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Abstract

This paper uses a robust method of spatial epidemiological analysis to assess the spatial
growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England,
September 2020–December 2021. Using the genomic surveillance records of the COVID-19
Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold)
difference in the average rate of spatial growth of 37 sample lineages, from the slowest
(Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529
and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant
and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated
variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and
AY.120) were found to display a statistically faster rate of spatial growth than the parent
lineage and would seem to merit further investigation. We suggest that the monitoring of
spatial growth rates is a potentially valuable adjunct to outbreak response procedures for
emerging SARS-CoV-2 variants in a defined population.

Introduction

Emerging lineages of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have
the potential to place significant pressure on public health systems due to increased infectivity,
transmissibility, virulence, immune escape or other fitness advantage [1, 2]. Global genomic
surveillance has identified >1700 SARS-CoV-2 lineages since the beginning of the
COVID-19 pandemic [3, 4], of which Alpha (B.1.1.7 and Q), Beta (B.1.351), Gamma (P.1),
Delta (B.1.617.2 and AY) and Omicron (B.1.1.529 and BA) have been designated as variants
of concern by the World Health Organization (WHO) on account of their global public health
significance [5]. Additional lineages are currently classified on the basis of properties that are
suggestive of an emerging (variants of interest) or possible future (variants under monitoring)
risk to global public health [5]. The risk is well illustrated by the recent and rapid emergence of
Omicron as the dominant variant in the UK, South Africa and the USA, among other coun-
tries, in late November and December 2021 [6–8].

One important epidemiological facet of an emerging SARS-CoV-2 lineage is its propensity
to grow in a defined population [9]. There are well-established methods for assessing the rate
of temporal growth by, for example, examining the trajectory of case doubling times or
estimating the basic reproduction number, R0, of the agent in question [10, 11]. Viewed
from a geographical perspective, these measures are essentially aspatial in that they provide
very little information on the geographical growth, or spatial expansion, of the associated
infection wave. To extend the examination of SARS-CoV-2 growth rates into the spatial
domain, the present paper applies a robust method of spatial epidemiological analysis that
is known as the swash-backwash model of the single epidemic wave [12] to the genomic
surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium [13]. Using
the spatial sequence of detection of sample variants as a proxy for the spatial wave front of infec-
tion, our examination yields estimates of the spatial growth rate of multiple SARS-CoV-2 lineages
in the local authority areas of England, September 2020–December 2021.

For a total of 37 sample lineages under investigation, we present evidence of a substantial
(7.6-fold) difference in the average rate of spatial growth, from the slowest (Delta AY.4.3) to
the fastest (Omicron BA.1). Whilst the overall results for the Alpha, Delta and Omicron
variants are consistent with the documented growth advantages for these lineages, several
emergent Delta sublineages (AY.4.2, AY.43, AY.98 and AY.120) are found to have had a stat-
istically significant growth advantage over the parent lineage. To our knowledge, this is the first
comparative study of the spatial growth rate of multiple emerging SARS-CoV-2 lineages at the
national level. It is also the first report of a spatial growth advantage for the Delta AY.43, AY.98
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and AY.120 lineages, and the first to document an apparently
reduced spatial growth rate for a substantial number of other
AY lineages that emerged in the spring and summer of 2021.
The modelling of spatial growth rates is equally applicable to
the analysis of RT-PCR gene target data, and we suggest it to
be a potentially valuable adjunct to outbreak response procedures
for SARS-CoV-2 variants in a defined population.

Data and methods

Since September 2020, successive waves of SARS-CoV-2 infection
with emerging lineages of the Alpha (September 2020 onset),
Delta (March 2021 onset) and Omicron (November 2021 onset)
variants have been recorded in England [14–16]. The weekly
record of COVID-19 cases to mid-December 2021 is plotted in
Figure 1a, whilst the underpinning sequence of variants is
depicted in Figure 1b. As Figure 1b shows, Alpha, Delta and
Omicron achieved the status of dominant variants in December
2020, May 2021 and December 2021, respectively.

