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ON ROOTED PROPERTIES OF COMPLEX ANALYTIC
SYSTEMS*

by XIAO-QIANG ZHAO

(Received 24th July 1992)

This paper is devoted to the study of rooted properties of phase surfaces defined by complex analytic systems.
We first obtain the Rooted Theorem of Analytic Systems. Then we prove the Generalized Strong Rooted
Theorem of (£") (m S 2), which implying the Strong Rooted Theorem of a Class of (£*).

1991 Mathematics subject classification: 34A20, 34C35, 58F25.

1. Rooted theorem of analytic systems

Consider differential equations in complex domain

dW
~ = F(W) WeC™ (1.1)

where Cm denotes the m-dimensional complex spaces, and F: Cm-*Cm is an analytic
function. By Cauchy's theorem, equation (1.1) has a unique local analytic solution
satisfying T = 0, W=W0, denoting W=W(T,W0), \T\<r (r>0). Taking W(T, Wo) as an
element of analytic function, we obtain a global analytic function <t>{T, Wo) with D(W0)
as its domain of definition. It can be proved that D(W0) is an open subset of C1. If
<D(T; WO) is analytically continuable along arcline L, we denote it by <^(T, Wo).

Definition 1. The set

0), TeD(W0)}

is called the phase surface of (1.1) through WoeC™.
Obviously, if Wo is a finite singular point of (1.1), i.e. F(Wo) = 0, then <S>{T, WO)=WO,

TeC\ and hence

Proposition 1. Let I. be a phase surface of {I.I). If Woe2, then 2

Proof. For the simplicity, let Z0 = E(W0) and D0 = D(W0). For any W,eS0, there
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256 XIAO-QIANG ZHAO

exist T| eD0 and simple curve L<=D0 connecting 0 and Tt such that Wx =OL(T1, Wo). By
the continuous dependence theorem of solutions on initial values [5], there exists a
neighbourhood Uo of Wo, such that

lim ®L(T,W) = ®L(T,W0)
W->W0
WeUo

uniformly for TeL. As W0e2, there exist WneE(n = l,2,...) such that limn^O0Wn=W0.
Then there exists N>0 such that when n^N, WneU0, L<=D(Wn) and

uniformly for TeL. Especially,

lim <t^Tlt Wn) = <t>L(Tu Wo)= Wt.

As Wne2., then ^ T l t Wn)eZ.(n^N). Therefore W\e£. So £=>20, and hence £=>20-
This completes the proof.

Proposition 2. Consider equation (1.1) with m = \ and let Co = {W;F(W)=0}. Then for
any WoeC1\C

Proof. For any given W^eC'XCo, choose a simply-connected domain such that
WoeG, WteG, and ConG = 0 ( 0 being empty set). So for any WeG, we can define

Then, as dT/dW=l/F(W), H{W) = T- To is an integral of (1.1) and satisfies W=W0,
T=T0. Therefore, Gc=Z(W0), and hence WieZf.H'o). Then E(W 0̂) = C1\C0.

It is easy to prove the following:

Lemma 1. Suppose that the sequence of points (wl"\..., wjjj') e Cm satisfies

then there must exist a subsequence (w(
1"

k),...,wjjll))(fc=l,2,...) such that limt-0O|vv}"Jt)| =
+ oo for some i( 1 ^ i ̂  m) and w^/wj""' (k = 1,2,...) converges for all j( l^j^m, j¥=i).

Definition 2. Let CPm denote the m-dimensional complex projective space. A given
phase surface E of (1.1) is said to have the point at infinity (W°l,...,W%,Qi)eCPm as its
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limit point if there exists a sequence of points (w(,B),...,H#')e£(n = 1,2,...,oo) such that
for some i( 1 ^ i ̂  m)

and /or a// _/(1 ^ jf ^ m, j-t i)

Theorem 1. For any given point WoeCm which is not a finite singular point o/(l.l),
the phase surface Z(W0) has some point at infinity as its limit point.

Proof. First we prove that £(W0) is unbounded. Suppose Z.(W0) is bounded, then we
can infer that dD(Wo) = 0. Assume it is not so, then there exist T*edD(Wo) and a
simple curve L connecting 0 and T* such that L1 = L — T*cD(W0) and <^T,Wo) is
analytically continuable along Ll. Choose a sequence TneLt such that Tn-*T*(n-*ao).
As the sequence of points Wn = Q>L'(Tn, W0)e3L(W0) is bounded, without loss of generality,
we can assume Wn-*W*{n->oo), W*eCm. By the continuation theorem of solutions [5],
T*eD(W0). This is contrary to the fact that T*e8D(W0) and D(W0) is an open subset of
C1. So D(W0) = Ci. As C1 is simply connected region, by Riemann's monodromy
theorem [1], <b(T,W0) is a bounded global function. By Liouville's theorem, <S>{T,W0) =
Const. So Wo is a finite singular point of (1.1). This is contrary to our assumption
for Wo.

