of the paper in the case of a
normal extension of Fp for any p > 0. On the other hand,_eorem 1.5 will be used to
produce various examples of computable diòerence ûelds that cannot be embedded
into computable diòerence closed ûelds. We conclude that themost naive attempt to
generalize the results ofRabin andHarrington fails. On the other hand, ifwe allow the
automorphism to vary, we get a complete characterization for a large class of ûelds.

1.5 The Non-covering Property

Since our main results refer to the non-covering property ofGalois groups, we would
like to know more about the class of groups having this property. In Subsection 4.4
we study the class of groups that have the non-covering property, with an emphasis
on proûnite groups. It is not diõcult to see that abelian groups and simple groups
have the non-covering property (see Lemma 4.5). However, it takes a lot more eòort
to prove the following theorem.

_eorem 1.6 Let {G i ∶ i ∈ I} be a collection of proûnite groups, each of which has the
non-covering property. _en∏i∈I G i has the non-covering property.

_e proof of this theorem might be of some independent interest to the reader. It
ûlters through Goursat’s lemma [Gou89] (to be stated in the proof of _eorem 1.6).
We note that our proof uses proûniteness to reduce the case of arbitrarilymany direct
factors to just two factors, and the proof of the case of just two factors (Lemma 4.9)
does not use proûniteness. We leave open whether one can use proûniteness to sim-
plify our proof of Lemma 4.9. We also note that some groups do not have the non-
covering property (to be discussed).

1.6 The Structure of the Paper

We will begin in §2 by giving some background on computable ûelds and diòerence
ûelds. In §3wewill consider embeddings into algebraically closed ûelds and the com-
putable extendability of embeddings property, and prove the ûrst main result, _e-
orem 1.1. In §4 we will consider automorphisms and the computable extendability
of automorphisms property. We begin in §4.1 by considering a strengthening of the
computable extendability of automorphisms property. In §4.2, we prove the second
main result,_eorem 1.4. In §4.3, we study the class of groups with the non-covering
property, and in §4.4 we give some applications of _eorem 1.4. In §5 we consider
applications to diòerence ûelds and the Rabin–Harrington _eorem. Finally, in §6
we state an open problem on the characterization of ûelds with the computable ex-
tendability of automorphisms property.

2 Preliminaries

2.1 Separable and Purely Inseparable Extensions

If F is a ûeld, a polynomial f ∈ F[X] is called separable if it has no repeated roots.
An element a ∈ E of an algebraic ûeld extension E/F is called separable over F if its
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minimal polynomial over F is a separable polynomial. An algebraic ûeld extension
E/F is called separable if every element ofE is separable overF. Recall that ifF is ûnite
or characteristic zero, then it is perfect, i.e., every algebraic extension is a separable
extension.
An algebraic ûeld extension E/F is called purely inseparable if E ∖ F contains no

separable elements. Equivalently, E is a ûeld of characteristic p > 0 and every element
of E is the unique root of a polynomial X pn

− a = 0 with a ∈ F. Given an algebraic
ûeld extension E/F, the set Fs = {a ∈ E ∶ a is separable over F} is the maximal sep-
arable extension of F inside of E and is called the separable closure of F in E. _e
ûeld extension E/Fs is purely inseparable. In the special casewhere E = F is the alge-
braic closure of F, Fs is called the separable closure of F and is themaximal separable
extension of F.
An algebraic ûeld extensionE/F is normal if every irreducible polynomial inF[X]

that has a root in E factors completely in E[X]. A normal separable extension E/F
is called a Galois extension and has associated with it the Galois group Gal(E/F) of
automorphisms of E ûxing F. Recall that the Galois group obeys the fundamental
theorem of Galois theory: the normal subgroups H ⊴ Gal(E/F) correspond to the
intermediate normal ûeld extensions.

2.2 Computable Fields

Recall that the splitting set SF of F is the set of all polynomials p ∈ F[X] which are
reducible over F. _e splitting set of a ûeld is not necessarily computable (see [Mil08,
Lemma 7]), but it is always computably enumerable (c.e.). If the splitting set of F is
computable, thenwe say thatF has a splitting algorithm. Finite ûelds and algebraically
closed ûelds trivially have splitting algorithms. Kronecker [Kro82] showed thatQ has
a splitting algorithm, and also that many other ûeld extensions also have a splitting
algorithm.

_eorem 2.1 (Kronecker [Kro82]; see also [vdW70]) _e ûeld Q has a splitting al-
gorithm. If a computable ûeld F has a splitting algorithm, and a is transcendental over
F, thenF(a) has a splitting algorithm. If a is separable and algebraic overF, thenF(a)
has a splitting algorithm. Moreover, the splitting algorithm for F(a) is uniform in the
minimal polynomial for a over F.

Given a ûeld F and an element a that is either transcendental over F, or separable
and algebraic over F, we know that F(a) has a splitting algorithm. However, the
algorithm depends on whether a is transcendental or algebraic. To ûnd a splitting
algorithm uniformly, wemust know which is the case.

Rabin [Rab60] showed that every computable ûeld F has a computable algebraic
closure F, andmoreover, there is a computable embedding ı∶F → F. We call such an
embedding a Rabin embedding. Moreover, he characterized the image of F under this
embedding.

_eorem 2.2 (Rabin [Rab60]) Let F be a computable ûeld. _en there is a com-
putable algebraically closed ûeld F and a computable ûeld embedding ı∶F → F such
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that F is algebraic over ı(F). Moreover, for any such F and ı, the image ı(F) of F in F

is Turing equivalent to the splitting set of F.

A computable ûeld F has a dependence algorithm if given a and b1 , . . . , bn , we can
compute whether a is algebraically independent over b1 , . . . , bn . A ûeld has a de-
pendence algorithm if and only if it has a computable transcendence base (see, for
example, [HTMM15, Proposition 2.2]). In particular, ûelds of ûnite transcendence
degree have a dependence algorithm.

Convention By an extension E/F of computable ûelds, wemean that there is a com-
putable embedding of F into E.

2.3 Difference Fields

Diòerence ûelds were ûrst studied by Ritt in the 1930s. A good reference on the clas-
sical algebraic theory of diòerence ûelds is the book by Cohn [Coh65]. A diòerence
ûeld is a ûeld F together with an embedding σ ∶F → F. If σ is onto, (F, σ) is called
inversive. As every diòerence ûeld has a unique inversive closure up to isomorphism,
we lose nothing by assuming that all of our diòerence ûelds are inversive.
Adiòerence ûeld (F, σ) is called a diòerence closed ûeld if it is existentially closed in

the language of diòerence ûelds. Diòerence closed ûelds arose in themodel theoretic
study of diòerence ûelds (see [Mac97,CH99]). F is diòerence closed if and only if:

(i) σ is an automorphism of F;
(ii) F is algebraically closed;
(iii) for every varietyU , every aõne varietyV ⊆ U×σ(U)which projects generically

onto U and σ(U), and every algebraic set W ⊊ V , there is an F-rational point
a ∈ U(F) such that (a, σ(a)) ∈ V ∖W .

