
JFP 13 (1): 103–124, January 2003. © 2003 Cambridge University Press

DOI: 10.1017/S0956796803001011 Printed in the United Kingdom

Chapter 8

Standard Prelude

In this chapter the entire Haskell Prelude is given. It constitutes a specification for the Prelude.
Many of the definitions are written with clarity rather than efficiency in mind, and it is not required
that the specification be implemented as shown here.

The default method definitions, given with class declarations, constitute a specification only of
the default method. They do not constitute a specification of the meaning of the method in all
instances. To take one particular example, the default method for enumFrom in class Enum will
not work properly for types whose range exceeds that of Int (because fromEnum cannot map all
values in the type to distinct Int values).

The Prelude shown here is organized into a root module, Prelude, and the three sub-modules
PreludeList, PreludeText, and PreludeIO. This structure is purely presentational. An
implementation is not required to use this organisation for the Prelude, nor are these three modules
available for import separately. Only the exports of module Prelude are significant.

Some of these modules import Library modules, such as Char, Monad, IO, and Numeric. These
modules are described fully in Part II. These imports are not, of course, part of the specification of
the Prelude. That is, an implementation is free to import more, or less, of the Library modules,
as it pleases.

Primitives that are not definable in Haskell, indicated by names starting with “prim”, are defined
in a system dependent manner in module PreludeBuiltin and are not shown here. Instance
declarations that simply bind primitives to class methods are omitted. Some of the more verbose
instances with obvious functionality have been left out for the sake of brevity.

Declarations for special types such as Integer, or () are included in the Prelude for completeness
even though the declaration may be incomplete or syntactically invalid. An ellipsis “...” is often
used in places where the remainder of a definition cannot be given in Haskell.

103

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

104 CHAPTER 8. STANDARD PRELUDE

To reduce the occurrence of unexpected ambiguity errors, and to improve efficiency, a number
of commonly-used functions over lists use the Int type rather than using a more general nu-
meric type, such as Integral a or Num a. These functions are: take, drop, !!, length,
splitAt, and replicate. The more general versions are given in the List library, with the
prefix “generic”; for example genericLength.

8.1 Module Prelude

module Prelude (
module PreludeList, module PreludeText, module PreludeIO,
Bool(False, True),
Maybe(Nothing, Just),
Either(Left, Right),
Ordering(LT, EQ, GT),
Char, String, Int, Integer, Float, Double, Rational, IO,

-- These built-in types are defined in the Prelude, but
-- are denoted by built-in syntax, and cannot legally
-- appear in an export list.
-- List type: []((:), [])
-- Tuple types: (,)((,)), (,,)((,,)), etc.
-- Trivial type: ()(())
-- Functions: (->)

Eq((==), (/=)),
Ord(compare, (<), (<=), (>=), (>), max, min),
Enum(succ, pred, toEnum, fromEnum, enumFrom, enumFromThen,

enumFromTo, enumFromThenTo),
Bounded(minBound, maxBound),
Num((+), (-), (*), negate, abs, signum, fromInteger),
Real(toRational),
Integral(quot, rem, div, mod, quotRem, divMod, toInteger),
Fractional((/), recip, fromRational),
Floating(pi, exp, log, sqrt, (**), logBase, sin, cos, tan,

asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh),
RealFrac(properFraction, truncate, round, ceiling, floor),
RealFloat(floatRadix, floatDigits, floatRange, decodeFloat,

encodeFloat, exponent, significand, scaleFloat, isNaN,
isInfinite, isDenormalized, isIEEE, isNegativeZero, atan2),

Monad((>>=), (>>), return, fail),
Functor(fmap),
mapM, mapM_, sequence, sequence_, (=<<),
maybe, either,
(&&), (||), not, otherwise,
subtract, even, odd, gcd, lcm, (ˆ), (ˆˆ),
fromIntegral, realToFrac,
fst, snd, curry, uncurry, id, const, (.), flip, ($), until,
asTypeOf, error, undefined,
seq, ($!)