As £(W0) is unbounded, by Lemma 1 given above, there exists a sequence
(<>,..., w£>) e £( Wo) such that for some i( 1 g i g m)

lim |wSn)| = + oo

and for all j ( l g jgm, j / i ) . wJ'Vw}"' converges, saying, to WjeC1. So, by Definition 2,
Z(W0) has the point at infinity (W°,...,Wf_1,l,Wf+1,...,W^,,0) as its limit point. This
completes our proof.

Note 1. For the two dimensional complex polynomical systems, by using the theory
of real equation, Y.S. Chin proved the "Rooted Theorem" [2]:

Each solution surface either has some finite singular point as its limit point or extends
to infinity.

It is easy to see that Theorem 1 for m = 2 is a strong form of Chin's.

Example 1. For the analytic system

dw
— = wcosx

df=l
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any phase surface has the point at infinity (0, l,0)ei>2C as its limit point. In fact, this
system has the general solution

For any given c, the corresponding phase surface

Choose a sequence of points (wn,zJ=(ce!i°",n)eSc, then |zn|=n-+oo, and

w •0(n-K»).

2. Generalized strong rooted theorem of (E^)(nt ̂  2)

Let the sign "deg" denote the degree of polynomial. Consider the polynomial systems:

^ ! = P ,K ,w 2 w j ( i = l , 2 m)(£B")

where P^wl, w2, • • •, wm) is m-variable polynomial (i = 1,2,..., m),

max {degPl{wuw2,...,wm)} = n,

and P1(w1,w2,...,wm),...,Pm(w1,M'2,...,wJ have no common factors. Let P?(wl,...,wJ
be the n-degree homogeneous polynomial of P^Wj,. . . ,^) and denote

W W

M M

Then Pf(Wlt W2,...,WJ = PtfVu W2,..., Wm,0).
Taking the transformation 7J: (i=l,2,...,m)

Wy Wi-y 1 Wi+1 Wm

=- , . . . ,w, ._ 1 =^ r ,w, . = -,w1.+ 1 = ^ r , . . . , Wm = -

then (£") is transformed into
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J..,Wi.l,l,Wi+l,...,Wm,M)(j=l,2,---,m,j^i) (2.1)

Make a new (m —l)-dimensional polynomial system:

-Pf(W1,...,Wi.ul,Wi+1,...,Wm)(j=l,2,...,m,j*i) (2.2)
and let

(W1,...,Wi_l,Wi+l,...,Wm)isa finite singular point of (2.2)}.

Definition 3. The set IS = \J'?=lISi is called the set of singular points at infinity of
(£?)•

Definition 4. By induction, we define the set of generalized singular points at infinity
of (£"), denoting it by GIS.

(1) For m = 2, define G1S = IS.
(2) Assume GIS for (m — 1) dimensional polynomial systems has been defined, then let

^ ' = Ur=i^; , where

(Wu..., W{-!, Wi+l,..., Wm,0) is a generalized singular point at infinity of (2.2)}

and define GIS=/SuIS'.

Theorem 2. For any given point Wo e Cm which is not a finite singular point of (£"),
the phase surface T.(WQ) has some generalized singular point at infinity as its limit point.

Proof. By mathematical induction.
(1) For m = 2, by Theorem 1 in Section 1, without loss of generality, assume Z =

contains the points at infinity (1, W°,0)eCP2. Take the transformation T,:

1 W2

then {El) is transformed into
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(2.3)

with a phase surface 2 1 corresponding to S. As £ contains (1, W2,0)eP2, then
(W2,0)e21. There are two cases:

(i) If (Wl,0) is a finite singular point of (2.3), then, by the definition of ISu

(1, W^GjelSi. Therefore the conclusion holds.
(ii) If (Wl,0) is not any finite singular point of (2.3), then

Let £„ be the phase surface of (2.3) through {W^,0) then

where Z'o is the phase surface through W2 e C1 of the following equation

(2.4)

As W\P\{\, WQ
2)-P\\\, W2)#0, by Proposition 2 in Section 1,

where Co = {W2; W2P*( 1, wy - PK1, W2) = 0}. Then

Since (W2,0)e£i, by Proposition 1 in Section 1,

Then for any W2eCl, Z has the point at infinity (1, W2,0)eCP2 as its limit point.
On the other hand, as Eo is unbounded, there exists a sequence of points (W'2

{n),0)e'L0

such that

I - +oo(n-»oo).