Condition (iii) may be viewed as saying that certain systems of equations and in-
equations have solutions in F. Conditions (i)–(iii) axiomatize the theory ACFA of
diòerence closed ûelds. ACFA is decidable, andmoreover the theories ACFAp of dif-
ference closed ûelds of characteristic p are also decidable for any p, including p = 0
[CH99, (1.4)]. ACFA is themodel companion of the theory of diòerence ûelds [CH99,
(1.4)] and hence every formula is equivalent,modulo ACFA, to an existential formula
[CH99, (1.6)]. _us, we have the following fact.

Fact 2.3 Every computable diòerence closed ûeld has a computable ( full) elementary
diagram.

We call a structure with a computable elementary diagram decidable; thus every
diòerence closed ûeld is decidable.

3 Extending Embeddings into the Algebraic Closure

We begin by showing that if F is any computable ûeld with a splitting algorithm,
ı∶F → F is a Rabin embedding, and α∶F → K is a computable embedding of F
into an algebraically closed ûeld K, then there is a computable embedding of F into
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K extending α. In particular, the new results here are in the case of characteristic
p > 0. _e new issue we have to deal with in characteristic p > 0 is that _eorem 2.1
fails for non-separable extensions. We begin by ûnding the separable closure of a ûeld
F within its algebraic closure F.

Lemma 3.1 Let F be a computable ûeld. _en the separable closure of F is c.e. If F
has a splitting algorithm, then the separable closure Fs of F in F is computable (so that
Fs has a splitting algorithm).

Proof Embed F in its algebraic closure F. An element a ∈ F is separable if and only
if there is a polynomial p(X) ∈ F[X] of degree m with p(a) = 0 and with m distinct
roots in F. _us the separable closure of F is c.e. If F has a splitting algorithm, then
given a ∈ F we can ûnd the minimal polynomial p of a over F. _en a is separable
over F if and only if p has no repeated roots, which happens if and only if p′(a) /= 0.
(Here, p′(X) is the derivative of p(X) with respect to X, treating the coeõcients as
constants.) So the separable closure of F is computable.

We are now ready to extend an embedding from a ûeld with a splitting algorithm.
_emain idea is to break the embedding into two steps: ûrst to extend an embedding
α∶F → K to an embedding β∶Fs → K of the separable closure ofF intoK, and second
to note that β extends to a unique embedding of F into K and that this extension is
computable from β.

_eorem 3.2 Let F be a computable ûeld and ı∶ F → F a Rabin embedding of F into
its algebraic closure. Suppose that F has a splitting algorithm. _en there is a Turing
functional Φ such that whenever α ∶ F → K is an embedding of F into an algebraically
closed ûeldK, Φα⊕K∶F → K is an embedding of F into K ı-extending α.

Proof Since F has a splitting algorithm, the image ı(F) of F in F is computable.
We may identify F with its image. By Lemma 3.1 the separable closure Fs of F is
computable as a subset of F and has a splitting algorithm.

Let K be an algebraically closed ûeld and α∶F → K a ûeld embedding. We
will begin by describing a procedure to extend α to an embedding β∶Fs → K. Let
{a1 , a2 , . . .} be an enumeration of the elements F s . Start with β deûned only on F

and ı-extending α. Using the splitting algorithm for F, ûnd theminimal polynomial
P1 ∈ F[X] of a1 over F. Find a solution b1 ∈ K to α(P1). _en deûne β on F(a1) by
mapping a1 to b1. Since a1 is algebraic and separable overF (andwe know itsminimal
polynomial), we have a splitting algorithm for F(a1). _e separable closure of F(a1)
is Fs . Now ûnd theminimal polynomial P2 ∈ F[X] of a2 over F(a1), and a solution
b2 to α(P2). Deûne β on F(a1 , a2) by mapping a2 to b2. Note that a2 is separable
over F(a1) since

F ⊆ F(a1) ⊆ F(a1 , a2) ⊆ Fs

and Fs is a separable algebraic extension of F. Since a2 is algebraic and separable
over F(a1), we have a splitting algorithm for F(a1 , a2). Its separable closure is still
Fs . Continuing in this way, we deûne an embedding β∶Fs → K which ı-extends
α∶F → K.
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In characteristic zero, we are done since Fs = F. In characteristic p > 0, we can
extend β to an embedding F → K in the following manner. Given b ∈ F, ûnd the
minimal polynomial P ∈ Fs[X] of b over Fs (recalling that Fs has a splitting algo-
rithm). _en P(X) is of the form X pn

− r = 0 with r ∈ F. Note that b is the unique
solution of p(X) = 0, and we can ûnd the unique solution c to β(p)(X) = 0. Map b
to c. _is is the unique embedding of F into K extending β.

_e construction was uniform in α andK, and so we get the desired Turing func-
tional Φ.

We are now ready to prove_eorem 1.1, which says that a ûeld F has a splitting al-
gorithm if and only if it has the computable (or uniform) extendability of embeddings
property.

Proof of_eorem 1.1 _e implication (i) ⇒ (ii) is _eorem 3.2. _e implication
(ii)⇒ (iii) is immediate. It remains to show the implication (iii)⇒ (i).
Fix ı∶F → F, a computable embedding ofF into a computable presentationF of its

algebraic closure. Suppose that every computable embedding of F into a computable
algebraically closed ûeldK ı-extends to a computable embedding of F into K.

We will attempt to construct a computable ûeld K and a computable embedding
α∶F →Kwhile attempting to diagonalize against all potential computable extensions
φe ∶F → K (by having α(a) /= φe(ı(a)) for some a ∈ F). We know that the construc-
tion must fail, and from this we will conclude that F has a splitting algorithm.

We construct K by an eòective Henkin-style construction. _e Henkin construc-
tion will be similar to one that can be used to prove Rabin’s theorem that every ûeld
embeds into a computable presentation of its algebraic closure. See, for example,
[FSS83,_eorem 2.5], where this construction is carried out in reversemathematics.
(Rabin’s original proof constructed the algebraic closure using a quotient of a polyno-
mial ring with inûnitely many variables.) Let LF be the language of ûelds with con-
stant symbols for the elements ofF, and let T be the consistent theory of algebraically
closed ûelds together with the atomic diagram of F. By quantiûer elimination for the
theory of algebraically closed ûelds, T is a complete theory and hence is decidable. We
want to construct a decidable primemodel of the theory T , which gives an algebraic
closure K of F together with an embedding of F into K. _e embedding α∶F → K

will be built as part of theHenkin construction. Constructing a primemodel requires
a slight modiûcation of the Henkin construction, which is possible in this case—we
must also omit the type of an element that is transcendental over F (see [Mil83] for
the general theorem on eòectively omitting types).

LetC = {c0 , c1 , . . .} be the new constant symbols for theHenkin construction. _e
domain ofK will be the equivalence classes of some computable equivalence relation
on C. Let φe ∶F → C be a list of partial computable functions which we interpret as
the possible computable embeddings F → K. Let {a0 , a1 , a2 , . . .} be a computable
enumeration of F. We use a i to denote the constant symbol associated with a i ∈ F.

