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All topological spaces here are assumed to be T2. The collection JF(Y) of all homeo-
morphisms whose domains and ranges are closed subsets of a topological space Y is an inverse
semigroup under the operation of composition. We are interested in the general problem of
getting some information about the subsemigroups of JF{Y) whenever Y is a compact metric
space. Here, we specifically look at the problem of determining those spaces X with the
property that JF(X) is isomorphic to a subsemigroup of ^F{Y). The main result states that if
X is any first countable space with an uncountable number of points, then the semigroup
£F{X) can be embedded into the semigroup fF{Y) if and only if either X is compact and Y
contains a copy of X, or X is noncompact and locally compact and Y contains a copy of the
one-point compactification of X.

Various corollaries follow quickly. For example the one-point compactification of the
Euclidean n-space W is the Euclidean n-sphere S" and, of course, S" can be embedded in Im, the
compact m-dimensional Euclidean cube, if and only if n < m. Consequently, an application of
the main theorem yields the fact that the semigroup ^(IR") can be embedded in the semigroup
JF{Im) if and only if n < m.

Some of the results which are preliminary to the main result make no requirements on the
spaces involved. In particular, they do not require either of the spaces to be compact. We
apply these results to get some information about embedding JF{X~) into ^F(Y) when either X
or Y is discrete. When X is discrete, ^F(X) is just the symmetric inverse semigroup on the set
X. Finally, we show that the requirement in the main theorem that X have an uncountable
number of points is essential by producing a countable metric space X, a compact metric space
7 and an isomorphism from JF{X) into JF{Y), even though Y contains neither a copy of X
nor of the one-point compactification of X.

1. Some preliminary discussion. Our notation and terminology will generally conform to
that of [1]. We recall that two elements a and b of a semigroup S are inverses of each other if
aba = a and bab = b, and that S is defined to be an inverse semigroup if each element has a
unique inverse. The canonical example of an inverse semigroup is the symmetric inverse semi-
group Jx which is simply the semigroup under composition of all injective partial functions on
a set X. This semigroup plays much the same role in the theory of inverse semigroups as the
symmetric group plays in the theory of groups and as the full transformation semigroup plays
in the theory of semigroups. In particular, every inverse semigroup can be embedded in some
symmetric inverse semigroup. This was proven by V. V. Vagner [5] in 1952 and independently
by G. B. Preston [4] in 1954.

We consider in this paper the semigroup JF(X) of all homeomorphisms between closed
subsets of A'; this, as we mentioned previously, coincides with the symmetric inverse semigroup
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on X when X is discrete. For any fe<fF(X), dom/and ran/ will denote respectively the
domain and range of/. For/and g in ^F(X), we define

fog = {(x,y):(x,z)eg and (z,y)ef for some z}.

Of course, the function/og may well be empty and, in fact, this will be the case precisely when
ran gndomf= 0. The empty function is the zero of the semigroup JF(X) and we will denote it
by the symbol 0. The inverse, in the algebraic sense, of a homeomorphism/in ^F{X) is simply
the inverse homeomorphism/"1. The idempotents of JF(X) are the identity maps on closed
subsets. The symbol iH will be used to denote the identity map on the closed subset H of X.
Finally, those homeomorphisms whose domains and ranges each consist precisely of one point
play a very important part in our considerations, so we reserve a special notation for them.
The symbol <x,y} denotes the homeomorphism whose domain is the point x and whose range
is the point y.

2. Preliminary results on embeddings. This section examines the consequences of having
an embedding from *?F(X) into ./F( Y). The information gained here will then be used to prove
results about embeddings of JF{X) into ^F(Y) when the spaces X and Y satisfy certain
conditions.

DEFINITION 2.1. Let ^ be an embedding from JF(X) into JF{ Y). A map h from X into Y
is said to be associated with i]/ if h is injective, closed with respect to its range and ij/(f)(h(x)) =
h(f(x)) for every/in JF{X) and x in dom/.

Note that if / e JF{X) and xedom/then /i(x)edom ij/(f). The next theorem shows that
every embedding gives rise to an associated map; we will be interested in situations where the
map h turns out to be a homeomorphism.

THEOREM 2.2. Every embedding i// from ^F(X) into ^F{Y) has an associated map.

Proof. For any xeX, let Rx be the subset of Y defined by iRx = *l/(x,x) (homomorphic
images of idempotents must be idempotents). Let x,zeX. Then dom (iKx, JC» = Rx and

dom OK*, z » = dom (OKx, z»" x o «K*, z»

x » = Rx.