Data

We draw on the integrated national-level SARS-CoV-2 genomic
surveillance records of the COG-UK Consortium [13]. These
records are based on unselected (random sample) sequencing of
positive SARS-CoV-2 test samples that have been identified
through standard (‘pillar 2’) diagnostic pathways in the UK.
Lineages are assigned using the Phylogenetic Assignment of

Named Global Outbreak Lineages (pangolin) tool, with lineage
counts made available by local authority area and week of sample
collection. For further information on the data under ex-
amination, see COG-UK Consortium, COVID-19 Genomic
Surveillance [18].

Lineage counts for England were accessed from the COG-UK
website [18] for a 68-week period, September 2020 (epidemio-
logical week 36, ending 5 September) to December 2021
(epidemiological week 50, ending 18 December) (Fig. 1b). The
data set included geo-coded information on 979 075
SARS-CoV-2 samples assigned to the 309 Lower Tier Local
Authority (LTLA) divisions of England. Here, we define the 309
LTLAs according to their most recent (May 2021) status.
Information on the lineage of 20 655 samples (2.1%) was
either suppressed (1105) or not recorded (19 550). Of the remain-
ing 958 420 samples, the majority (93.8%) were classified as
belonging to the B.1.1.7 and Q (Alpha, 153 405 samples),
B.1.617.2 and AY (Delta, 722 133 samples) and B.1.1.529 and
BA (Omicron, 23 137 samples) lineages (Table 1). Samples
belonging to these lineages form the basis of all our analysis.

Methods

To assess the spatial growth rate of a given SARS-CoV-2 lineage,
we draw on the swash-backwash model of the single epidemic
wave [12]. In essence, the model represents a spatial derivative
of the generic SIR mass action models of infectious disease trans-
mission [19]. Using the binary (presence/absence) of a disease,
the model (i) allows the disaggregation of an infection wave
into phases of spatial expansion and retreat and (ii) provides a
means of measuring the phase transitions of geographical units
from susceptible S, through infective I to recovered R status.
See, for example, Smallman-Raynor and Cliff [20] and
Smallman-Raynor et al. [21].

Measuring the spatial growth rate
Full details of the modelling procedure are outlined by Cliff and
Haggett [12]. For the purposes of the present analysis, we focus
on the spatial expansion phase (i.e. the change of state from S
to I across a set geographical units) for a given SARS-CoV-2 lin-
eage. Specifically, let the first week in which the lineage was
detected in England be coded as t = 1. Subsequent weeks were
then coded serially as t = 2, 3, …, T, where T is the number of
weekly periods from the beginning to the end of the detected
occurrence of the lineage. For any given geographical unit, we
refer to the first week in which the lineage was detected as the
leading edge (LE) of the infection wave. The average time
(in weeks) to the detection of the lineage across the set of units
can then be defined by a time-weighted mean, �tLE , of the form

�tLE = 1
N

∑T

t=1

tnt . (1)

Here, nt is the number of units whose leading edge, LE,
occurred in week t and N = ∑

nt . Formed in this manner,
SARS-CoV-2 lineages with relatively high rates of spatial expan-
sion (or rapidly developing LE) take on relatively low values of
�tLE (i.e. short average times to detection). Conversely, lineages
with relatively low rates of spatial expansion (or slowly developing
LE) take on relatively high values of �tLE (i.e. long average times to
detection).

Fig. 1. COVID-19 cases in England, September 2020–December 2021. (a) Positive
COVID-19 test specimens as recorded by the UK Government. (b) Number of sample
genomes of SARS-CoV-2 in the COG-UK database by variant to 18 December 2021. All
data are plotted by week of sample collection. Sources: data from GOV.UK
Coronavirus (COVID-19) in the UK [17] and COVID-19 Genomics UK (COG-UK)
Consortium [18].
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Application of the model
Equation (1) was used to estimate the spatial growth rate of
sample SARS-CoV-2 lineages for which the earliest detection in

England occurred in the time period covered by the dataset
(September 2020–December 2021) and for which substantial geo-
graphical spread had been documented. To ensure the inclusion

Table 1. Estimated rate of spatial growth (�tLE) of sample SARS-CoV-2 lineages in England, September 2020–December 2021