Construction. At each stage s, we deûne formulas δ0 , . . . , δs in the language LF∪C
which form the partial diagram of K at stage s. _e theory ∆ = {δ0 , δ1 , . . .} will
be a complete theory extending T which is the complete diagram of the model K
(with the domain ofK being the equivalence classes in C by the equivalence relation
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c ∼ d⇔ ∆ ⊢ c = d). At stage s, letψs = δ0∧⋅ ⋅ ⋅∧δs−1. We can arrange the construction
so that the only constant symbols from F that appear in δs are a0 , . . . , as . At stage 0,
let δ0 be c0 = c0.
At stage s = 4t + 1, we try to diagonalize against a φe for e ≤ t. Search for an e ≤ t

and an i < s+ 5 such that φe ,t(ı(a i)) = c j and (where c = (c0 , c1 , . . . ) is the sequence
of constants from C that appear in ψs):

T ⊬ ∀x(ψs[x/c]⇒ a i = x j).

By ψs[x/c], wemean that the variables x = (x0 , x1 , . . . ) have been substituted for the
constants c = (c0 , c1 , . . . ). _is is a bounded search since T is decidable and we only
have to search through ûnitely many a i . If such an e exists, choose the least e such
thatwe have not yet diagonalized against φe . _en set δs to be the formula a i /= c j for
that e. If no such e exists, set δs to be the formula c0 = c0.
At stages s = 4t + 2, s = 4t + 3, and s = 4t + 4, we act as in the standardmethod of

constructing a computable primemodel (e.g., [Har98,_eorems 5.1, 5.7]), as follows.
At stage s = 4t + 2, we add a Henkin witness for δt . If δt is of the form (∃x)φ(x),

then let c i be a constant which does not appear in ψs and let δs be φ(c i). Otherwise,
set δs to be the formula c0 = c0.
At stage s = 4t + 3, we satisfy the completeness requirement for the sentence χt

from some ûxed listing (χt)t∈ω of the sentences in the language LF∪C . Let c be the
constants from C which appear in ψs and χt . Check whether

T ⊢ ∀x(ψs ⇒ χt)[x/c].

If this is the case, let δs be χt . Otherwise, let δs be ¬χt .
At stage s = 4t + 4, we omit the type of an element transcendental over F. We will

have ct satisfy some polynomial over F. Let c be the constants from C which appear
in ψs , except for ct . Search for a polynomial p(x) ∈ F[X] such that

T ⊬ ∀x∀z(ψs[xz/ctc]⇒ p(x) /= 0).

Set δs to be the formula p(ct) = 0. Some such polynomial p must exist as the type of
a transcendental over F is a non-principal type.

Veriûcation. By the standard Henkin construction arguments, we get a decidable
primemodelK whose domain consists of equivalence classes from C. We get a com-
putable embedding α ofF intoK bymapping a ∈ F to the element ofK labeled by the
symbol a. _en α extends to an embedding β of F into K, which we may represent
as a computablemap φe ∶F → C (by, say, choosing φe(a) to be the least element of C
in the equivalence class of β(a), which we can do computably since the equivalence
classes are computable). _ere is a stage s0 a�er which we never diagonalize against
an e′ < e. We never diagonalize against e.

Claim Let b ∈ F and let t be a stage such that φe ,t(b) ↓= c j for some j ∈ ω. Let
s = 4t + 1. _en b ∈ ı(F) if and only if there is some i such that

(∗) T ⊢ ∀x(ψs[x/c]⇒ a i = x j).
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Proof Given (∗), inK the constant symbol a i is interpreted as the equivalence class
of c j . _us α maps a i to the equivalence class of c j . Since β extends α and is one-to-
one, ı(a i) = b.

On the other hand, suppose that b ∈ ı(F), say b = a i , and suppose to the contrary
that (∗) does not hold. We have two cases. First, if i < s + 5, then we set δs to be the
formula a i /= c j . _en α(a i) /= c j = φe(ı(a i)), which is a contradiction. Second, if
i ≥ s + 5, then let s′ > s be the ûrst stage of the form s′ = 4t′ + 1 with i < s′ + 5. We
have i > s′ (as if i ≤ s′, we could have chosen s′ − 4). Since the only constant symbols
from F that appear in ψs′ are a0 , . . . , as′ , and i > s′, a i does not appear in ψs . _en
we have

T ⊬ ∀x(ψs′[x/c]⇒ a i = x j).

We set δs′ to be the formula a i /= c j which again yields a contradiction. Hence (∗)
holds.

_e claim gives us a decision procedure for ı(F) ⊆ F. At any stage s, there are
only ûnitely many constants c ∈ C mentioned in ψs , and hence only ûnitely many a i

such that we might possibly have (∗). So given b ∈ F, compute s = 4t + 1 ≥ s0 and j
such that φe ,t(b) ↓= c j , and then check (∗) for the ûnitelymany possible a i to decide
whether b ∈ ı(F).

It was important in _eorem 1.1 that we allow the ûeld K to vary. _is is because
if F is a ûeld of inûnite transcendence degree, theremay be computable algebraically
closed ûelds of inûnite transcendence degree intowhichF does not eòectively embed.
For example, if F does not have a dependence algorithm butK does, then there is no
computable embedding of F into K. If we restrict to the case where F is an algebraic
ûeld, then F has a computable embedding into every computable algebraically closed
ûeld K. In this particular case we get the following corollary, which we use in §4,
where the ûeldK is ûxed.

Corollary 3.3 Let F be a computable algebraic ûeld and ı∶F → F a computable
embedding of F into a computable presentation of its algebraic closure. LetK be a com-
putable algebraically closed ûeld. _en the following are equivalent.

(i) F has a splitting algorithm.
(ii) _ere is a Turing functional Φ which takes an embedding α∶F →K to an embed-

ding Φα of F into K extending α.
(iii) Every computable embedding of F into K ı-extends to a computable embedding

of F into K.

Proof By _eorem 1.1, it suõces to show that (iii) in the statement implies that F
has the computable extendability property with respect to ι∶F → F. Let α∶F → L be
a computable embedding of F into a computable algebraically closed ûeld L. We can
enumerate, in L, the algebraic closure of the prime ûeld and this contains the image
α(F) of F. So wemay assume that L is the algebraic closure of its prime ûeld.
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We can compute an embedding ȷ∶L→K and let α∗∶F → K be ȷ○α. By (iii), there
is an embedding β∗∶F → K which ı-extends β.

K

L

ȷ
__

F

β∗

GG

β

77

F
ı

__ α

GG

α∗

OO

Since F and L are both algebraic closures of the prime ûeld, the image of β∗ is the
same as the image of ȷ. So there is an embedding β∶F → L such that ȷ ○ β = β∗. _en
β∗ ι-extends α.

4 Extending Automorphisms of Normal Extensions of the Prime
Field

4.1 Strong Extendability of Automorphisms Property

In the setting of automorphisms, it is natural to look at normal algebraic extensions
of the prime ûeld (see Proposition 4.2). When F is such an extension, we get the
following corollary of _eorem 1.1, with two strengthenings of the computable ex-
tendability of automorphisms property. (We denote the prime ûeld by Fp even in the
case of characteristic p = 0.)

Corollary 4.1 Let F be a computable normal algebraic extension of the prime ûeld
and ı∶F → F an embedding of F into a computable presentation of its algebraic closure.
_e following are equivalent.
(i) F has a splitting algorithm.
(ii) For every computable automorphism α∶F → F of F, there is a computable auto-

morphism β∶F → F which ı-extends α.
(iii) _ere is a uniform procedure which, given any computable automorphism α∶F →

F of F, outputs a computable automorphism β∶F → F which ı-extends α.