Likewise ran(^<jc,z» = Rz. Therefore î <x,z> is a homeomorphism from Rx onto Rz.
Now we show that if y e dom ^(0), then ye dom i/r(/) for every feJF(X) and \]/(f)(y) = y.

Since 0 is an idempotent, ^(0) must be an idempotent. Hence if y e dom i/r(0), then ij/(O)(y) = y.
Now for any/e ^F{X),

This shows that dom i]/(0) s dom ^(/) . If ^G dom ^(0) then, by the above,

y = IWOXJO = GK/ViWO))G0 = iK/)G0-
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Now, in particular, if xeX then domi/^O) £ Rx. However, since 0 ^ <X,JC> and \j/ is an
embedding, we have that ^(0) # \jf{x, x}. Thus dom ^(0) £ Rx but dom ij/(0) # Rx.

Now we show that if xe dom/ then /?x £ dom i/r(/). Since xedom/,

'Jt, = <K*,*> = <K'dom/ °<X,X» = iK'dom/)0'*,

= >W/~ i of) o iRx = l
dom*(/) ° lRx = l'dom*(/)n*x-

Hence /?x £ dom i/r(/).
Next we define a map h from Xinto Fin the following manner. Choose any x'eXand fix

it; also choosey'el^dom ^(0) (this is possible by the above results). For xeXdefine h(x) by

Now A is well defined since dom (^<x', JC» = Rx- and j ' e Rx. (we remark that A is not necessarily
unique).

To prove that h is associated with i//, we will firstly show that h(x)eRx\dom ij/(0). Clearly
h(x) belongs to Rx since ran ((K*', ̂ » = Rx- If w e a ' s o had h(x)edom \j/(0) then

h(x) =

But then y'edom ij/(0) which is contrary to the choice of y'. Hence h(x)eRx\dom i//(0).
Next we show that h is injective. Suppose x ^ z. Then

<A(0) = <K<x, x> o <z, z » = ij,^ o iR% = Ij!jeniJi.

Therefore i?,niJ2 = dom ^(0). Since h(x)eRx\domil/(0) and h(z)eRz\domil/(0), it must be
that h{x) # /i(z).

Now we show that h is closed with respect to its range. Suppose that F^Xand that Fis
closed. Let ip(iF) = iv (homomorphic images of idempotents are idempotents). Then V is
closed in Y since \]/(iF)efF(Y). We will show that h(F) = Vnh(X). If xeF then Rx £ F
(shown previously), and so A(x)e V. Thus A(.F) £ FnA(A'). Conversely, let h(x)eVnh(X).
Then A ^ e ^ n F , and so h(x)edom(iyoiRJ. Now dom(JvoiRJ = dom\j/{iFo<x,x».
Therefore h(x)edom\j/(iFo(x,xy). Now A(x)^domi^(0) and so iFo<x,x> ^ 0. But then
jceF and so h(x)eh(F). Hence A(F) = Kn^Z) and A is closed with respect to its range.

To complete the proof that h is associated with if/ we must show that, iffe<?F(X) and
xedomf, then il/(f)(h(x)) = h{f(x)). We have shown that i ? x s d o m ^ ( / ) and therefore
/i(x) e dom i^(/). Now

= h[f{x)).

Thus h is associated with ^.
This last theorem showed that every embedding has at least one associated map. The

associated map may not, however, be unique. For example, the map \j/ from ./F(IR) into SF(R2)
defined by

dom iK/) = {(x, n):xe dom/, neN},
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is an embedding. For every natural number n, define a map hn from R into U2 by hn(x) = (x, n).
It is straightforward to show that hn is associated with \p for every n.

Several results about discrete spaces follow rather easily from the last theorem. Recall that
if A' is a discrete space, then JF(X) is the symmetric inverse semigroup on the set X.

COROLLARY 2.3. Suppose that X is a discrete space and that ip is an embedding from JF(X)
into ^F(Y). Then Y contains a discrete subspace whose cardinality agrees with that of X.

This result follows from the last theorem since the associated map h will in this particular
case be a homeomorphism. This means, for example, that if Xis discrete and uncountable and
Y is second countable, then fF(X) cannot be embedded into JF(Y). We now state a result
about embeddings when Y is discrete.

COROLLARY 2.4. Suppose that X is an arbitrary space and that Y is discrete. Then
can be embedded into JF(Y) if and only if \ X\ ^ | Y \.

Proof. Assume \X\ :g | Y\. Then choose an injective map a from X into Y and, for
feJF(X), define a map \p from ^F{X) into ^F{Y) as follows:

= a (dom ),

= «(/•(*)) for xedom/ , y = a(x).