Since £, =>£0, there exists a sequence of points (W("),M(B))6Z1 such that
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I W2
n) - W'2

M\ < - , |M(n)| < - (n = 1,2,.. .)•
n n

Then
|W(

2
n)|- + oo, M(n)-O(n-KX>).

Therefore there exists a sequence of points (w'"', w(
2
n)) e X correspondingly such that

Then £ has the point (0,1,0) e CP2 as its limit point.
So £ has all points at infinity in CP2 and hence all singular points at infinity as its

limit point.
From (i) and (ii), the conclusion of Theorem 2 for m = 2 holds.
(2) Suppose that Theorem 2 for (m — 1) holds. By Theorem 1 in Section 1, without

loss of generality, assume S = Z(W0) has the point at infinity (1, W%,..., W%,,0)eCPm as
its limit point. Take the transformation Tj:

wm.
then (£") is transformed into

dW,

(2.5)

and 2 corresponds to S ^ As Z has (\,W°2 W°m,0)eCPm as its limit point, then
(W%,..., W°m,0) e £ t . There are two cases:

(i) If (W°2,...,Wl,0) is a finite singular point of (2.5), then, by the definition of ISu

(ii) If (W°2,...,Wl,0) is not any finite singular point of (2.5), then (W°2,..., W°m) is not
any finite singular point of the following equation

jfiJJW2,...,Wm),(2^j<m). (2.6)

Let S o be the phase surface of (2.5) through {W°2,..., W°m,Q>), then

Zo = {(W2,...,Wm,0);{W2,...,Wm)eI.'o}

where S o is the phase surface of (2.6) through {W°2,..., W°J. As (2.6) is a (m-1)-
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dimensional polynomial system, by our assumption, 2,'o has some generalized singular
point at infinity (W%, W%,..., W°m,0)eCPm-1 of (2.6) as its limit point. Without loss of
generality, assume that W°¥=0 and there exists a sequence of points (Wjn),..., W'£l))el.'o
such that

= /

As (W".•••> W^»0)6Zi, by Proposition 1 in Section 1, I ^ I , , . Therefore for any given
n, (n = 1,2,..., oo), since (Wf\..., W%\ 0) e So, there exists (W<2

B),..., W*J>, M(B)) e Z, such
that

| Wf - W'}n)\ <- (2 ̂  ; ^m), |M(B)| < i .

Then |W^(
2
n)|-» + oo(n-^oo) and

WW_W'fn) Wfn)

l im —̂— = lim —̂ ̂  = _ ^ f / = 3 m\
\yw W^ W'(n) 0 + 1 W > • • > > •

Therefore there exists a sequence of points (w'"',..., w '̂) e Z correspondingly such that

and
w<n)

Then Z has the point at infinity (0,Wi,...,WZ,0)eCPm as its limit point. By the
definition of /S'1; (0, W°2,..., W°m, 0) e/S^.

From (i) and (ii), the conclusion of Theorem 2 for m holds.
By mathematical induction, Theorem 2 for all m^2 is true. This completes the proof.

From (2) in the process of the proof above, we can obtain the following:

Lemma 2. Let S be a phase surface of (£") which is not a finite singular point of it. If
Z has the point at infinity {W\, W\,..., W°m,0)eCPm as its limit point and W?#0 for
some i (l^i^m), then it must have some point at infinity in /S,u/SJ as its limit point.

Note 2. Let I be a phase surface of (£"). If £ has some finite singular point or
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singular point at infinity P of (£") as its limit point, we call P as a "root" of S. For
m = 2, Y. S. Chin proved the "Strong Rooted Theorem" [4]:

Each solution surface of (£jj) has some finite singular point or singular point at
infinity as its root.

As GIS=IS for {El), it is easy to see that Theorem 2 for m = 2 is a strong form of
Chin's.

Note 3. For (£") in real domain, there is no parallel result to Theorem 2. This can
be seen from the following two simple counterexamples.

Example 2. For the two-dimensional system

dw
dT

dz_
dT

- = —z

- = w

by concrete calculation, /S = {(1, ±i,0)}. This system has the general phase surfaces

T.c:w
2+z2 = c.

W Z
Let

c is extended into E'c in CP2

It is easy to verify that Ec has both singular points at infinity (1, ±i,0)eCP2 as its limit
points.