Variant/lineage LTLAs (n) Number of detectionsa Earliest detectionb (t = 1) �tLE (95% CI) (weeks)

Alpha (B.1.1.7 and Q) 307 153 405 39/2020 (26 Sept.) 9.90 (9.56–10.23)

Delta (B.1.617.2 and AY) 307 722 133 12/2021 (27 March) 7.40 (7.12–7.68)

B.1.617.2 307 17 504 13/2021 (3 April) 9.11 (8.48–9.74)

AY.3 168 620 27/2021 (10 July) 14.12 (13.26–14.98)

AY.4 307 547 403 12/2021 (27 March) 9.45 (9.24–9.66)

AY.4.1 133 416 25/2021 (26 June) 9.50 (8.61–10.40)

AY.4.2 307 77 391 25/2021 (26 June) 6.21 (5.86–6.57)

AY.4.2.1 307 11 541 29/2021 (24 July) 9.43 (8.91–9.94)

AY.4.3 188 781 19/2021 (15 May) 19.93 (18.92–20.93)

AY.4.5 158 742 24/2021 (19 June) 15.06 (13.76–16.37)

AY.5 307 26 111 15/2021 (17 April) 9.83 (9.38–10.28)

AY.6 306 17 405 17/2021 (1 May) 8.88 (8.48–9.27)

AY.7 276 3627 18/2021 (8 May) 9.02 (8.39–9.65)

AY.8 141 1241 16/2021 (24 April) 8.60 (7.90–9.29)

AY.9 304 10 136 14/2021 (10 April) 10.88 (10.33–11.42)

AY.9.2 251 1990 28/2021 (17 July) 10.44 (9.70–11.17)

AY.10 118 683 15/2021 (17 April) 8.50 (7.96–9.04)

AY.25 130 486 31/2021 (7 Aug.) 13.02 (12.26–13.78)

AY.33 105 319 25/2021 (26 June) 17.84 (16.63–19.05)

AY.34 268 3088 30/2021 (31 July) 10.88 (10.19–11.57)

AY.36 256 1999 28/2021 (17 July) 12.69 (12.05–13.32)

AY.42 115 338 27/2021 (10 July) 10.08 (8.81–11.34)

AY.43 307 23 068 27/2021 (10 July) 5.56 (5.27–5.86)

AY.46 305 9461 21/2021 (29 May) 11.23 (10.72–11.74)

AY.46.5 304 8649 23/2021 (12 June) 10.13 (9.66–10.61)

AY.87 172 688 20/2021 (22 May) 10.28 (9.28–11.29)

AY.89 173 544 21/2021 (29 May) 13.97 (13.17–14.77)

AY.90 218 1202 21/2021 (29 May) 13.52 (12.54–14.50)

AY.98 307 22 465 22/2021 (5 June) 6.34 (5.99–6.70)

AY.98.1 172 621 25/2021 (26 June) 15.77 (14.80–16.75)

AY.109 116 441 25/2021 (26 June) 17.59 (16.67–18.52)

AY.111 296 4649 21/2021 (29 May) 15.25 (14.46–16.04)

AY.120 306 18 400 20/2021 (22 May) 6.56 (6.16–6.97)

AY.122 302 5018 21/2021 (29 May) 13.80 (13.07–14.53)

AY.124 119 424 25/2021 (26 June) 12.99 (11.93–14.05)

AY.125 162 534 26/2021 (3 July) 16.65 (15.79–17.51)

Omicron (B.1.1.529 and BA) 304 23 137 47/2021 (27 Nov.)c 2.63 (2.56–2.71)d

Average 233 46 450 11.27 (10.03–12.50)

aExcludes 1105 detections for which lineage data are suppressed and 19 550 detections for which lineage data are not available.
bEpidemiological week/year, with the last day of the week given in parentheses.
cExcludes a lone detection in week 43 (30 October).
dIndexed to week 47; �tLE = 6.62 (6.53, 6.70) when indexed to week 43.
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of sufficient observations for geographical analysis, the sample
was limited to lineages that had been detected in at least one-third
of the 309 LTLAs by December 2021. Based on these criteria, the
sample consisted of 37 lineages. Summary details of the sample,
including the number of LTLAs in which each lineage was
detected, the total count of detections over the study period and
the earliest date of detection, are provided in Table 1.

