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Abstract

We seek a sufficient condition which preserves almost-invariant subspaces under the weak limit of
bounded operators. We study the bounded linear operators which have a collection of almost-invariant
subspaces and prove that a bounded linear operator on a Banach space, admitting each closed subspace
as an almost-invariant subspace, can be decomposed into the sum of a multiple of the identity and a
finite-rank operator.
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1. Introduction

The invariant subspace problem is a famous problem in operator theory. An operator
without a nontrivial invariant subspace was first found by Enflo [4]. Read constructed
such an operator on l1 [8] and a quasinilpotent operator without a nontrivial invariant
subspace [9]. The problem is still open for reflexive Banach spaces.

Androulakis et al. [1] introduced almost-invariant subspaces as a modified version
of invariant subspaces. For a Banach space X and a bounded linear operator T on X,
a closed subspace Y of X is called almost invariant under T if there exists a finite-
dimensional subspace M of X such that TY ⊆ Y + M. If M is chosen with minimum
dimension, M and dY,T = dim M are respectively called the error and defect of Y
under T . It is easy to see that every finite-dimensional or finite-codimensional subspace
of X is always almost invariant under every operator on X. Therefore, the study of
almost-invariant subspaces is restricted to half-spaces, which are closed subspaces
with both infinite dimension and infinite codimension in X. The first question raised
was whether every operator on an infinite-dimensional Banach space has an almost-
invariant half-space. An affirmative answer was given for reflexive Banach spaces [7]
and then for compact and quasinilpotent operators [10]. Finally, Tcaciuc showed that
every operator on a separable Banach space has an almost-invariant half-space with
defect at most one [12].
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In Section 2, we present a sufficient condition for a weak operator convergent
sequence to preserve almost-invariant subspaces, improving a theorem of Popov [6].
In Section 3, we show that if a bounded operator on a Banach space admits each closed
subspace as an almost-invariant subspace, then it can be decomposed into the sum of
a multiple of the identity and a finite-rank operator. This has already been proven for
Hilbert spaces [5].

Let Y be a closed subspace of a Banach space X and T a bounded operator on X. By
Alg Y , we denote the set of all bounded operators on X which have Y as an invariant
subspace. It is known that if Y is almost invariant under T , then T can be expressed in
the form S + F for some S ∈ Alg Y and a finite-rank operator F [1]. In the following,
by putting appropriate conditions on L, a collection of closed subspaces which are
almost invariant under T , we achieve a decomposition of T in the form S + F for
some S ∈ AlgL and a finite-rank operator F.

Throughout the paper, X is a complex Banach space and B(X) is the set of all
bounded linear operators on X. The terms ‘subspace’ and ‘operator’ refer to ‘closed
subspace’ and ‘bounded linear operator’, respectively.

2. Limit properties of operators with almost-invariant subspaces

Suppose that (Tα)α∈I is a net of bounded operators on X converging to a bounded
operator T in the weak operator topology (wot), that is, for each x∗ ∈ X∗ and x ∈ X,
the net (x∗(Tαx))α∈I converges to x∗(T x). We denote this limit by wot-lim. If Y is
an invariant subspace under each Tα, then Y will also be invariant under T . But
this is not valid for almost-invariant subspaces. Indeed, it is enough to consider a
sequence (Fn)∞n=1 of finite-rank operators on an infinite-dimensional Hilbert space H,
converging to a nonfinite-rank compact operator K. Clearly, each subspace of H is
almost invariant under Fn for all n. Nevertheless it is not true for K, since, according
to [5, Corollary 4.16], the compact operator K must be in the form αI + F for some
nonzero scalar α and a finite-rank operator F, which is a contradiction.

The next proposition provides a sufficient condition. Before that we give two
lemmas needed in the proof.

We denote by F (X) the set of all bounded finite-rank operators on X and by Fn(X)
the set of all bounded finite-rank operators on X with rank ≤ n. Similarly, we use
B(X,Y), F (X,Y) and Fn(X,Y) for operators between the Banach spaces X and Y .

Lemma 2.1. For Banach spaces X and Y, Fn(X, Y) is a closed subset of B(X, Y) in the
weak operator topology.