Example 3. For the three-dimensional system

dw,
dT

dw2

~d¥'

dw3

~df'

= w3-w2
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by concrete calculation, /S1=/S2 = /S3 = {(l,l,l,0), (l,(-l±y3i)/2,(-lTv/3i)/2,0)}.
This system has general phase surfaces

Z : W
M

Let

Wl = ™k w 2 = - ^ w3=^;

then Z is extended into Z' in CP3

It is easy to verify that Z has two singular points at infinity
(1, ( - 1 ± v/30/2, ( - 1 + ̂ 30/2,0) e CP3 as its limit points.

3. Strong rooted theorem of a class of (£3)

In this section, on the basis of Section 2, we discuss the strong rooted property of (E3)
further. We give first the following:

Lemma 3. / / degPf(l ,w2,w3)^n-l , then 7S'1<=/S2u/S3; if degP?(l,w2)w3) = n, then
IS\ = {(0,W2,W3,0)6CP3; W2,W3eC1}. For IS'2 and IS'3, the conclusions hold
analogously.

Proof. Consider the following two-dimensional system:

dW
"-£= W2P\(\, W2, W3)-Pt(\, W2, W3) = E(W2, W3)dT

(3.1)

| = W3PX(l, W2, W3)-PJ(1, W2, W3) = F(W2, W3).

By the definition of IS\ in Section 2,

IS\ = {(0, W2, W3,0); (^2,^3,0) is the infinite singular point of (3.1)}.

Let fc = max{deg£(W2, W3), degF(W2, W3j), then k^n+ 1, and
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2

2 M"-*+1 M""*

_ Pt(M, W2, W3) P%{M, W2, W3)
3 M"-*+1 Mn~k

By the definition of IS of (£2),

/Si = {(0, W2, W3,0); (W2, W3,0)eCP2 and W2F*(W2, W3)-W3E*{W2, W3) = Q).
As

then
W2F*(W2, W3)- W3E*(W2, W3) =(W2F(W2, W3, M) - W3E(W2, W3, M))|M = 0

JW3Pj{M,W2,W3) W2Pj{M,W2,
\ M"~k M"~k

There are three cases:

(1) If/c = n + l, i.e. degPJ(l,H^,^3) = n, then

IS\ = {(0,W2,W3,V)eCP\W2,W3eC1}.

(2) Uk = n, then

/Si = {(0, W2, W3,0) e CP3; W2Pf (0, W2, W3) - W3P^{0, W2, W3)=0)

and degPf(l, W2, W3)^n— 1. As P*(Wi, W ,̂ W3) is homogeneous polynomial of degree n,
hence PU0,W2,W3)=0.

As

U I, W3)-P\\WU 1, W3)=
and

W2P%(WU W2, \)-P*2{Wu W2, l) = 0}
then

/Sin{(0,l,^3,0);»3eC1}c/S2
and

/Si n {(0, W2,1,0); ^ e C ' J c / S 3 .
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Therefore IS\ a IS2 u IS3.

(3) If k^n-1, thendegPftl,^, W3)^n-\, i.e.

Hence we can assume

W» W2,

where P*i{W2,W3) and P*2(Wi, W2, W3) are all homogeneous polynomials of degree
(« — 1) and

Let

p\\wu w2, W3) = PUW2, W3)+PUWX, w2, w3)

P%(WU W2, W3) = P*l(W2, W3) + PUW» W2, W3)

where P*i(W2, W3) and P*2(WU W2, W3) are all homogeneous polynomials of degree n and

which imply Pf2(0, W2, W3) = 0 (i = 2,3). As

k
therefore

Hence

Therefore

W3P1(Wu W2, W3)- W2Pt(Wu W2, W3)

So, by the definition of IS2 and IS3,

lt 1, W3,0); W

W3) = 0,

w3).

W2, W3) - W2Pt2{Wlt W2, W3)

= {(WU W2,1,0);

ftWu 1, W3) = 0 and

f ( ^ , W 2̂, l ) = 0 and

Therefore
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and
{(0,W2,l,0); W2eCl}czIS3.

Hence
{(0, W2, W3,0)eCP3; W2, W3eCl}<= IS2 u IS3.

In particular, IS\(=IS2 u IS3.
From (1), (2) and (3), the conclusion of Lemma 3 holds.

Theorem 3. / / (E3) satisfies one of the following three inequalities:

then for any given point Wo e C3 which is not a finite singular point of (El), the phase
surface Z(W0) has some singular point at infinity as its limit point.

Proof. Without loss of generality, we assume degPJ(H>i,w2, l ) g « - l , then
P3*(wl,w2,0) = 0, and, by Lemma 3 above, IS^czISx u / S 2 .