It is straightforward to show that \p is an embedding from £F{X) into JF(Y).
Conversely, if ip is an embedding from JF{X) into JF(Y), then by Theorem 2.2 there is an

injective map h from Zinto Y, and so \X\ ^ | Y\.

DEFINITION 2.5. If \p is an embedding from ^F(X) into JF(Y) and dom \j/{f) £ h(X) for
every feJF{X), where h is an associated map of \p, then we say that ij/ is a reduced embedding.

DEFINITION 2.6. If cp and tj/ are two embeddings from JF{X) into SF(Y), and if there exists
a closed subset H of Y such that cp(f) = i^(/) o iH for a l l / e £F{X), we say that q> is subordinate
to i/f.

Every embedding has at least one reduced embedding which is subordinate to it, as may be
seen from the next theorem. An embedding may, however, have several reduced embeddings
which are subordinate to it. In the example given before, if we define <pn (for any natural
number n) from ./ f(R) into JP(U2) by

dom (pn{f) = {{x, n): xedom/},

<*>»(/)(*>«) = (/(*)>«)>

then (pn is a reduced embedding (with associated map hn) and q>n is subordinate to ij/.

THEOREM 2.7. For each embedding ip from £F{X) into JF(Y) there is a reduced embedding
q> which is subordinate to it.

Proof. Suppose ip is an embedding from •/f(A
r) into ^F{Y). Let h be an associated map

of ip as defined in Theorem 2.2. F o r / e . / F ( Z ) define q>(f) by
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where h(X) denotes the closure of h(X) in Y. Since both \J/(f) and J^JJ belong to JF(Y), it is
immediate that <p(f) belongs to >fF(Y). Furthermore, if xedom/then h(x)e dom (p(f) and

If, therefore, we can show that q> is an embedding from JF{X) into JF{Y), we will have that q>
is a reduced embedding with associated map h and that q> is subordinate to \ji.

We firstly show that cp(f) belongs to JF{h{X)). Certainly dom<p(f) is a closed subset of

h(X). Now let //(*) e dom <p(/). Then A(x) e dom \j/(f) and we also have x e dom/, for otherwise

and, since h(x)edom \j/(f)nRx, we would have that h(x)edom i^(0), contrary to the definition
of /;. Thus xe dom/ and, since (p(f)(h(x)) = h{f{x)\ we have that <p(/) maps points of h(X)

into h(X). Since <p(/) is a homeomorphism this means that ran(p(/) c h(X) and so q>(f)e

This means that

= ^(Z) ° ihm ° $(.9) ° i*(F) = <p(f)

and so cp is a homomorphism. Now suppose that/, <?6^"f(A
r) and that/?£ 5. If xedom/\

domg then A(x)edom<j!>(/)\dom<p(g) (if//(x)edom(p(g) then xe&omg), and so <p(/) ^ q>(g).
If/(x) # ^(x) and xedom/n dom 3 then cp(f)(h(x)) ± (p(g)(h(x)), and so again <p(/) # <p(̂ ).
This shows that <p is an embedding from >?F{X) into ^ ( y ) .

The last theorem means that if we have an embedding cp from fF{X) into fF(Y), then we
may assume, without loss of generality, that <p is a reduced embedding with an associated map A.

3. Main results. This section places restrictions on the topological spaces and then uses
the results about reduced embeddings and associated maps to prove several theorems about
embeddings.

THEOREM 3.1. Let cpbea reduced embedding from JF{X) into ^F(Y) with associated map h,
and suppose that both Xandh(X) are first countable and that h(X) is not discrete in Y. Then h is a
homeomorphism from X into Y.

Proof. Suppose the conditions of the theorem are satisfied. Since h(X) is not discrete
there exists x' e X such that h{x') is a non-isolated point of h{X). By the hypothesis, h(X) is
first countable and so there exists a sequence {A(xj):ieN} of distinct points such that
h(Xj) -> h{x'). Now h is an injective closed map and so h'1 is continuous. Since h(xs) -* h{x')
we have that h'^hixt)) -> h~\h(x')) and so xt ->x'.

To show that h is a homeomorphism we need only show that h is continuous. Let zt -* z,
where zt,zeX. Define a map / as follows:

dom/={x f : ieN}u{x'},

/ ( x j = Z; for /eM,
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Clearly feSF(X). But then (p(J)eJF(Y) and h(domf) cdom<p(/). This means that
h(xt)edom(p(f) for all ieN and h(x')edomq>(f). Furthermore,

) = h(f{*d) = K*i),
and

Now since <p(/) is a homeomorphism and h(xt) -» /*(*'), we .have that /J(Z,) -»A(z), and so h is
continuous. Hence h is a homeomorphism from X into y.