Proof. Let (Tα)α∈I be a net in Fn(X,Y) converging to a bounded operator T in the weak
operator topology. Suppose that rank T ≥ n + 1. We can choose vectors x1, . . . , xn+1
such that the collection {T xi}

n+1
i=1 ⊆ Y is linearly independent. By the Hahn–Banach

theorem, there exist linear functionals y∗j ∈ Y∗, j = 1, . . . , n + 1, with y∗j(T x j) = 1
and y∗j(T xi) = 0 for i , j. Now, define the operator S ∈ Fn+1(Y) by the formula
S y =

∑n+1
j=1 y∗j( y)T x j. Since Tαx1, . . . , Tαxn+1 converge weakly to T x1, . . . , T xn+1, we
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conclude that limα S (Tαxi) = T xi for i = 1, . . . , n + 1. Also, since T x1, . . . , T xn+1
are linearly independent, the collection {S (Tαxi)}n+1

i=1 will eventually become linearly
independent and so will the preimage {Tαxi}

n+1
i=1 , which contradicts the hypothesis that

Tα ∈ Fn(X,Y). �

The following lemma provides a connection between almost-invariant subspaces
and their quotient maps.

Lemma 2.2 [6]. Let T ∈ B(X) and Y be a subspace of X. Let q : X −→ X/Y be the
quotient map. Then Y is an almost-invariant subspace under T if and only if (qT )|Y is
of finite rank. Moreover, dim(qT )(Y) = dY,T .

Proposition 2.3. Suppose that (Tα)α∈I is a net of bounded operators on X converging
to a bounded operator T in the weak operator topology. Let Y be an almost-invariant
subspace under every Tα with dY,Tα ≤ N. Then Y is almost invariant under T with
dY,T ≤ N.

Proof. Let q : X −→ X/Y be the quotient map. Since wot-limα Tα = T and q is a
bounded operator, wot-limα(qTα)|Y = (qT )|Y . By Lemma 2.2, each (qTα)|Y is a finite-
rank operator with rank ≤ N. Now, by Lemma 2.1, rank(qT )|Y ≤ N and again, by
Lemma 2.2, Y is almost invariant under T with dY,T ≤ N. �

Let Y be a closed subspace of X. Similarly to invariant subspaces, the set of all
bounded operators which have Y as an almost-invariant subspace is a subalgebra
of B(X), denoted by AlgaY . Unfortunately, it is not a closed algebra; by [1,
Proposition 1.3], AlgaY = Alg Y + F (X).

For T ∈ B(X), a subspace Y of X is called essentially invariant under T if it is
invariant under T + K for some K ∈ K(X), where K(X) denotes the class of compact
operators on X. By [11, Corollary 4.3], every bounded operator on a Banach space
admits an essentially invariant half-space. The set of all bounded operators which
have Y as an essentially invariant subspace is a subalgebra of B(X), denoted by AlgeY .
Clearly, AlgeY = Alg Y +K(X).

Suppose that (Tn)∞n=1 is a sequence of bounded operators on X converging to T in
norm topology and Y is an almost-invariant subspace under each Tn. We can ask, does
T admit Y as an essentially invariant subspace? In other words, is AlgaY ⊆ AlgeY?
When Y is a complemented subspace of X, the answer is affirmative. Indeed, let P be a
projection on X with range Y . Since Y is an almost-invariant subspace under each Tn,
it follows that (I − P)TnP is a finite-rank operator. Moreover, (Tn − (I − P)TnP)Y ⊆ Y .
So, (T − (I − P)T P)Y ⊆ Y and (I − P)T P is a compact operator.

Now, suppose that X has the approximation property, in particular F (X) = K(X).
Then

AlgeY = Alg Y +K(X) = Alg Y + F (X) ⊆ Alg Y + F (X) = AlgaY .

If AlgeY is also a norm-closed subalgebra of B(X), then AlgaY = AlgeY . This
motivates and proves the next corollary.
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Corollary 2.4. Suppose that X has the approximation property and Y is a subspace
of X. Then AlgaY = AlgeY if and only if AlgeY = Alg Y + K(X) is norm-closed in
B(X). In particular, if Y is a complemented subspace of X, then the subalgebra
Alg Y +K(X) is a norm-closed subspace of B(X).