Proof of Corollary 4.1 Suppose that F is a computable normal algebraic ûeld, and
ı∶F → F is a Rabin embedding. If F has a splitting algorithm, then by Corollary 3.3,
any automorphism α of F extends to an automorphism of F (taking K = F in the
statement of the corollary). Indeed, ı ○ α is a computable embedding of F into F and
hence there is an automorphism β of F which ı-extends ı ○ α; that is, β ○ ı = ı ○ α. So
β ı-extends α.

On the other hand, suppose that every automorphism of F extends to an auto-
morphism of F. We will check (iii) of Corollary 3.3 with K = F. Let α∶F → F be an
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embedding. SinceF is normal, α(F) = ı(F). _en ı−1○α∶F → F is an automorphism
of F, and hence extends to an automorphism β of F. We have the following diagram:

F
β

// F

ı(F)
α○ı−1

//

⊆

OO

ı(F)

⊆

OO

F
ı−1○α

//

ı

OO

α

<<

F

ı

OO

Note that β∶F → F ı-extends the embedding α of F into F.

Note that we had to use Corollary 3.3 rather than _eorem 1.1, because we needed
to ûx K = F instead of letting K be arbitrary.

In Corollary 4.1 we asked for F to be a normal extension of Fp . _is is required in
order to prove the theorem; we will construct an algebraic ûeld which demonstrates
that we need the hypothesis of normality in the preceding results. A rigid ûeld auto-
matically satisûes (ii) of Corollary 4.1.

Proposition 4.2 _ere is a rigid computable algebraic ûeld F of characteristic zero
with no splitting algorithm.

Proof Let p0 , p1 , . . . list the primes greater than two. Let F = Q(an ∶ n ∈ ∅′) where
an is the unique real pn-th root of 2, and∅′ is the Turing jump of the empty set. Since
F ⊆ R, for each n ∈ ∅′, an is the only pn-th root of 2 in F. So every automorphism of
F ûxes the an , and hence ûxes F. Hence F is rigid.

We can use an enumeration of ∅′ to give a computable presentation of F: F can
be embedded as a c.e. subûeld of Q and from this we get a computable presentation
of F.

We need to argue that for n ∉ ∅′, an ∉ F. We claim that if n ∉ I, an ∉ Q(a i ∶ i ∈ I).
Suppose not; then we can ûnd a ûnite set I and n ∉ I such that an ∈ Q(a i ∶ i ∈ I)
and for each j ∈ I, a j ∉ Q(a i ∶ i ∈ I ∖ { j}). _en Q(a i ∶ i ∈ I) is a ûnite extension
of Q of degree d = ∏i∈I p i . Since pn does not divide d, Q(an) is not a subûeld of
Q(a i ∶ i ∈ I). _is contradicts the assumption that an ∈ Q(a i ∶ i ∈ I). _us for
n ∉ ∅′, an ∉ F.

No computable presentation of F can have a splitting algorithm, as a splitting al-
gorithm would allow us to compute ∅′.

4.2 Computable Extendability of Automorphisms Property

In Corollary 4.1, we ûxed an embedding ı∶F → F and considered only ı-extensions.
Now we allow ı to vary. Note that while every computable presentation of F is iso-
morphic, there may be diòerent computable embeddings ı∶F → F which are not
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equivalent up to a computable automorphism of F. By Corollary 3.3, if F is an alge-
braic ûeld with no splitting algorithm, there are embeddings ı and ȷ of F into F such
that there is no computable automorphism σ of F with σ ○ ı = ȷ.

In the introduction, we said that F had the computable extendability of automor-
phisms property if each computable automorphism of F had such an extension to F.
Recall that our interest in the computable extendability of automorphisms property
comes from its role in an analogue of Rabin’s _eorem in the context of diòerence
closed ûelds; see_eorem 5.1 which we will prove in the following section.

We can already produce examples of ûelds without the computable extendability
of automorphisms property. We use the fact that every noncomputable c.e. set is the
union of two disjoint, computably inseparable c.e. subsets. _is is a theorem of Yates,
who saw that it followed from a construction of Friedberg; the theorem was subse-
quently published by Cleave [Cle70].

Proposition 4.3 For each noncomputable c.e. set C, the ûeld F = Q(
√

pn ∶ n ∈ C)
(with pn the n-th prime) does not have the computable extendability of automorphisms
property.

Proof Let A and B be disjoint computably inseparable c.e. sets with A∪ B = C. Re-
calling the classic result (originally due to Besicovitch [Bes40]) that if r and q1 , . . . , qℓ
are distinct primes, then

√
r ∉ Q(

√q1 , . . . ,
√qℓ), we deûne an automorphism α

of F by letting α ûx the two square roots of pn if n ∈ A, but interchange them if
n ∈ B. _is α is computable, but if ı is any Rabin embedding of F into some presen-
tation F of its algebraic closure and β is an automorphism of F ı-extending α, then
{n ∈ ω ∶ β(

√
pn) =

√
pn} is a β-computable separation of A from B.

However, we would like a more complete description of which ûelds have, and
which do not have, the computable extendability of automorphisms property. We do
not obtain a complete description, butwe give a characterization in terms of a splitting
algorithm for many ûelds. _e idea will be to isolate certain normal extensionsK/Fp
whose subûeld structure behaves suõciently like the ûeld F in Proposition 4.3 above,
allowing us to make a particular diagonalization argument. In diagonalizing against
the computable extendability of automorphisms property, we do not have access to a
Rabin embedding ι (and it does not seem possible to diagonalize against all possible
computable Rabin embeddings). So rather than deûning α to diagonalize against β
using the image under a ûxed ι, we must deûne α to diagonalize against all possible
images under all possible ι. In Proposition 4.3, we do this using the fact that if α
ûxes the square roots of pn , then so does β for any ι-extension of α under any Rabin
embedding ι, and similarly if α interchanges the roots of pn . In general, we want to
have some ûnite subûeld E of F, and to deûne α on E so that there is no embedding
ι under which β ι-extends α. We may have already deûned α on some subûeld of
E, so we do not have a completely free choice of α. _ere are some ûelds where this
argument will always work successfully: those with the non-covering property from
Deûnition 1.3. In many other ûelds, we can ûnd some appropriate subûeld which
satisûes the required condition, allowing the argument to go through; see Examples
4.11 and 4.13.
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Using Galois theory, there is also a ûeld-theoretic characterization of the ûeld ex-
tensions whose Galois group has the non-covering property, and it is this characteri-
zation that we will use in the proof of_eorem 4.6 (though, in applying the theorem,
it will usually be easier to use the group-theoretic characterization). In what follows,
it will be helpful to use the language of diòerence ûelds to talk about ûeld automor-
phisms.

Remark 4.4. Let F/E be a ûeld extension, α an automorphism of E, and β an auto-
morphism of F. Let ı∶E → F be a ûeld embedding of E into F. _en β ı-extends α if
and only if ı is an embedding of (E, α) into (F, β) as diòerence ûelds.

Proof Both are equivalent to having β ○ ı = ı ○ α.

Lemma 4.5 Let E/F be a separable normal extension. _e following are equivalent.