THEOREM 3.2. Let cpbea reduced embedding from JF{X) into £F(Y) with associated map h.
Suppose that h is a homeomorphism. Ifh{X) is first countable, then \ h{X)\h(X) | ^ 1.

Proof. Let </> be a reduced embedding and h a homeomorphism with h{X) first countable.
Suppose that | ~h(X)\h(X) | ^ 2. Then there exist distinct z, z' eh(X)\h(X). Since~KX) is first
countable, there exist distinct x^y^Xfor /e M where A(x;) -+ z and h(yt) -* z'. Now since h is a
homeomorphism and z,z'eh(X)\h(X), we have that {jc(:jeM} and { j f : / e l ^ } are closed
discrete subsets of X. Define a map/as follows:

dom/= {Xj: ieNjufj;,.: ieN},

/(x,) = x2i for 16 N,

f(yd = *u-i f o r >elM.

ThenfeJF(X) and so <p(/)e^"f(y). Since h is an associated map,

and

Now A(x.) -*• z and <p(/) is a homeomorphism, and so <p(/)(A(xf)) -»(p(f)(z). This means that
A(*2i)-*P(/)(Z)- Likewise A(X2I_1)-KJO(/)(Z'), since /z(j,)->z'. But /*(*,)-+z, and so
^fei-1) -• z an (l ^(^2i) -• z a l s o- This means that <p(/)(z) = z = cp(f)(z') where z ̂  z', which
is a contradiction. Hence | h(X)\h(X) | ^ 1.

THEOREM 3.3. Suppose that h is a homeomorphism from X into Y, that h(X) is compact and
first countable, and that \h(X)\h(X)\ <; 1. Then SF(X) can be embedded into JF(Y).

Proof. Without loss of generality we may assume that Z s Y. ifX = Zthen cp, defined by
q>(f) = / , will be an embedding from JF(X) into JF{Y). Now assume that l ^ ^ l = 1 and let
{z} = X\X. Define a map (p on JF{X) as follows:

dom(p(/) = dom/u{z},

<p(f)(x)=f(x) if xedom/,
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It is clear that q>(f) is an injective map whose domain and range are closed subsets of Y.
Firstly we show that q>(f) is continuous. Let xt -*x where xhxeAom(p{f). If x # z then
certainly <p(/)(xf) -»• <p(f)(x). Now suppose x = z. If the sequence {x j is constant from some
point on, then (p(f)(xt) -* (p(f)(x). If not, then let {x[} be the subsequence of {*,} consisting of
all points in dom/. Since X is compact and first countable, the subsequence {/(*,')} has an
accumulation point. The only choice for this point is z, since if y is an accumulation point and
yeX, then ^ e r a n / a n d xt-*f~1(y)- But xt-*z. This shows that (p{f){xt)-*z, and so

) ~* <P(/XZ)- This means that (p(f) is continuous and, since X is compact, we have that

It is straightforward to show that q> is a homomorphism and, since <p is clearly injective,
this means that q> is an embedding from SF{X) into JF{Y).

These last results will now be combined to give necessary and sufficient conditions for the
existence of an embedding of SF(X) into ^F{Y) for certain spaces X and Y.

THEOREM 3.4. Let X be a first countable space which contains an uncountable number of
points. Let Y be any compact metric space. Then >fF(X) can be embedded into </p(Y) if and
only if exactly one of the following two conditions holds:

(i) X is compact and Y contains a copy of X;
(ii) X is locally compact but not compact and Y contains a copy of the one-point compacti-

fication of X.

Proof. If condition (i) or (ii) is satisfied then JF(X) can be embedded into SF(Y) by
Theorem 3.3.

Suppose, on the other hand, that ^F{X) can be embedded into ^F(Y). By Theorems 2.2
and 2.7 there exists a reduced embedding q> ofJF(X) into JF{Y) with associated map h. Since
h is injective, h(X) is an uncountable subset of Y. Now since Y is a compact metric space, it
must be second countable, and hence (see [3, p. 252]) h(X) is not a discrete subspace of Y. Thus
it follows from Theorem 3.1 that h is a homeomorphism from X into Y. Consequently
Theorem 3.2 applies and we conclude that | h(X)\KX) | ^ 1. If *(*) = *(*) then h{X) is
compact and so condition (i) is satisfied. If | h{X)\h(X) | = 1 then h(X) is just the one-point
compactification of h{X). This means that h{X) is not compact but is locally compact, and
that condition (ii) holds.

For the next results / " will denote the compact n-dimensional cube and S" will denote the
unit sphere in Un+1 (n is assumed to be finite). Then, as noted earlier, the one-point compacti-
fication of W is S". This means that we have the following corollary.