For each lineage, equation (1) was fitted with t = 1 set to the
week of earliest detection in Table 1. In the instance of
Omicron, retrospective analysis has identified a lone detection
of the BA.1 lineage in epidemiological week 43 of 2021 (week
ending 30 October), 4 weeks prior to the subsequent detection
and apparent onset of widespread transmission of the variant in
epidemiological week 47 (week ending 27 November). For the
purposes of the present analysis, we set week 47 as t = 1 for
Omicron, but we also report the computed value of �tLE based
on the earlier detection in week 43. Finally, we exclude two
LTLAs (City of London and Isles of Scilly) from all analysis on
account of the suppression of lineage data due to their small
populations. Data analysis was performed in Minitab®17
(Minitab Inc., Pennsylvania, USA) and data mapping in QGIS
3.10.14-A Coruña (QGIS.org) using Local Authority Districts
(May 2021) UK and Regions (December 2020) EN shapefiles
from the Office for National Statistics (ONS) [22].

Results

Table 1 confirms that the 37 sample lineages were geographically
extensive in their transmission, with 29 having been detected
in >150 LTLAs, 21 in >250 LTLAs, 16 in >300 LTLAs and nine

in the complete set of 307 LTLAs under examination. The majority
(23) were associated with >1000 detections, 13 with > 10 000 detec-
tions and three with > 100 000 detections. Delta (B.1.617.2 and AY)
was the most common lineage (722 133 detections) and AY.4 the
most common sublineage (547 403 detections), with AY lineages
accounting for 33 of the spread events under examination. In
turn, the majority of lineages emerged (as judged by the date of earli-
est detections) in the spring and summer of 2021, as the Delta infec-
tion wave was evolving both domestically and internationally.

Spatial growth curves and leading edge (LE) maps

The upper graphs in Figure 2 plot the count of LTLAs by week of
earliest detection of the Alpha (B.1.1.7 and Q), Delta (B.1.617.2
and AY) and Omicron (B.1.1.529 and BA) variants, where
weeks are indexed to the earliest detection of the respective var-
iants (Table 1). The lower graphs are spatial growth curves,
formed by replotting the information in the upper graphs as a
cumulative proportion of LTLAs. Average curves for the set of
sample lineages in Table 1 are shown for reference.

Together, the graphs in Figure 2 portray the temporal develop-
ment of the spatial leading edges (LE) for each variant. The
geographical expression of these LE is captured by the choropleth
maps in Figure 3 which plot the week of earliest detection of each
variant in the set of LTLAs. The sequentially more rapid spatial
growth of the variants (Alpha→Delta→Omicron) is evidenced
by the sequentially steeper spatial growth curves (Fig. 2) and
the sequentially shorter periods to earliest detection (Fig. 3).
The latter feature is emphasised when earliest detections are
formed as regional averages in Figure 4.

Fig. 2. Spatial leading edges (LE) of the Alpha (B.1.1.7 and Q), Delta (B.1.617.2 and AY) and Omicron (B.1.1.529 and BA) variants in England, September
2020–December 2021. The graphs plot, on a weekly basis, the non-cumulative count (upper) and cumulative proportion (lower) of LTLAs in which each of the
three variants was first detected. The horizontal (time) axes are indexed to the epidemiological week of first detection (t = 1) of the corresponding variant.
Average curves, formed across the set of sample lineages in Table 1, are plotted for reference.
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Rates of spatial growth (�tLE)

The right-hand column in Table 1 summarises the results of the
application of equation (1) to each of the sample lineages.
Computed values of �tLE and associated 95% confidence intervals
(95% CI) are given, along with an overall average value of �tLE for
the entire sample. As noted above, lineages with relatively high
rates of spatial expansion (or rapidly developing LE) are repre-
sented by relatively low values of �tLE (i.e. short average times to
detection), while lineages with relatively low rates of spatial
expansion (or slowly developing LE) take on relatively high values
of �tLE (i.e. long average times to detection). In this manner, the

table confirms the sequential increase in the spatial growth rate
for Alpha, Delta and Omicron. On average, the earliest detection
of the Alpha variant in a given LTLA occurred at �tLE = 9.90 (95%
CI 9.56–10.23) weeks after the earliest sampled detection in
England. This reduced to 7.40 (95% CI 7.12–7.68) weeks for
Delta and 2.63 (95% CI 2.56–2.71) weeks for Omicron.