(i) Gal(E/F) has the non-covering property.
(ii) For all ûnite normal subextensionsK1/F andK2/F withK2 ⊈K1, and every pair

of automorphisms σ ofK1 and τ ofK2 ûxing F, there is an automorphism α of E
extending σ and incompatible with τ, i.e., (K2 , τ) does not embed into (E, α) as
a diòerence ûeld.

_e second point is related to themonadic and incompatible extensions of diòer-
ence ûelds studied by Cohn [Coh52], Babbitt [Bab62], and Evanovich [Eva73].

Proof We begin by showing (i)⇒ (ii). Let K1 and K be as in (ii). Let σ and τ be
automorphisms of K1 and K2, respectively, ûxing F. Let G = Gal(E/F). Let M be
the normal subgroup of automorphisms ûxing K2, and N the normal subgroup of
automorphisms ûxing K1. Since K1 and K2 are ûnite extensions, M and N are of
ûnite index. We also have N ⊈ M. Let g1 ∈ G be an automorphism of E extending σ ,
and g2 an automorphism of E extending τ.

We will argue that there is an h ∈ g1N such that for all z ∈ G, z−1hz ∉ g2M. Such
an h is an automorphism of E extending σ , and g2M is the set of automorphisms of
E extending τ. Since for all x ∈ G, x−1g1hx ∉ g2M, (E, α) is not isomorphic as a
diòerence ûeld to (E, β) for any extension β of τ.
First, we argue that it suõces to assume M ⊊ N . Suppose that there is h′ ∈ g1NM

such that for all z ∈ G, z−1hz ∉ g2M. _en write h′ = g1nm. Suppose for some z ∈ G
that z−1g1nz ∈ g2M, say z−1g1nz = g2m′ with m′ ∈ M. Let m′′ ∈ M be such that
z−1mz = m′′. _en z−1g1nmz = g2m′m′′−1 ∈ g2M. _is contradicts the choice of
h′ = g1nm. So for all z ∈ G, z−1g1nz ∉ g2M. _en h = g1n ∈ g1N is the automorphism
of E that we desire. So wemay replace N by NM.

Now we have two cases. First, suppose that there is no z ∈ G such that z−1g1z ∈
g2M. _en h = g1 is as desired.

Second, suppose that for some c ∈ M and z ∈ G, z−1g1z = g2c. _en g1 = zg2cz−1 =
zg2z−1c′ for some other c′ ∈ M since M is a normal subgroup. So zg2z−1 = g1m,
wherem = (c′)−1. Using the fact that G has the non-covering property, choose h ∈ N
such that for all x ∈ G, x−1g1hx ∉ g1M. We claim that for all x ∈ G, x−1g1hx ∉ g2M.
Suppose to the contrary that there is x ∈ G such that x−1g1hx ∈ g2M. Since x−1g1hx ∈
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g2M and M is a normal subgroup, g1h ∈ xg2x−1M. We have

xg2x−1 = (xz−1)zg2z−1(xz−1)−1 = (xz−1)g1m(xz−1)−1 .

Let y = (xz−1). Since m ∈ M is a normal subgroup, yg1my−1 = yg1 y−1m′ for some
other m′ ∈ M. _us g1h ∈ yg1 y−1M and so y−1g1hy ∈ g1M. _is contradicts the
choice of h. So for all x ∈ G, x−1g1hx ∉ g2M.

_e direction (ii)⇒ (i) proceeds simply by the Galois correspondence. Fix ûnite
index normal subgroups M ⊊ N of G = Gal(E/F) and g ∈ G. Let K1 and K2 be the
ûelds ûxed byN andM, respectively;we haveK1 ⊊K2. Let σ be the restriction of g to
K1 and τ its restriction to K2. _ere is an automorphism α of E extending σ and not
compatible with τ. So α ∈ gN and for all extensions β of τ to E i.e., β ∈ gM, (E, α)
is not isomorphic as a diòerence ûeld to (E, β). _at is, for all γ ∈ G and β ∈ gM,
γ ○ α /= β ○ γ.

We will restrict our attention to ûeld extensions whose Galois group has the non-
covering property, but we will allow the base ûeld to be an extension of Fp with a
splitting algorithm. _e main theorem of this section is as follows. (We state it in a
slightly more general form than it appears in the introduction.)

_eorem 4.6 Let E be a computable normal extension of Fp and let F ⊆ E be a
subûeld of E with a splitting algorithm which is also a normal extension of Fp . Suppose
that Gal(E/F) has the non-covering property. _e following are equivalent.

(i) E has a splitting algorithm.
(ii) E has the computable extendability of automorphisms property.
(iii) E has the uniform extendability of automorphisms property.

Many applications of this theorem will have F = Fp , but the freedom to choose F
will allow us to apply the theorem in situations where Gal(E/Fp) does not have the
non-covering property. Producing an example where the theorem cannot be applied
seems to be a non-trivial task, andwe do not know of any such examples. See §4.4 for
some applications of the theorem.

Proof of_eorem 4.6 We already know that the implications (i)⇒ (ii) and (i)⇒
(iii) are true, even given a ûxed embedding of E into E. (iii) clearly implies (ii). We
must show (ii)⇒ (i).

Suppose that every computable automorphism of E extends to a computable au-
tomorphism of E (via some embedding of E into E). We will attempt to construct a
computable automorphism α ∈ Gal(E/F) while diagonalizing against possible com-
putable automorphisms φe ∶E→ E bymaking sure that the diòerence ûeld (E, α) does
not embed into the diòerence ûeld (E, φe). It suõces to ensure that some diòerence
subûeld of (E, α) does not embed into (E, φe). We know that the construction must
fail, and from this we will conclude that E has a splitting algorithm.

Note that the ûeld F has a splitting algorithm and is perfect (since it is an alge-
braic extension of a perfect ûeld), so any ûnite algebraic extension of F has a splitting
algorithmwhichwe can determine eòectively from a generating set for the extension.
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Wewill require a special enumeration {a1 , a2 , . . .} of Ewith the following proper-
ties:
(i) For each n, F(a1 , . . . , an) is a normal extension of Fp .
(ii) For each n, there are no normal extensions of Fp which are strictly contained

between F(a1 , . . . , an) and F(a1 , . . . , an , an+1).
We can ûnd such an enumeration using the primitive element theorem and Galois
theory, as follows. Suppose that we have already deûned a1 , . . . , an . Given a new
element x of E, ûrst check whether x ∈ F(a1 , . . . , an) using the splitting algorithm
for this ûeld. If x is in F(a1 , . . . , an), we can safely set an+1 = x. Otherwise, compute
the conjugates x = x1 , . . . , xℓ of x over Fp . Search for a single element y such that

F(y) ∈ F(a1 , . . . , an , x1 , . . . , xℓ).

Such an element exists by the primitive element theorem as F(a1 , . . . , an , x1 , . . . , xℓ)
is a ûnite separable extension of F. Since each automorphism of F(y) is determined
by where it maps y, we can now compute the Galois group Gal(F(y)/F). We can
compute the normal subgroups and hence the normal extensions of F contained be-
tween F(a1 , . . . , an) and F(a1 , . . . , an , an+1). Let

F(a1 , . . . , an) ⊊K1 ⊊ ⋅ ⋅ ⋅ ⊊Km = F(a1 , . . . , an , an+1)

be amaximal chain of normal extensions of Fp . We can compute for eachKi a prim-
itive generator over F and add these to the enumeration in order (with y chosen as
the primitive generator ofKm = F(a1 , . . . , an , an+1)).