) where

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

8.1. MODULE PRELUDE 105

import PreludeBuiltin -- Contains all ‘prim’ values
import UnicodePrims(primUnicodeMaxChar) -- Unicode primitives
import PreludeList
import PreludeText
import PreludeIO
import Ratio(Rational)

infixr 9 .
infixr 8 ˆ, ˆˆ, **
infixl 7 *, /, ‘quot‘, ‘rem‘, ‘div‘, ‘mod‘
infixl 6 +, -

-- The (:) operator is built-in syntax, and cannot legally be given
-- a fixity declaration; but its fixity is given by:
-- infixr 5 :

infix 4 ==, /=, <, <=, >=, >
infixr 3 &&
infixr 2 ||
infixl 1 >>, >>=
infixr 1 =<<
infixr 0 $, $!, ‘seq‘

-- Standard types, classes, instances and related functions

-- Equality and Ordered classes

class Eq a where
(==), (/=) :: a -> a -> Bool

-- Minimal complete definition:
-- (==) or (/=)

x /= y = not (x == y)
x == y = not (x /= y)

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

-- Minimal complete definition:
-- (<=) or compare
-- Using compare can be more efficient for complex types.

compare x y
| x == y = EQ
| x <= y = LT
| otherwise = GT

x <= y = compare x y /= GT
x < y = compare x y == LT
x >= y = compare x y /= LT
x > y = compare x y == GT

-- note that (min x y, max x y) = (x,y) or (y,x)
max x y

| x <= y = y
| otherwise = x

min x y
| x <= y = x
| otherwise = y

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

106 CHAPTER 8. STANDARD PRELUDE

-- Enumeration and Bounded classes

class Enum a where
succ, pred :: a -> a
toEnum :: Int -> a
fromEnum :: a -> Int
enumFrom :: a -> [a] -- [n..]
enumFromThen :: a -> a -> [a] -- [n,n’..]
enumFromTo :: a -> a -> [a] -- [n..m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n’..m]

-- Minimal complete definition:
-- toEnum, fromEnum
--
-- NOTE: these default methods only make sense for types
-- that map injectively into Int using fromEnum
-- and toEnum.

succ = toEnum . (+1) . fromEnum
pred = toEnum . (subtract 1) . fromEnum
enumFrom x = map toEnum [fromEnum x ..]
enumFromTo x y = map toEnum [fromEnum x .. fromEnum y]
enumFromThen x y = map toEnum [fromEnum x, fromEnum y ..]
enumFromThenTo x y z =

map toEnum [fromEnum x, fromEnum y .. fromEnum z]

class Bounded a where
minBound :: a
maxBound :: a

-- Numeric classes

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a

-- Minimal complete definition:
-- All, except negate or (-)

x - y = x + negate y
negate x = 0 - x

class (Num a, Ord a) => Real a where
toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
quot, rem :: a -> a -> a
div, mod :: a -> a -> a
quotRem, divMod :: a -> a -> (a,a)
toInteger :: a -> Integer

-- Minimal complete definition:
-- quotRem, toInteger

n ‘quot‘ d = q where (q,r) = quotRem n d
n ‘rem‘ d = r where (q,r) = quotRem n d
n ‘div‘ d = q where (q,r) = divMod n d
n ‘mod‘ d = r where (q,r) = divMod n d
divMod n d = if signum r == - signum d then (q-1, r+d) else qr

where qr@(q,r) = quotRem n d

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

8.1. MODULE PRELUDE 107

class (Num a) => Fractional a where
(/) :: a -> a -> a
recip :: a -> a
fromRational :: Rational -> a

-- Minimal complete definition:
-- fromRational and (recip or (/))

recip x = 1 / x
x / y = x * recip y

class (Fractional a) => Floating a where
pi :: a
exp, log, sqrt :: a -> a
(**), logBase :: a -> a -> a
sin, cos, tan :: a -> a
asin, acos, atan :: a -> a
sinh, cosh, tanh :: a -> a
asinh, acosh, atanh :: a -> a