Delta AY lineages
Figure 5 is based on the information in Table 1 and plots the
values of �tLE for B.1.617.2 and AY lineages in order, from the low-
est (left, high values of �tLE ) to the highest (right, low values of

Fig. 3. Spatial leading edges (LE) of the Alpha (B.1.1.7 and Q), Delta (B.1.617.2 and AY) and Omicron (B.1.1.529 and BA) variants in the LTLAs of England, September
2020–December 2021. Maps are indexed to the epidemiological week of first detection (= week 1) of the corresponding variant and plot the number of weeks to first
detection in each LTLA.

Fig. 4. Spatial leadings edges (LE) of the Alpha (B.1.1.7 and Q), Delta (B.1.617.2 and AY) and Omicron (B.1.1.529 and BA) variants in the nine standard regions of
England, September 2020–December 2021. Maps plot the average time (in weeks) to first detection of a given variant in each regional subset of LTLAs.
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�tLE) rates of spatial growth. Values are plotted on an inverted ver-
tical scale to facilitate interpretation. The average value of �tLE ,
formed across the sample set of lineages in Table 1, is indicated
for reference as are the �tLE for the Alpha (B.1.1.7 and Q), Delta
(B.1.617.2 and AY) and Omicron (B.1.1.529 and BA) variants.
Spatial growth curves, formed in the manner of Figure 2, are plot-
ted for a sample of 20 AY lineages with relatively high and low
rates of spatial growth in Figure 6.

There is a 7.6-fold difference in the range of values of �tLE in
Figure 5, from Delta AY.4.3 with the lowest spatial growth rate
(19.93 weeks) to Omicron with the highest (2.63 weeks).
A group of four AY lineages (AY.4.2, AY.43, AY.98 and
AY.120), first detected in the period from mid-May to mid-July
2021, are positioned between Delta and Omicron in Figure 5
and display rates of spatial growth that are significantly higher
(as judged by 95% CI) than the aggregate rate for the Delta vari-
ant. In contrast, the overwhelming majority of AY lineages display
statistically lower – in many instances substantially lower – spatial
growth rates (as judged by 95% CI) than the aggregate rate for the
Delta variant.

Discussion

Recent experience has underscored the importance of the ongoing
tracking, monitoring and analysis of emerging SARS-CoV-2
lineages with a view to mitigating the impacts of the COVID-19
pandemic [23]. We have used a robust model of spatial epidemio-
logical analysis to estimate the rate of spatial growth of multiple
lineages of the virus in England over a 68-week period,
September 2020–December 2021. We have shown that the
Alpha, Delta and Omicron variants took an average of 9.90,
7.40 and 2.63 weeks, respectively, to reach the set of LTLAs
under examination (Table 1 and Fig. 5). Expressed in relative
terms, the leading spatial edges were 1.34× faster (Delta vs.
Alpha), 2.81× faster (Omicron vs. Delta) and 3.76× faster
(Omicron vs. Alpha). Our estimates scale to the approximate
length of time that Alpha (12 weeks), Delta (8 weeks) and
Omicron (3 weeks) took to establish themselves as the dominant
variants in England [18], and are consistent with evidence for the

fitness advantage of Delta over Alpha and Omicron over Delta
[11, 24, 25].