Construction. At each stage s, we will have deûned an embedding

αs ∶F{a1 , . . . , as}→ E

ûxing F such that α0 ⊆ α1 ⊆ ⋅ ⋅ ⋅ ⊆ αs . Begin with α0∶Fp → F.
At stage s + 1, we are given αs . Use the splitting algorithm for F{a1 , . . . , as} to

check whether as+1 ∈ F{a1 , . . . , as}. If it is, set αs+1 = αs . Otherwise, check whether
there is e ≤ s against which we have not yet diagonalized such that
(i) a i ∈ F(a1 , . . . , as , as+1) ∖ F(a1 , . . . , as),
(ii) for each x ∈ E which satisûes the sameminimal polynomial over F as a i ,

φe ,s(x) ↓= c

for some c ∈ E.
_is is a computable search. We have splitting algorithms for F(a1 , . . . , as , as+1) and
F(a1 , . . . , as), so we can check (i) for a given a i . Also, φe ,s(x) converges only for x
among the ûrst s-many elements ofE, andwe can use our splitting algorithms to com-
pute the ûnite set of a i satisfying (i) and also satisfying the sameminimal polynomial
as some such x.

If there is such an e, choose the least one. Let x1 , . . . , xn be the conjugates of a i
over F. By property (ii) of the enumeration,

F(a1 , . . . , as , as+1) = F(a1 , . . . , as , x1 , . . . , xn).

Now we can extend φe ,s in a unique way to a computable automorphism of

F(x1 , . . . , xn).
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If this automorphism is not the identity on F, then since F is normal, φe ,s will be in-
compatible with α no matter how we deûne α. Suppose that φe ,s is the identity on F.
SinceGal(E/F) has the non-covering property, by Lemma 4.5we can extend αs to an
automorphism of αs+1 of F(a1 , . . . , as , as+1) that is incompatible with the automor-
phism φe ,s on F(x1 , . . . , xn), in the sense that (F(x1 , . . . , xn), φe) does not embed as
a diòerence ûeld into (F(a1 , . . . , as , as+1), αs+1). We can do all of this computably by
looking at the actions of the automorphisms on the generators of the ûelds.

Veriûcation. We get an automorphism α = ⋃s αs of E that ûxes F. Now we know that
for some e, φe is an automorphism of E such that (E, α) embeds into (E, φe) as a
diòerence ûeld. We claim that E has a splitting algorithm. _e proof will be to show
that we can compute the image of E in E (since E is a normal extension of Fp , this
image is unique; wemay ûx some embedding ı∶E → E and show that the image of E
under ı is computable in E).

Let s be a stage a�er which we never diagonalize against an e′ ≤ e. Fix x ∈ E, and
let x = x1 , x2 , . . . , xn be the conjugates of x over F. Let t ≥ s be a stage by which
φe(x i) has converged for each i. SinceF(a1 , . . . , at) has a splitting algorithm,we can
compute its image ı(F(a1 , . . . , at)) in E.

Claim x ∈ ı(E) if and only if x ∈ ı(F(a1 , . . . , at)).

Proof If x ∈ ı(F(a1 , . . . , at)), then x ∈ ı(E). On the other hand, suppose that
x ∈ ı(E), say x = ı(a i), and suppose to the contrary that a i ∉ F(a1 , . . . , at). Now, for
some t′ > t, we have a i ∈ F(a1 , . . . , at′+1) ∖ F(a1 , . . . , at′). _en at stage t′ + 1, we
deûne αt′+1 ⊂ α such that (F(x1 , . . . , xn), φe) does not embed into

(F(a1 , . . . , at′+1), αt′+1)

as a diòerence ûeld. Since F(x1 , . . . , xn) and F(a1 , . . . , at′+1) are both normal ex-
tensions of Fp (with the former contained in the latter), (E, α) cannot embed into
(E), φe).

From the claimwe get a decision procedure for ı(E). Given x ∈ E, compute a stage
t ≥ s at which φe converges when applied to all of the conjugates of x over Fp . Using
the splitting algorithm for F(a1 , . . . , at), we check whether x ∈ ı(F(a1 , . . . , at)) and
hence whether x ∈ ı(E).

4.3 The Non-covering Property

To apply _eorem 4.6, we need a ûeld extension whose Galois group has the non-
covering property. We now give some examples of groups with the non-covering
property before giving an example of an application of_eorem 4.6.

Lemma 4.7 _e following groups have the non-covering property:
(i) abelian groups,
(ii) simple groups,
(iii) the quaternion group.
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Proof (i) LetG be an abelian group. Let M ⊊ N be normal subgroups of ûnite index,
and ûx g ∈ G. Let h be an element of g(N ∖M). _en for all x ∈ G, x−1hx = h ∉ gM.

(ii) Let G be a simple group. Let M ⊊ N be normal subgroups of ûnite index,
and ûx g ∈ G. _en N = G and M is the trivial subgroup. _en gN = G; if g = e,
pick h /= e, and otherwise pick h = e. _en gM = {g} and h and g are in diòerent
conjugacy classes.

(iii) Let G = {±1,±i ,± j,±k} be the quaternion group. _e normal subgroups are
{1}, {1,−1}, {1,−1, i ,−i}, {1,−1, j,− j}, {1,−1, k,−k}, and G. _e conjugacy classes
are {1}, {−1}, {i ,−i}, { j,− j}, and {k,−k}. It is easy to see that every coset is a disjoint
union of conjugacy classes. _us, given normal subgroups M ⊊ N and g ∈ G, there is
a conjugacy class in gN which is not in gM; let h be in this conjugacy class.

_e example fromProposition 4.3 has an abelianGalois group∏n∈ω C2, and hence
Proposition 4.3 follows immediately from _eorem 4.6. Also, in characteristic p > 0
we have the following theorem.

_eorem 4.8 Let E be a computable normal extension of Fp in characteristic p > 0.
_e following are equivalent.
(i) E has a splitting algorithm.
(ii) E has the computable extendability of automorphisms property.
(iii) E has the uniform extendability of automorphisms property.

Proof _e Galois group of every normal extension K/Fp in characteristic p > 0 is
abelian and hence has the non-covering property. _eorem4.6 ûnishes the proof.

We can also take arbitrary products of Galois groups with the non-covering prop-
erty and produce another group with the non-covering property. We must assume
that the groups are proûnite, but as every Galois group is proûnite, this is not a re-
striction. See [FJ08] for an introduction to proûnite groups.

Now we can prove_eorem 1.6.

Proof of_eorem 1.6 We reduce the proof to the case of a product of two groups.
If M ⊊ N are normal subgroups of ∏i∈I G i of ûnite index, then M contains a ûnite
intersection of the groups

Ĝ i = {(x j) j∈I ∶ x i = e}.

_e intersection of all of the Ĝ i is the trivial group, so⋂ Ĝ i ⊆ M. Moreover, it is easy
to check that these groups are open in the proûnite topology of the proûnite group
∏i∈I G i (which is just the product topology) and hence they are closed aswell. As the
proûnite topology is compact, M contains Ĝ i1 ∩ ⋅ ⋅ ⋅ ∩ Ĝ in for some i1 , . . . , in .