-- Minimal complete definition:
-- pi, exp, log, sin, cos, sinh, cosh
-- asin, acos, atan
-- asinh, acosh, atanh

x ** y = exp (log x * y)
logBase x y = log y / log x
sqrt x = x ** 0.5
tan x = sin x / cos x
tanh x = sinh x / cosh x

class (Real a, Fractional a) => RealFrac a where
properFraction :: (Integral b) => a -> (b,a)
truncate, round :: (Integral b) => a -> b
ceiling, floor :: (Integral b) => a -> b

-- Minimal complete definition:
-- properFraction

truncate x = m where (m,_) = properFraction x

round x = let (n,r) = properFraction x
m = if r < 0 then n - 1 else n + 1

in case signum (abs r - 0.5) of
-1 -> n
0 -> if even n then n else m
1 -> m

ceiling x = if r > 0 then n + 1 else n
where (n,r) = properFraction x

floor x = if r < 0 then n - 1 else n
where (n,r) = properFraction x

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

108 CHAPTER 8. STANDARD PRELUDE

class (RealFrac a, Floating a) => RealFloat a where
floatRadix :: a -> Integer
floatDigits :: a -> Int
floatRange :: a -> (Int,Int)
decodeFloat :: a -> (Integer,Int)
encodeFloat :: Integer -> Int -> a
exponent :: a -> Int
significand :: a -> a
scaleFloat :: Int -> a -> a
isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE

:: a -> Bool
atan2 :: a -> a -> a

-- Minimal complete definition:
-- All except exponent, significand,
-- scaleFloat, atan2

exponent x = if m == 0 then 0 else n + floatDigits x
where (m,n) = decodeFloat x

significand x = encodeFloat m (- floatDigits x)
where (m,_) = decodeFloat x

scaleFloat k x = encodeFloat m (n+k)
where (m,n) = decodeFloat x

atan2 y x
| x>0 = atan (y/x)
| x==0 && y>0 = pi/2
| x<0 && y>0 = pi + atan (y/x)
|(x<=0 && y<0) ||
(x<0 && isNegativeZero y) ||
(isNegativeZero x && isNegativeZero y)

= -atan2 (-y) x
| y==0 && (x<0 || isNegativeZero x)

= pi -- must be after the previous test on zero y
| x==0 && y==0 = y -- must be after the other double zero tests
| otherwise = x + y -- x or y is a NaN, return a NaN (via +)

-- Numeric functions

subtract :: (Num a) => a -> a -> a
subtract = flip (-)

even, odd :: (Integral a) => a -> Bool
even n = n ‘rem‘ 2 == 0
odd = not . even

gcd :: (Integral a) => a -> a -> a
gcd 0 0 = error "Prelude.gcd: gcd 0 0 is undefined"
gcd x y = gcd’ (abs x) (abs y)

where gcd’ x 0 = x
gcd’ x y = gcd’ y (x ‘rem‘ y)

lcm :: (Integral a) => a -> a -> a
lcm _ 0 = 0
lcm 0 _ = 0
lcm x y = abs ((x ‘quot‘ (gcd x y)) * y)

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

8.1. MODULE PRELUDE 109

(ˆ) :: (Num a, Integral b) => a -> b -> a
x ˆ 0 = 1
x ˆ n | n > 0 = f x (n-1) x

where f _ 0 y = y
f x n y = g x n where

g x n | even n = g (x*x) (n ‘quot‘ 2)
| otherwise = f x (n-1) (x*y)

_ ˆ _ = error "Prelude.ˆ: negative exponent"

(ˆˆ) :: (Fractional a, Integral b) => a -> b -> a
x ˆˆ n = if n >= 0 then xˆn else recip (xˆ(-n))

fromIntegral :: (Integral a, Num b) => a -> b
fromIntegral = fromInteger . toInteger

realToFrac :: (Real a, Fractional b) => a -> b
realToFrac = fromRational . toRational