We denote by LataT the set of all almost-invariant subspaces under T . According to
[1, Proposition 1.3], LataT =

⋃
F∈F (X) Lat(T + F). Similarly to invariant subspaces,

LataT is a complete lattice. Indeed, if Y1 and Y2 ∈ LataT , then there exist finite-
dimensional subspaces M1 and M2 such that TY1 ⊆ Y1 + M1 and TY2 ⊆ Y2 + M2. So,
T (Y1 + Y2) ⊆ Y1 + Y2 + M1 + M2 and, since M1 + M2 is of finite dimension,

T (cl(Y1 + Y2)) ⊆ cl(Y1 + Y2) + M1 + M2.

Therefore, cl(Y1 + Y2) ∈ LataT . Also, by [2, Proposition 2.2], there exist finite-
codimensional subspaces N1 and N2 such that T (Y1 ∩ N1) ⊆ Y1 and T (Y2 ∩ N2) ⊆ Y2.
Hence,

T (Y1 ∩ Y2 ∩ N1 ∩ N2) ⊆ T (Y1 ∩ N1) ∩ T (Y2 ∩ N2) ⊆ Y1 ∩ Y2.

Since N1 ∩ N2 is still of finite codimension, this shows that Y1 ∩ Y2 ∈ LataT .
For a subspace Y of X, we denote by Λn

aY the set of all bounded operators which
have Y as an almost-invariant subspace with defect ≤ n. Clearly, Λn

aY = Alg Y + Fn(X).
By Proposition 2.3, Λn

aY is a closed subset of B(X) in the weak operator topology. If
L is a collection of subspaces of X, we can similarly define AlgaL and Λn

aL. Clearly,
AlgaL =

⋂
Y∈LAlgaY and Λn

aL =
⋂

Y∈LΛn
aY .

Popov stated the following theorem and gave a rather lengthy and technical proof.

Theorem 2.5 [6]. Let A be a norm-closed subspace of B(X). Suppose that Y is a
subspace of X that is almost invariant underA. Then sup {dY,S : S ∈ A} <∞.

We extend this theorem and give a much shorter proof.

Theorem 2.6. Let L be a finite collection of subspaces of X. Let C be a norm-closed
convex subset of B(X) such that C ⊆ AlgaL. Then there exists an integer n ≥ 0 such
that C ⊆ Λn

aL.

Proof. Set Ck = C ∩ Λk
aL. By Proposition 2.3, Ck is a closed subset of C for all k.

Also, since L is a finite collection, C =
⋃∞

k=1 Ck. Considering C as a complete metric
space, by the Baire category theorem, there exists an integer k > 0 such that the interior
of Ck in C is nonempty. Choose an operator T0 in the interior of Ck in C. Since
C − T0 = {T − T0 : T ∈ C} is still convex and 0 ∈ C − T0, we have t(T − T0) ∈ C − T0
for 0 ≤ t ≤ 1 and T ∈ C. Now, fix an operator T ∈ C and consider the continuous map
f : [0, 1] −→ C − T0 given by f (t) = t(T − T0). Since Ck − T0 contains an open ball in
the metric space C − T0 of positive radius at 0, there is a real number s > 0 such that

s(T − T0) = f (s) ∈ Ck − T0 ⊆ Λk
aL + Λk

aL ⊆ Λ2k
a L.

Therefore,
T ∈ Λ2k

a L + T0 ⊆ Λ3k
a L

and setting n = 3k completes the proof. �
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The finiteness of L in the previous theorem is necessary. Indeed, if L includes a
chain Y1 ( Y2 ( Y3 ( · · · of finite-dimensional subspaces of an infinite-dimensional
Banach space X, then B(X) = AlgaL. However, there is no integer n ≥ 1 such that
B(X) ⊆ Λn

aL.
For two different subspaces Y and Z of X, there exists a rank-one operator T on X

such that Y is invariant under T , but Z is not. In particular, Alg Y , Alg Z. Now, we
obtain a similar result for almost-invariant subspaces.

For the subspaces Y1 and Y2, we say that Y1 is almost equivalent to Y2 if there exist
finite-dimensional subspaces M1 and M2 such that Y1 + M1 = Y2 + M2.

Proposition 2.7. For a subspace Y and a half-space Z of X, which are not almost
equivalent, there exists an operator T ∈ F (X) such that Y is almost invariant under T ,
but Z is not. In particular, if both Y and Z are half-spaces, then AlgaZ * AlgaY and
AlgaY * AlgaZ.