Let M′ ,N ′ ⊆ G i1 × ⋅ ⋅ ⋅ ×G i2 be the projection ofM and N to these indices; M′ and
N ′ are normal subgroups. _en (∏i∈I G i)/M ≅ (G i1 × ⋅ ⋅ ⋅ × G in)/M

′. We will prove
in the following lemma that G i1 × ⋅ ⋅ ⋅ ×G in has the non-covering property, andwe can
use this to check (for M and N) that∏i∈I G i has the non-covering property.

Lemma 4.9 LetG andH be groupswhich both have the non-covering property. _en
G ×H has the non-covering property.

https://doi.org/10.4153/CJM-2016-044-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-044-7


1358 M. Harrison-Trainor, A. Melnikov, and R. Miller

Proof Let M ⊊ N be normal subgroups of G × H. Let π1 and π2 be the projections
onto G and onto H, respectively.

Case 1: We have π1(M) ⊊ π1(N). Let a = (a1 , a2) ∈ G ×H and b = (b1 , b2) ∈ G ×H
be arbitrary. Choose g = a1g′ ∈ a1π1(N) such that for all x ∈ G, x−1gx ∉ b1π1(M).
Let h′ ∈ H be such that (g′ , h′) ∈ N , and let h = a2h′. _en f = (g , h) ∈ aN is such
that for all z = (x , y) ∈ G ×H, z−1 f z ∉ bM.

Case 2: We have π2(M) ⊊ π2(N). Similar to Case 1.

Case 3: π1(M) = π1(N) and π2(M) = π2(N). Deûne M1 ⊆ G and M2 ⊆ H by

M1 = {x ∈ G ∶ (x , e) ∈ M} and M2 = {y ∈ H ∶ (e , y) ∈ M}.

_en M1 ×M2 ⊆ M. Deûne N1 and N2 similarly. We have M1 ⊆ N1 and M2 ⊆ N2.

Claim 1 M1 andN1 are normal subgroups ofG andM2 andN2 are normal subgroups
of H.

Proof We show that M1 is a normal subgroup of G. Let m ∈ M1 and x ∈ G. Let
x′ = (x , e) and m′ = (m, e). _en, since M is a normal subgroup of G, (x−1mx , e) =
x′−1m′x′ ∈ M. Hence x−1mx ∈ M1.

Claim 2 M1 ⊊ N1 andM2 ⊊ N2.

Proof We use Goursat’s Lemma.

Lemma ([Gou89]) Let G1 and G2 be groups. Let H be a subgroup of G1 × G2 such
that the projections π1∶H → G1 and π2∶H → G2 are surjective. Let N1 and N2 be the
kernels of π2 and π1 respectively; N1 can be identiûed as a normal subgroup of G1, and
N2 as a normal subgroup of G2. _en the image of H in G1/N1 ×G2/N2 is isomorphic
to the graph of an isomorphism between G1/N1 and G2/N2.

By Goursat’s Lemma, the image of M in π1(M)/M1 × π2(M)/M2 is the graph of
an isomorphism π1(M)/M1 ≅ π2(M)/M2. _e same is true with M replaced by N .
Since π1(M) = π1(N), π2(M) = π2(N), and M ⊊ N , we must have M1 ⊊ N1 and
M2 ⊊ N2.

Claim 3 [G , π1(M)] ⊆ M1 and [H, π2(M)] ⊆ M2. _us [G×H, π1(M)×π2(M)] ⊆
M1 ×M2.

Proof Let g ∈ G and m ∈ π1(M). Let g′ = (g , e) and m′ = (m, e). Since M is a
normal subgroup of G ×H, [g′ ,m′] = ([g ,m], e) ∈ M. _us [g ,m] ∈ M1.

Fix g ∈ G×H forwhichwewill show that there is h ∈ gN such that for all x ∈ G×H,
x−1hx ∉ gM. _is will ûnish the proof of Lemma 4.9. Since N2 ⊋ M2, we can choose
b ∈ π2(g)M2 such that for all y ∈ H, y−1by ∉ π2(g)M2. Choose a = π1(g). _en
(a, b) ∈ gN . Suppose that (x , y) ∈ G × H is such that (x−1ax , y−1by) ∈ gM. Let
m ∈ M be such that x−1ax = π1(gm).

Claim 4 π1(m) ∈ M1.
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Proof Suppose to the contrary that π1(m) ∉ M1. Let m1 = π1(m) and g1 = a =
π1(g). We have x−1g1x = g1m1. Let K be the subgroup of G generated by M1 and m1.
SinceM1 is a normal subgroup ofG, each element ofK can bewritten in the form kmℓ

1
for some k ∈ M1 and ℓ ∈ N. _en K is a normal subgroup of G since [G ,m1] ∈ M1. If
m1 ∉ M1, then M1 is a proper subgroup of K. So there is h ∈ K such that for all z ∈ G,
z−1g1hz ∉ g1M1. Let r be such that mr

1 = e and let h = kmℓ
1 with k ∈ M1 and ℓ < r.

_en since [x ,m1] ∈ M1, x−(r−ℓ)g1hx r−ℓ ∈ x−(r−ℓ)g1x r−ℓmℓ
1 M1 = g1mr

1M1 = g1M1.
_is is a contradiction which proves the claim.

Since π1(m) ∈ M1,we have (e , π2(m)) = m−(π1(m), e) ∈ M, and so π2(m) ∈ M2.
But y−1by = π2(gm) ∉ π2(g)M2, a contradiction. _is completes the proof ofLemma
4.9.

_is completes the proof of_eorem 1.6.

4.4 Examples

We can apply_eorem1.6 to construct groups having thenon-covering property from
the groups in Lemma 4.7. In all cases, we know that if the ûeld E has a splitting al-
gorithm, then it has the computable extendability of automorphisms property. We
begin by noting that there exist groups without the non-covering property:

Proposition 4.10 _e groups S3, D8, and A4 do not have the non-covering property.

Proof For S3, let M = {e} and let N be the normal subgroup of rotations. Let g be
a re�ection. _en gN is the set of all re�ections, and all re�ections are conjugate.

Write D(8) = {e , a, a2 , a3 , x , ax , a2x , a3x}. Let M = {e}, N = {e , a2}, and g = a.
_en aM = {a} and aN = {a, a3}. We have x−1ax = a3.
ForA4, let M = {e} and let N be the normal subgroup ofA4 isomorphic toC2×C2.

Let g be the permutation (1, 2, 3). _en gN consists of (1, 2, 3), (1, 4, 2), (2, 4, 3), and
(1, 3, 4), all of which are conjugate.

Even if Gal(E/Fp) does not have the non-covering property, we can still some-
times apply _eorem 4.6 either by ûnding the right ûeld F as in the statement of the
theorem, or using Lemma 4.12 below with a subûeld F and applying _eorem 4.6 to
the ûeld extension F/Fp . _e following two examples illustrate these methods. We
beginwith a ûeld extension E/QwhoseGalois group does not have the non-covering
property, but we can use the freedom in choosing the ûeld F in the statement of_e-
orem 4.6 to apply the theorem.