-- Monadic classes

class Functor f where
fmap :: (a -> b) -> f a -> f b

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a
fail :: String -> m a

-- Minimal complete definition:
-- (>>=), return

m >> k = m >>= _ -> k
fail s = error s

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])

where mcons p q = p >>= \x -> q >>= \y -> return (x:y)

sequence_ :: Monad m => [m a] -> m ()
sequence_ = foldr (>>) (return ())

-- The xxxM functions take list arguments, but lift the function or
-- list element to a monad type
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f as = sequence (map f as)

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
mapM_ f as = sequence_ (map f as)

(=<<) :: Monad m => (a -> m b) -> m a -> m b
f =<< x = x >>= f

-- Trivial type

data () = () deriving (Eq, Ord, Enum, Bounded)
-- Not legal Haskell; for illustration only

-- Function type

-- identity function
id :: a -> a
id x = x

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

110 CHAPTER 8. STANDARD PRELUDE

-- constant function
const :: a -> b -> a
const x _ = x

-- function composition
(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \ x -> f (g x)

-- flip f takes its (first) two arguments in the reverse order of f.
flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

seq :: a -> b -> b
seq = ... -- Primitive

-- right-associating infix application operators
-- (useful in continuation-passing style)
($), ($!) :: (a -> b) -> a -> b
f $ x = f x
f $! x = x ‘seq‘ f x

-- Boolean type

data Bool = False | True deriving (Eq, Ord, Enum, Read, Show, Bounded)

-- Boolean functions

(&&), (||) :: Bool -> Bool -> Bool
True && x = x
False && _ = False
True || _ = True
False || x = x

not :: Bool -> Bool
not True = False
not False = True

otherwise :: Bool
otherwise = True

-- Character type

data Char = ... ’a’ | ’b’ ... -- Unicode values

instance Eq Char where
c == c’ = fromEnum c == fromEnum c’

instance Ord Char where
c <= c’ = fromEnum c <= fromEnum c’

instance Enum Char where
toEnum = primIntToChar
fromEnum = primCharToInt
enumFrom c = map toEnum [fromEnum c .. fromEnum (maxBound::Char)]
enumFromThen c c’ = map toEnum [fromEnum c, fromEnum c’ .. fromEnum lastChar]

where lastChar :: Char
lastChar | c’ < c = minBound

| otherwise = maxBound

instance Bounded Char where
minBound = ’\0’
maxBound = primUnicodeMaxChar

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

8.1. MODULE PRELUDE 111

type String = [Char]

-- Maybe type

data Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show)

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f Nothing = n
maybe n f (Just x) = f x

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

instance Monad Maybe where
(Just x) >>= k = k x
Nothing >>= k = Nothing
return = Just
fail s = Nothing

-- Either type

data Either a b = Left a | Right b deriving (Eq, Ord, Read, Show)

either :: (a -> c) -> (b -> c) -> Either a b -> c
either f g (Left x) = f x
either f g (Right y) = g y

-- IO type

data IO a = ... -- abstract

instance Functor IO where
fmap f x = x >>= (return . f)

instance Monad IO where
(>>=) = ...
return = ...
fail s = ioError (userError s)

-- Ordering type

data Ordering = LT | EQ | GT
deriving (Eq, Ord, Enum, Read, Show, Bounded)

-- Standard numeric types. The data declarations for these types cannot
-- be expressed directly in Haskell since the constructor lists would be
-- far too large.

data Int = minBound ... -1 | 0 | 1 ... maxBound
instance Eq Int where ...
instance Ord Int where ...
instance Num Int where ...
instance Real Int where ...
instance Integral Int where ...
instance Enum Int where ...
instance Bounded Int where ...