Of the 121 Delta AY lineages detected in England to December
2021 and included in the genomic surveillance records of the
COG-UK Consortium, 33 lineages met the geographical criterion
for inclusion in the current analysis. In interpreting the results for
these lineages, we note that AY designations are phylogenetically
defined and do not necessarily denote any fundamental biological
differences between the lineages [26]. Moreover, results of the
type documented in this paper are context dependent and cannot
be interpreted as evidence of a change in biological transmissibil-
ity, immune escape or other fitness advantage. Subject to these
caveats, we have identified four AY lineages (AY.4.2, AY.43,
AY.98 and AY.120) for which the rate of spatial growth exceeded
the aggregate rate for the Delta variant. These lineages had been
detected in all (AY.4.2, AY.43 and AY.98) or most (AY.120) of
the local authority areas under investigation, and each had been
associated with considerably more than 10 000 detections
(Table 1). Table 2 summarises the global status of these four
lineages as of 9 January 2022. With the exception of the AY.43
lineage, which was prevalent in a number of European countries
and associated with >267 000 detections worldwide, the majority
of detections of these lineages originated from the UK.

Our findings for the AY.4.2 and AY.43 lineages are consistent
with their respective designations by the UK Health Security
Agency as a distinct variant under investigation (VUI-21OCT-01)
and a variant of concern [32, 33]. Preliminary investigations indi-
cated the AY.4.2 lineage to be associated with a higher growth
rate and a higher household secondary attack rate, but with no
significant reduction in vaccine effectiveness, as compared to
the parent lineage [32, 34]. Although the factors underpinning
the higher growth rate of AY.4.2 remain to be established [32,
35, 36], we observe that this lineage accounted for a maximum
of 24.4% of all detections (week ending 4 December 2021) before
being outcompeted by Omicron [18]. Similarly, the status of the
AY.43 lineage in terms of transmission advantage and/or immune
escape remains to be determined, although further investigation is
merited as new AY.43 sublineages have recently been reported
from Brazil [37]. Finally, our identification of a rapid rate of spa-
tial growth for the AY.98 and AY.120 lineages, approximating the
estimated rates for AY.4.2 and AY.43, is noteworthy. Whilst very
little has been documented on the epidemiological facets of these
lineages, both have been identified in a number of countries in
Europe and elsewhere (Table 2) and would seem to merit further
investigation on the basis of the findings presented here.

With the foregoing exceptions, our analysis has shown that
many emerging AY lineages in England in the spring and summer
of 2021 were associated with spatial growth rates that were lower
(in some instances, substantially lower) than the aggregate rate for
the Delta variant (Table 1 and Fig. 5). Multiple biological
(e.g. reduced infectivity or transmissibility) and contextual
(e.g. progressive expansion of the national COVID-19 vaccination
programme) factors may account for this observation.
Importantly, there is no evidence of a temporal trend in the
observed rates of spatial growth that would be suggestive of either
(i) a biological selection pressure in favour of a growth advantage
of emerging lineages or (ii) a progressive contextual effect in the
form of, for example, increasing levels of vaccination coverage or
natural immunity that would serve to retard growth rates.

It is important to emphasise the broader societal and
epidemiological context to the spread of SARS-CoV-2 lineages
that will have influenced our estimates of �tLE in Table 1 and

Fig. 5. Estimated rate of spatial growth of sample SARS-CoV-2 lineages in England,
September 2020–December 2021. The graph plots values of �tLE and associated
95% CI from Table 1. Values are ordered from the lowest (left, high values of �tLE )
to the highest (right, low values of �tLE ) rates of spatial growth. Values are plotted
on an inverted vertical scale to facilitate interpretation. The average value of �tLE
for the sample is shown for reference.
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Figure 5. For the time period covered by the present study,
non-pharmaceutical interventions (NPIs) included: a tier system
of local lockdown in October 2020; two periods of national lock-
down (November–December 2020 and January–March 2021); a
phased lifting of national restrictions in the period to July 2021;
and the implementation of ‘Plan B’ control guidelines against
the Omicron variant in December 2021 [38]. Whilst the phases

of national lockdown had significant impacts on population
mobility, mixing and associated opportunities for SARS-CoV-2
transmission [39], it is noteworthy that the majority (27) of
lineages included in the present analysis were first detected in
the period from May to July 2021 (Table 1). This corresponded
with the final steps in the Government’s four-stage roadmap for
the lifting of lockdown measures and was marked by a substantial

Fig. 6. Spatial growth curves for sample Delta sublineages in England, March–December 2021. Curves have been formed in the manner of the lower graphs in
Figure 2, with the average curve plotted for reference. Lineages are ordered according to the values of �tLE in Table 1 and are defined as having relatively high
(i.e. low values of �tLE ; upper graphs, a) and relatively low (i.e. high values of �tLE ; lower graphs, b) rates of spatial growth.