Proof. First, we suppose that Y is not a half-space. Then AlgaY = B(X) and we show
that F (X) * AlgaZ.

Let Z be an almost-invariant half-space under every operator in F (X). Since F (X)
is a norm-closed algebra, by [11, Theorem 1.1], there exists a half-space Z′ which is
invariant under every operator in F (X). This contradicts the transitivity of F (X).

Now, suppose that both Y and Z are half-spaces. Since Y and Z are not almost
equivalent, we can assume, without loss of generality, that Z * Y + span{zi}

n
i=1 for all

integers n > 0 and each set of linearly independent vectors {zi}
n
i=1 ⊆ Z. We show that

AlgaZ * AlgaY and AlgaY * AlgaZ.
If AlgaY ⊆ AlgaZ, then Alg Y ⊆ AlgaZ and, by Theorem 2.6, there is an integer

k > 0 such that Alg Y ⊆ Λk
aZ. We can choose linearly independent vectors {yi}

k+1
i=1 ⊆ Y

and linearly independent vectors {zi}
k+1
i=1 ⊆ Z such that span{zi}

k+1
i=1 ∩ Y = {0}. Since

y1, . . . , yn+1 are linearly independent, there are linear functionals {x∗i }
k+1
i=1 with x∗i ( yi) = 1

and x∗i ( y j) = 0 for j , i. Now, define the operator T ∈ F (X) by T x =
∑k+1

i=1 x∗i (x)zi. It is
easily seen that TZ ⊆ Z and dY,T ≥ k + 1, which is a contradiction.

If AlgaZ ⊆ AlgaY , then Alg Z ⊆ AlgaY and, by Theorem 2.6, there is a k > 0 such
that Alg Z ⊆ Λk

aY . Since Z is a half-space, we can choose linearly independent vectors
{zi}

k+1
i=1 ⊆ Z and linearly independent vectors {wi}

k+1
i=1 ⊆ X with span{wi}

k+1
i=1 ∩ Z = {0}

and span{zi}
k+1
i=1 ∩ Y = {0}. By the Hahn–Banach theorem, there are linear functionals

{x∗i }
k+1
i=1 with x∗i |Y = 0, x∗i (zi) = 1 and x∗i (z j) = 0 for j , i. If we define the operator S ∈

F (X) by S x =
∑k+1

i=1 x∗i (x)wi, then S Y ⊆ Y and dZ,S ≥ k + 1, which is a contradiction. �

3. Properties of operators having a collection of almost-invariant subspaces

If T ∈ B(X) and each subspace of X is invariant under T , then T must be a multiple
of the identity. What happens if each subspace of X is almost invariant under T? In [1],
it is shown that T has a nontrivial invariant subspace of finite codimension. If X is a
Hilbert space, then T has the form αI + F for some scalar α and a finite-rank operator
F [3, Corollary 4.16]. We extend this result to a Banach space X.
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First, we give some lemmas needed in the proof.

Lemma 3.1. Let T ∈ B(X) and M be a finite-dimensional subspace of X such that M
and M + span{x} are invariant under T for every x ∈ X. Then T = αI + F for some
scalar α and a finite-rank operator F.

Proof. Consider the operator T̃ : X/M → X/M given by T̃ (x + M) = T x + M. Since
the subspace M + span{x} is invariant under T for all x ∈ X, every one-dimensional
subspace of X/M is invariant under T̃ . This implies that T̃ = αI for some scalar α.
Now, we define the operator F on X by Fx = T x − αx. It is clear that FX ⊆ M and
T = αI + F. �

Lemma 3.2. Suppose that T ∈ B(X) and every subspace of X is almost invariant
under T . Then, for every x ∈ X, the subspace cl(span{T nx}∞n=0) is of finite dimension.

Proof. Suppose that for some x1 ∈ X the subspace cl(span{T nx1}
∞
n=0) is of infinite

dimension. Since span{T nx1}
∞
n=0 is also of infinite dimension, T k x1 < span{T nx1}

k−1
n=0

for all k ≥ 1. We will construct a subspace of X that is not almost invariant under T .
Consider x∗1 ∈ X∗ such that x∗1(x1) , 0. Let P1(x) = x − (x∗1(x)/x∗1(x1))x1 be the

projection on X with kernel span{x1} and image ker x∗1. Define x2 = P1T x1. It is easily
seen that span{x1,T x1} = span{x1, x2} and x2 < span{x1}, since T x1 < span{x1}.