By Theorem 1 in Section 1, Z = Z(W0) has some point at infinity
(W\, W°2, W%,0)eCP3 as its limit point. There are two cases:

(I) If W3/O, by Lemma 2 in Section 2, Z must have some point at infinity in
IS3 u IS'3 as its limit point. As IS'3czIS1 u IS2, then the conclusion holds.

(II) If W^3=0, without loss of generality, assume W\=£0, again by Lemma 2, Z must
have some point at infinity in ISluIS\ as its limit point. If Z has limit point in /Sj,
then the conclusion holds. If Z has limit point in IS\, saying (0,W2,W3,0), there are
two subcases:

(1) If W°3*0, by (I), the conclusion holds.
(2) If W%=0, then W2#0, i.e. Z has (0,1,0,0) eCP3 as its limit point. Take the

transformation T2:

_Wi _J_ _W3.

then (E3) is transformed into

(3.2)
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and Z corresponds to Z2. As Z has (0,1,0,0) eCP3 as its limit point, (0,0,0)e£2. There
are still two cases:

(i) If (0,0,0) is a finite singular point of (3.2), then, by the definition of IS2,
(0, l,0,0)e/S2, and the conclusion holds.

(ii) If (0,0,0) is not any finite singular point of (3.2), let Zo be the phase surface of
(3.2) through (0,0,0)eC3, as P^(wuw2,0)s0, then

where ZJ, is the phase surface through Wl=0 of the following one-dimensional equation

^=WiP*2{Wu\,0)-PftWl,\,0) (3.3)

and

By Proposition 2 in Section 1, X'0 = Cl\C0 where C0 = {W1eC1; W^^Wy, 1,0)-
P*(WU l,0)=0}, and hence 2'0 = C1. Since (0,0,0)e£2, by Proposition 1 in Section 1,

Therefore for any Wl eC1, Z has the point at infinity (Wu l,0,0)eCP3 as its limit point.
On the other hand, let ZJ be the phase surface through (0,0) of the following

two-dimensional equation

AW
^=W,P*2(WU 1, WZ)-PKWU 1, W3)

(3.4)

^ p = W.PIXW,, 1, W,)-PtWu 1, W3).

Then

As Z'o = {(H ,̂O); WieZo}, Z^ has the point at infinity ( 1 , 0 , 0 ) E C P 2 as its limit point.
With the similar argument to the last part of proof of Theorem 2 in Section 2, Z has the
point at infinity (l,0,0,0)eCP3 as its limit point.

So Z has all points in {(Wu W2,0,0) eCP3 WuW2eC1} as its limit points. Especially,
as / S ' 3 # 0 , Z has all points in IS'3 as its limit points. Since /S^c/Sj u /S 2 , the
conclusion holds.

This completes our proof.

Example 4. For the three-dimensional system
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i=-w2
dT
dw2

~df
dw3

~df = 0

n=l , Pf(w1)w2,w3)=-w2, P%(wl,w2,w3) = wi, P3
t(wi,w2,w3) = 0. As degP5(w,,w2,1) =

0<l , by Theorem 3 above, any phase surface which is not through (0,0,0)eC3 has
some singular point at infinity in /Sj u / S 2 u / S 3 as its limit point. In fact, by concrete
calculation,

/S1 = /S2 = {(1, ±i,0,0)}

/S3 = {(0,0,1,0)}.

This system has general phase surface

2:

W,

W3=C2.

Let

Z is extended into If in CP3

W3-c2M = 0.

It is easy to verify that Z has two singular points at infinity in IS1 = IS2 as its limit
points.

In the real domain, there is no parallel result for the system in Example 4. This is
because any solution curve of it is bounded.

4. Some remarks

According to Y. S. Chin's new approach to Hilbert's 16th problem [2,3], for the
2-dimensional real polynomial system

(£.)

https://doi.org/10.1017/S0013091500006064 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006064


270 XIAO-QIANG ZHAO

let
w = u + iv z = :

Then (En) is extended naturally into the complex polynomial system

dw _ .

(£„*)

By investigating the structure of the totality of the set of all solution surfaces of (£$, we
can deduce conclusions for (£„).

If (E*) is given, the finite singular points and singular points at infinity of it are fixed,
and the number of them is finite generally. We can investigate the topological properties
of the singular points first, then to obtain the topological properties of the solution
surfaces attached with the singular points, and hence, by Strong Rooted Theorem of
(El), to deduce some important results for the family of solution curves of the
corresponding real system (£„).

As an application of Strong Rooted Theorem of (El) in Section 2, we have discussed
the existence of global general solutions of complex polynomial systems and obtained
their representation theorem for complex normal polynomial systems (see X. Q. Zhao
and Y. S. Chin, Science in China (Series A), 36 (1993), 394-407).
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