Table 2. Worldwide detection of sample Delta AY lineages with relatively high estimated rates of spatial growth (status: 9 January 2022)

Variant Countries Global prevalence (%) Number of detections Predominant countries (proportion of global detections)

AY.4.2 52 1 82 038 UK (90%), Denmark (4%), Germany (1%), Poland (1%), France (1%)

AY.43 128 4 267 426 Germany (15%), UK (13%), Denmark (13%), France (12%), Belgium (5%)

AY.98 66 1 41 507 UK (91%), USA (2%), Germany (1%), Denmark (1%), Ireland (1%)

AY.120 74 1 30 320 UK (85%), India (3%), USA (3%), Germany (2%), France (1%)

Sources: data from cov-lineages.org [27] and Latif et al. [28–31].
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easing and eventual removal of restrictions on social mixing [38].
To set against this easing of restrictions, lineage growth rates will
have been retarded to an unknown extent by the immunity
afforded by prior infection with antigenically similar
SARS-CoV-2 variants (B.1.617.2 and AY sublineages, in particu-
lar) and by the phased rollout of the national COVID-19 vaccin-
ation programme [40].

The results we have presented are subject to the limitations of
the available lineage data. Although the COG-UK Consortium
genomic surveillance data are recognised for their extent and reli-
ability [41], the data are formed as a sample of positive
SARS-CoV-2 test results and are subject to the limitations and
biases of sample data. In this context, we note that the cumulative
coverage of the COG-UK records for England was estimated at
13.7% of people with positive SARS-CoV-2 test results to
October 2021 [42]. We also note that the sample test data are
derived from a laboratory system with testing capabilities that
vary by region and time period [9]. Such space-time variations
have potentially important implications for analyses, of the type
outlined in the present paper, that are dependent on the dates
of first detection of SARS-CoV-2 lineages in a multi-region
setting.

Our results are also subject to the underpinning assumptions
of the analytical procedure. In particular, the computation of
�tLE is dependent on the specification of the index week (i.e. the
week that a given lineage was first detected in England) and
the degree to which this reflects the date of actual emergence of
the lineage in England. The extent to which the sample data
accurately track the spatial expansion of the LE for a given
lineage, the variable contributions of international travel- and
community-related transmission to the development of the LE,
and the geographical starting point(s) of a given lineage in the
national transmission network, will also have influenced our
results in unknown ways. For example, the early involvement
and high degree of geographical connectivity of London and the
South East may have served to accelerate the spatial transmission
of the Alpha variant in the latter months of 2020 [14]. The
observed rapid spread of the Delta variant may reflect inter-
national importations and onwards transmission from multiple
different geographical locations in the spring of 2021 [15, 43],
whilst early cases of the Omicron variant were observed in highly
connected regions at a time of reduced NPIs in November and
December 2021 [44].

For the purposes of the present analysis, our application of the
swash-backwash model has utilised genomic surveillance data. We
note, however, that the modelling approach is equally applicable
to the analysis of RT-PCR gene target data. As such, the approach
may be used to facilitate timely assessments of the spatial growth
of emerging SARS-CoV-2 variants and thereby contribute to
rapid outbreak responses [9, 45].

Further insights into the spatial growth and decay of
SARS-CoV-2 lineages may be gained by application of the full
swash-backwash model, but this is dependent on the substantial
spatial retreat of any given lineage from the population. Here we
note that, with the exception of AY.10 (last detected in July 2021)
and AY.8 and Alpha (B.1.1.7 and Q) (both last detected in
August/September 2021), there is evidence of the circulation of all
the lineages included in Table 1 in the weeks to December 2021.

We have demonstrated, for the first time, a robust method for
assessing and comparing the rate of spatial growth of multiple
SARS-CoV-2 lineages in a set of geographical areas. We suggest
that this approach represents a potentially valuable adjunct to

outbreak response procedures for emerging SARS-CoV-2 variants
in a defined population.
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