We claim that for each n ≥ 1, there exist sequences {xn} of vectors, {x∗n} of
functionals and {Pn} of projections on X such that:

(i) x∗i (x j) = 0 if and only if i , j;
(ii) Pn(x) = x −

∑n
k=1(x∗k(x)/x∗k(xk))xk is the projection with kernel span{x1, . . . , xn}

and image
⋂n

i=1 ker x∗i ;
(iii) xn = Pn−1T xn−1;
(iv) span{x1, . . . ,T n−1x1} = span{x1, . . . , xn};
(v) xn < span{x1, . . . , xn−1}.

Indeed, suppose that we have defined xi, x∗i−1 and Pi−1, for 1 ≤ i ≤ n, satisfying (i)–
(v). Since xn < span{x1, . . . , xn−1}, we can choose x∗n ∈ X∗ such that x∗n(xi) = 0 for
1 ≤ i ≤ n − 1 and x∗n(xn) , 0. Let Pn(x) = x −

∑n
k=1(x∗k(x)/x∗k(xk))xk be the projection

with kernel span{x1, . . . , xn} and image
⋂n

i=1 ker x∗i . Define xn+1 = PnT xn. There exists
yn ∈ span{x1, . . . , xn} such that xn+1 = T xn + yn. By (iv), xn, yn ∈ span{x1, . . . , T n−1x1}

and so xn+1 ∈ span{x1, . . . , T nx1}. On the other hand, T n−1x1 ∈ span{x1, . . . , xn} and
T xi ∈ span{x1, . . . , xi+1} for 1 ≤ i ≤ n, so

T nx1 ∈ span{T x1, . . . ,T xn} ⊆ span{x1, . . . , xn+1}.

It follows that span{x1, . . . ,T nx1} = span{x1, . . . , xn+1}. Also, since

T nx1 < span{x1, . . . ,T n−1x1} = span{x1, . . . , xn}

and
T nx1 ∈ span{x1, . . . ,T nx1} = span{x1, . . . , xn+1},

we have xn+1 < span{x1, . . . , xn}.
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Now, set Z = cl(span{x2n−1}
∞
n=1). By assumption, there exists a finite-dimensional

subspace M such that TZ ⊆ Z + M. So, T x2n−1 = zn + mn for some zn ∈ Z and
mn ∈ M. Also, since P2n−1T x2n−1 = x2n, we have T x2n−1 = x2n + un for some un ∈

span{x1, . . . , x2n−1}.
Let j and n be natural numbers and j > n. Since x∗2 j(x2n) = x∗2 j(un) = x∗2 j(zn) = 0,

we have x∗2 j(mn) = 0. On the other hand, x∗2n(x2n) , 0, x∗2n(un) = 0 and x∗2n(zn) = 0.
Therefore, x∗2n(mn) , 0. We conclude that x∗2n(mn) , 0 and x∗2 j(mn) = 0 for all n and
j > n, contradicting dim M <∞. �

Proposition 3.3. Suppose that T ∈ B(X) and every subspace of X is almost invariant
under T . Then T = αI + F for some scalar α and F ∈ F (X).

Proof. Suppose that T cannot be expressed in the form αI + F for any scalar α
and F ∈ F (X). Start with the subspace {0} of X. By Lemma 3.1, there is x1 ∈ X
such that T x1 < span{x1}. Set M1 = span{x1} and choose x∗1 ∈ X∗ such that x∗1|M1 = 0
and x∗1(T x1) , 0. Also, set M′1 = cl(span{T k x1}

∞
k=0), which is invariant under T . By

Lemma 3.2, M′1 is of finite dimension and again, by Lemma 3.1, there is x2 ∈ X
such that M′1 + span{x2} is not invariant under T . Since X = ker x∗1 ⊕ span{T x1} and
T x1 ∈ M′1, we can choose x2 in ker x∗1.

Continuing inductively in this way, we can construct sequences {xn} of vectors, {x∗n}
of functionals and {Mn} and {M′n} of finite-dimensional subspaces of X such that, for
n = 1, 2, . . . :

(i) x∗i (x j) = 0 for all i and j;
(ii) x∗i (T x j) , 0 if i = j, and x∗i (T x j) = 0 if i > j;
(iii) Mn = M′n−1 + span{xn};
(iv) M′n = Mn + cl(span{T k xn}

∞
k=0) and M′n is invariant under T .