COROLLARY 3.5. SF(W) can be embedded into JF(Im) if and only ifn < m.

COROLLARY 3.6. Let Y be any compact subspace of W. Then SF(W) cannot be em-
bedded into fF(Y). Also, SF((0, 1)) cannot be embedded into JF ([0,1]).

COROLLARY 3.7. Let X be a locally compact metric space with an uncountable number of
points and let I °° denote the Hilbert cube. Then JF{X) can be embedded into JF{I °°) if and only
if X is separable.
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Proof. Assume that X is a locally compact metric space with an uncountable number of
points. Firstly suppose that JF(X) can be embedded in JF(J a>). Then / °° contains a copy of
X and, since / °° is separable, / °° must be second countable, and hence X is second countable
and separable.

On the other hand, suppose that Zis separable. Now / °° contains a copy of every separable
metric space (see [2, p. 195]), so if X'\s compact then 7°° contains a copy of X and ^F(X) can be
embedded into ^F{IX) by Theorem 3.4. If X is not compact, then, since the one-point
compactification of a locally compact separable metric space is metrizable (see [2, p. 247]), we
have that 7°° contains a copy of the one-point compactification of X, and so by Theorem 3.4
there is an embedding from ^F{X) into

COROLLARY 3.8. Let X be a locally compact metric space with an uncountable number of
points and let <& denote the Cantor discontinuum. Then J'fiX) can be embedded into Jf&) if and
only if X is separable and 0-dimensional.

Proof. Assume that X satisfies the conditions of the corollary. Suppose that JF{X) can
be embedded into JFC&). Then <€ contains a copy of X and so X must be separable and
0-dimensional.

Now suppose that X is separable and 0-dimensional. If X is compact, then <<? contains a
copy of X, (see [3, p. 285]) and so, by Theorem 3.4, ^F{X) can be embedded into ^F(y>). If A"
is not compact, then the one-point compactification of X will be topologically contained in #,
and so again Theorem 3.4 says that SF(X) can be embedded into JFi$).

Now we give an example of compact metric spaces Xand Y, each with a countable number
of points, and an embedding from JF{X) into fF{Y) but such that no homeomorphism exists
from X into Y. This will show the necessity of the requirement in Theorem 3.4 that X be
uncountable and also the necessity of the requirement in Theorem 3.1 that h{X) be not discrete.

EXAMPLE. LetX = HuKwhere H= {l/i: i £ 3}u{0}and K= {1-1 / / : /£2}u{l},and
let Y= {±l/i: ieM}u{0}. Assume that X and Fhave the inherited topology of the real line.
Then both X and Y are compact metric spaces with a countable number of points, but there
exists no homeomorphism from X into Y. We now define a map A from X into Y as follows:

A(l/i) = 1/t for i £ 3 ,

/ ( I - 1 / 0 = - l / i for i ^ 2 ,

A(0 )= - l ,

For/e JF{X) we define <p(f) by

dom<p(/) = A(dom/)u{0},

(p(f)(y) = W e ) ) if y = Mx) and xedom/,

<K/)(0)=0.

We will sketch the proof that cp is an embedding from ^F{X) into ̂ F(Y). We must firstly show

https://doi.org/10.1017/S0017089500003281 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003281


INVERSE SEMIGROUPS OF HOMEOMORPHISMS 207

that <p(/) e JF{ Y). Clearly q>(f) is an injective map whose domain and range are closed subsets
of Y(Oedom<p(/)nran(p(/)). Since Yis compact, we need only show that (p(f) is continuous.
Hence suppose that yn-*y where yn,y e dom<p(/). If the sequence {yn} is constant from some
point on, then (p(f)(yn) -> (p(f)(y)- Otherwise y = 0, since 0 is the only limit point of Y. We
may assume, without loss of generality, that yn =fc 1 and yn ^ — 1 for all n (yn -»0). This means
that if yn = A(xn) for some neN where J^eZ, then xn # 0 and xn # 1. Now if {A(^)} is a
subsequence of {yn} and x^ -»• 0 or x'n -> 1, then /(x^) ->0or / (x^) -> 1, and so A(f(x'n))-»0
(*;; # 0 and x'n # 1 for all «). But this means that q>(f)(yn) -* 0 and hence <p(f) is continuous.
Thus cp(J)eJF(Y). Now <p(/) is clearly injective and it is straightforward to show that q>
is a homomorphism. Thus q> is an embedding from JF{X) into ^ F ( F ) .

The results presented in this paper are from the author's doctoral dissertation written at
the State University of New York at Buffalo under the direction of K. D. Magill, Jr.
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