Example 4.11 Let E = Q(ω, 3
√

pn ∶ n ∈ ∅′), where ω is a primitive cube root of
unity. Note that Gal(E/Q) does not have a forking lattice of subgroups for the same
reason as S3, because its Galois group is Gal(E/Q) = ∏i∈ω C3 ⋊ C2 with C2 acting
on C3 by inverting elements. Here we need to know that the intersection of the ûelds
Q(ω, 3

√
pn ∶ n ∈ U) and Q(ω, 3

√
pn ∶ n ∈ V) for U and V disjoint is the ûeld Q(ω).

See [Mor53].
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Let F = Q(ω). _en F has a splitting algorithm, and Gal(E/F) =∏i∈ω C3, which
is abelian. Since E does not have a splitting algorithm, by _eorem 4.6 it does not
have the computable extension of automorphisms property.

_e following lemmawill allow us to consider a subextension of E; thiswill be use-
ful when the Galois group of the extension does not have the non-covering property,
but it has a quotient which does.

Lemma 4.12 Let E ⊇ F ⊇ Fp be computable algebraic extensions such that E is
a normal extension of Fp . Suppose that given x ∈ E, we can compute the minimal
polynomial of x over F. _en if E has the computable extendability of automorphisms
property, F does as well.

Proof _is follows from the fact that we can computably extend an automorphism
of F to an automorphism of E in the style of_eorem 3.2 and uses the fact that F is a
perfect ûeld.

We now have an example where we apply this lemma together with _eorem 4.6.

Example 4.13 _is example is quite complicated. _e idea is to produce a ûeld ex-
tensionwhoseGalois group is∏n∈ω S3, butwhich does not have a splitting algorithm.

Let q0 , q1 , . . . be a list of inûnitely many distinct primes in the arithmetic pro-
gression 4n + 27, and let an be such that 4an + 27 = qn . Let E be the splitting ûeld
over Q of the polynomials {x3 + anx + an ∶ n ∈ ∅′}. Let ωn be a primitive element
for the splitting ûeld of x3 + anx + an , so that E = Q(ωn ∶ n ∈ ∅′). Each of these
polynomials has discriminant Dn = −4a3

n − 27a2
n = −a2

nqn < 0, and hence Q(ωn)
has Galois group S3. We claim that the Galois group of E is ∏n∈ω S3. It suõces to
show that given m and n1 , . . . , nℓ all distinct that Q(ωm) and Q(ωn1 , . . . ,ωnℓ) are
disjoint. Suppose not; then there is a non-trivial subûeldK of Q(ωm) which is con-
tained in Q(ωn1 , . . . ,ωnℓ). We may assume that K = Q(

√
Dm) = Q(

√
−qm). _en

√
Dm ∈ Q(

√
Dn1 , . . . ,

√
Dnℓ),which is a contradiction, since qm , qn1 , . . . , qnℓ are dis-

tinct primes. Now E does not have a splitting algorithm, but∏n∈ω S3 does not have a
forking lattice of subgroups.

Now let F = Q(
√
−qn ∶ n ∈ ∅′). _en F does not have a splitting algorithm. By

_eorem 4.6, F does not have the computable extension of isomorphisms property,
and hence by Lemma 4.12, E does not have the computable extension of automor-
phisms property.

We do not know of any examples in which one cannot use either a direct applica-
tion of_eorem 4.6 or one of themethods in these two examples.

5 Applications to Difference Closed Fields

We will conclude this paper by applying our results to diòerence closed ûelds. _e
main ideawill be to note that (F, σ) embeds into a computable diòerence closed ûeld
if and only if there is an embedding ı of F into F and an automorphism τ of F such
that τ ı-extends σ . In the one direction, this will follow from an eòective Henkin
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construction, while, on the other hand, it will follow from the fact that the algebraic
closure of the prime ûeld can be enumerated in any diòerence closed ûeld.

_eorem 5.1 Let F be a computable extension of Fp , and σ a computable automor-
phism of F. _en the following are equivalent.
(i) (F, σ) embeds computably into a computable diòerence closed ûeld.
(ii) _ere is a computable embedding ı∶F → F of F into a computable presentation of

its algebraic closure and a computable automorphism τ of F which ı-extends σ .

Proof We begin by proving (i)⇒ (ii). Suppose that there is a computable diòerence
closed ûeld (K, ρ) into which (F, σ) embeds. We can enumerate in K the algebraic
closure F of F (which is also the algebraic closure of the prime ûeld) and the restric-
tion τ of ρ to F (recall that every computable presentation of the algebraic closure
of F is computably isomorphic to every other computable presentation). _en since
(F, σ) embeds into (K, ρ) and is algebraic over Fp , its image is in (F, τ). _en τ is
an extension of σ to F via this embedding.

We now prove (i)⇒ (ii). _e completions of ACFA are given by the possible ac-
tions of the automorphism σ on the algebraic closure of the prime ûeldFp (see [CH99,
(1.4)]). Let ı be a computable embedding of F into F and τ an ı-extension of σ to F.
Let L

F
be the language of diòerence ûelds together with names for the constants of

F. Let T be the consistent theory axiomatized by ACFA together with the existential
diagram of (F, σ). _en T contains a completion of ACFA, and since every formula
is equivalent to an existential formulamodulo ACFA, T is complete. Moreover, T is
recursively axiomatizable and hence computable. So T has a decidablemodel (K, ρ).
Using the embedding ı∶F → F, we get an embedding of the diòerence ûeld (F, σ)
into (K, ρ).

We can use this, together with the examples from the previous section, to see that
Rabin’s _eorem on the existence of computable algebraic closures (and its analogue
in diòerentially closed ûelds due to Harrington [Har74]) does not hold in the context
of diòerence closed ûelds:

Corollary 5.2 _ere exist computable diòerence ûeldswhich cannot be eòectively em-
bedded into any computable diòerence closed ûeld. Moreover, there is a counterexample
in every characteristic.

Proof In characteristic zero, apply the previous corollary to the ûeld from Proposi-
tion 4.3, and in characteristic p > 0, byCorollary 4.8,we can use anynormal extension
of Fp with no splitting algorithm.

Corollary 5.3 _e analogue of Rabin’s_eoremholds for diòerence ûeldswith under-
lying ûeld F if and only if F has the computable extension of automorphisms property.

A set is low if its Turing jump is as low as possible, i.e., Turing equivalent to∅′. We
note that every computable diòerence ûeld does embed into a low diòerence closed
ûeld.
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Fact 5.4 (essentially [FSS83]) Every computable diòerence ûeld embeds (by amap of
low degree) into a low diòerence closed ûeld.

Proof Let (F, σ) be a computable diòerence ûeld. Let ı∶F → F be a computable
embedding of F into its algebraic closure. _en there is a low automorphism τ of F
extending σ (see [FSS83]). _e theory ACFA together with the action of τ on F is a
complete low theory, and an eòective Henkin construction produces a low model as
in _eorem 5.1.

In _eorem 4.6, we showed that for a ûeld whoseGalois group has the non-cover-
ing property, having a splitting algorithm is equivalent to the computable extend-
ability of automorphisms property. We do not know in general whether these are
equivalent. We leave the following question open.

Question 5.5 For a normal extension F of Q, is the computable extendability of au-
tomorphisms property equivalent to having a splitting algorithm?
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