Indeed, suppose that we have defined xi, x∗i , Mi and M′i , for 1 ≤ i ≤ n, satisfying (i)–
(iv). Since M′n is of finite dimension, by Lemma 3.1, there exists zn+1 ∈ X such that
M′n + span{zn+1} is not invariant under T . By (ii),

X =

n⋂
i=1

ker x∗i ⊕ span{T x1, . . . ,T xn}.

Since span{T x1, . . . ,T xn} ⊆ M′n, there exists xn+1 ∈
⋂n

i=1 ker x∗i with M′n + span{xn+1} =

M′n + span{zn+1}. This means that M′n + span{xn+1} is not invariant under T and,
so, T xn+1 < M′n + span{xn+1}. Define Mn+1 = M′n + span{xn+1} and choose x∗n+1 ∈ X∗

such that x∗n+1|Mn+1 = 0 and x∗n+1(T xn+1) , 0. Then x∗n+1(x j) = 0, for j = 1, . . . , n + 1,
and x∗n+1(T x j) = 0, for j = 1, . . . , n. Set M′n+1 = Mn+1 + cl(span{T k xn+1}

∞
k=0), which is

invariant under T by Lemma 3.2. Also, M′n+1 is of finite dimension.
Now, define Z = cl(span{xn}

∞
n=1). By assumption, there exists a finite-dimensional

subspace M such that TZ ⊆ Z + M. So, for each xn ∈ Z, there exist zn ∈ Z and mn ∈ M
such that T xn = zn + mn. Since x∗n(T xn) , 0 and x∗n(zn) = 0, we have x∗n(mn) , 0.
Also, for k > n, we have x∗k(T xn) = x∗k(zn) = 0. Therefore, x∗k(mn) = 0. It follows that
x∗n(mn) , 0 and x∗k(mn) = 0 for all n and k > n, contradicting dim M <∞. �
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Let T be an operator on a Banach space X. It is known that if T commutes with
every operator on X, then T must be a multiple of the identity. Using Proposition 3.3,
we show that if X is a separable Banach space and TS − S T is a finite-rank operator,
for all S ∈ B(X), then T will be of the form αI + F, where rank F <∞.

Corollary 3.4. Let T be an operator on a separable Banach space X and suppose
that TS − S T ∈ F (X) for every S ∈ B(X). Then T = αI + F for some scalar α and
F ∈ F (X).

Proof. According to Proposition 2.3, it is sufficient to show that every subspace of X
is almost invariant under T .

Let Y be an arbitrary closed subspace of X. Since both X and X/Y are separable, by
[3, Proposition 3.1], there exists a bounded linear operator Φ from X/Y to X that
is one-to-one. Also, if q : X −→ X/Y is the quotient map, then S = Φq will be a
bounded operator on X such that Y = ker S . By assumption, there exists F ∈ F (X)
such that S T − TS = F. So, S T (ker S ) ⊆ FX and then T (ker S ) ⊆ S −1(FX). Since
FX ∩ S X is of finite dimension, there exists a finite-dimensional subspace M such that
FX ∩ S X = S M. Now,

S −1(FX) = S −1(FX ∩ S X) = S −1(S M) = M + ker S .

Therefore, T (ker S ) ⊆ M + ker S and Y = ker S is almost invariant under T . �

Let L be a collection of closed subspaces of a Banach space X. It is clear that
AlgL + F (X) ⊆ AlgaY . Now, we can ask, under which conditions on L will we have
AlgaL = AlgL + F (X)?

For a single subspace L = {Y}, we have AlgaY = Alg Y + F (X). In view of
Proposition 3.3, if L is the set of all subspaces of X, then AlgaL = AlgL + F (X).
However, this is not true in general. It is enough to consider L as the collection of
all finite-dimensional subspaces of X. In the next two propositions, we examine some
conditions under which the conclusion does hold.

Proposition 3.5. If L = {Y1, . . . , Yn} is a finite collection of subspaces of X such that
X = Y1 ⊕ · · · ⊕ Yn, then AlgaL = AlgL + F (X).

Proof. Since X is a direct sum of subspaces Y1, . . . ,Yn, there exist bounded projections
P1, . . . , Pn such that PiX = Yi and ker Pi =

∑n
k=1,k,i Yk for 1 ≤ i ≤ n. Also, PiPj = 0

whenever i , j and
∑n

i=1 Pi = I.
Let T ∈ AlgaL. Since each Yi is almost invariant under T , there exists a finite-

dimensional subspace Mi such that TYi ⊆ Yi + Mi = PiX + Mi. For i , j,

PjT PiX = PjTYi ⊆ Pj(Yi + Mi) ⊆ PjMi.
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Therefore, the operator PjT Pi is of finite rank whenever i , j. On the other hand,

Pk

(
T −

n∑
i, j=1, j,i

PjT Pi

)
= PkT − PkT

n∑
i=1,i,k

Pi = PkT − PkT (I − Pk) = PkT Pk

= T Pk − (I − Pk)T Pk = T Pk −

( n∑
i=1,i,k

Pi

)
T Pk

=

(
T −

n∑
i, j=1, j,i

PjT Pi

)
Pk

for k = 1, . . . , n.
This shows that T −

∑n
j=1, j,i PjT Pi ∈ AlgL and, since

T =

(
T −

n∑
i, j=1, j,i

PjT Pi

)
+

n∑
i, j=1, j,i

PjT Pi,

the proof is complete. �

Remark 3.6. For an operator T and an almost-invariant subspace Y , there exists a
finite-dimensional subspace M with TY ⊆ Y + M and Y ∩ M = {0}. We can find a
projection P on X with range M and kernel containing Y such that (T − PT )Y ⊆ Y .

Indeed, if q : X −→ X/Y for the quotient map, then q(M) is a finite-dimensional
subspace of X/Y . There is a subspace L′ ⊆ X/Y such that L′ ⊕ q(M) = X/Y . Since
Y ∩ M = {0}, by setting L = q−1(L′), we have M ⊕ L = X and L ⊇ Y . Now, if we
consider the projection on X with kernel L and range M, then (T − PT )Y ⊆ Y .

Proposition 3.7. Let L = {Y1, . . . , Yn} be a finite collection of subspaces of X with
Y1 ⊇ Y2 ⊇ · · · ⊇ Yn. Then AlgaL = AlgL + F (X).

Proof. Given T ∈ AlgaL, let M1 be a finite-dimensional subspace of X such that
Y1 ∩ M1 = {0} and TY1 ⊆ Y1 + M1. By Remark 3.6, there exists a projection P1 on
X with range M1 and kernel containing Y1 such that Y1 is invariant under T − P1T .
Set S 1 = T − P1T . Since P1T is of finite rank, Y2 is almost invariant under S 1
and, by [6, Lemma 2.1], we can choose a finite-dimensional subspace M2 such that
M2 ⊆ S 1Y2 ⊆ S 1Y1 ⊆ Y1, Y2 ∩ M2 = {0} and S 1Y2 ⊆ Y2 + M2. Consider a projection P2
on Y1 with range M2 and kernel containing Y2. Since P2 is of finite rank, it can be
extended to a bounded linear operator P̃2 on all of X with the same range as P2. It is
easily seen that Y1 and Y2 are invariant under the operator S 1 − P̃2S 1.

Continuing this process, we obtain operators {S i, Pi, P̃i}
n
i=1 and finite-dimensional

subspaces {Mi}
n
i=1 of X such that, for i = 1, . . . , n:

(i) S i−1Yi ⊆ Yi + Mi, Yi ∩Mi = {0} and Mi ⊆ S i−1Yi ⊆ S i−1Yi−1 ⊆ Yi−1 for i = 2, . . . ,n;
(ii) Pi is a projection on Yi−1 with range Mi and kernel including Yi;
(iii) P̃i is an extension of Pi on X with the same range as Pi;
(iv) S i = S i−1 − P̃iS i−1, S 0 = T and P̃1 = P1;
(v) the subspaces Y1, . . . ,Yi are invariant under S i.
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So,
T = S n + P̃nS n−1 + P̃n−1S n−2 + · · · + P̃2S 1 + P1T

and finally S n ∈ AlgL and P̃nS n−1 + P̃n−1S n−2 + · · · + P̃2S 1 + P1T ∈ F (X). �
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