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

112 CHAPTER 8. STANDARD PRELUDE

data Integer = ... -1 | 0 | 1 ...
instance Eq Integer where ...
instance Ord Integer where ...
instance Num Integer where ...
instance Real Integer where ...
instance Integral Integer where ...
instance Enum Integer where ...

data Float
instance Eq Float where ...
instance Ord Float where ...
instance Num Float where ...
instance Real Float where ...
instance Fractional Float where ...
instance Floating Float where ...
instance RealFrac Float where ...
instance RealFloat Float where ...

data Double
instance Eq Double where ...
instance Ord Double where ...
instance Num Double where ...
instance Real Double where ...
instance Fractional Double where ...
instance Floating Double where ...
instance RealFrac Double where ...
instance RealFloat Double where ...

-- The Enum instances for Floats and Doubles are slightly unusual.
-- The ‘toEnum’ function truncates numbers to Int. The definitions
-- of enumFrom and enumFromThen allow floats to be used in arithmetic
-- series: [0,0.1 .. 0.95]. However, roundoff errors make these somewhat
-- dubious. This example may have either 10 or 11 elements, depending on
-- how 0.1 is represented.

instance Enum Float where
succ x = x+1
pred x = x-1
toEnum = fromIntegral
fromEnum = fromInteger . truncate -- may overflow
enumFrom = numericEnumFrom
enumFromThen = numericEnumFromThen
enumFromTo = numericEnumFromTo
enumFromThenTo = numericEnumFromThenTo

instance Enum Double where
succ x = x+1
pred x = x-1
toEnum = fromIntegral
fromEnum = fromInteger . truncate -- may overflow
enumFrom = numericEnumFrom
enumFromThen = numericEnumFromThen
enumFromTo = numericEnumFromTo
enumFromThenTo = numericEnumFromThenTo

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

8.1. MODULE PRELUDE 113

numericEnumFrom :: (Fractional a) => a -> [a]
numericEnumFromThen :: (Fractional a) => a -> a -> [a]
numericEnumFromTo :: (Fractional a, Ord a) => a -> a -> [a]
numericEnumFromThenTo :: (Fractional a, Ord a) => a -> a -> a -> [a]
numericEnumFrom = iterate (+1)
numericEnumFromThen n m = iterate (+(m-n)) n
numericEnumFromTo n m = takeWhile (<= m+1/2) (numericEnumFrom n)
numericEnumFromThenTo n n’ m = takeWhile p (numericEnumFromThen n n’)

where
p | n’ >= n = (<= m + (n’-n)/2)

| otherwise = (>= m + (n’-n)/2)

-- Lists

data [a] = [] | a : [a] deriving (Eq, Ord)
-- Not legal Haskell; for illustration only

instance Functor [] where
fmap = map

instance Monad [] where
m >>= k = concat (map k m)
return x = [x]
fail s = []

-- Tuples

data (a,b) = (a,b) deriving (Eq, Ord, Bounded)
data (a,b,c) = (a,b,c) deriving (Eq, Ord, Bounded)

-- Not legal Haskell; for illustration only

-- component projections for pairs:
-- (NB: not provided for triples, quadruples, etc.)
fst :: (a,b) -> a
fst (x,y) = x

snd :: (a,b) -> b
snd (x,y) = y

-- curry converts an uncurried function to a curried function;
-- uncurry converts a curried function to a function on pairs.
curry :: ((a, b) -> c) -> a -> b -> c
curry f x y = f (x, y)

uncurry :: (a -> b -> c) -> ((a, b) -> c)
uncurry f p = f (fst p) (snd p)

-- Misc functions

-- until p f yields the result of applying f until p holds.
until :: (a -> Bool) -> (a -> a) -> a -> a
until p f x

| p x = x
| otherwise = until p f (f x)

-- asTypeOf is a type-restricted version of const. It is usually used
-- as an infix operator, and its typing forces its first argument
-- (which is usually overloaded) to have the same type as the second.
asTypeOf :: a -> a -> a
asTypeOf = const

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

114 CHAPTER 8. STANDARD PRELUDE

-- error stops execution and displays an error message

error :: String -> a
error = primError

-- It is expected that compilers will recognize this and insert error
-- messages that are more appropriate to the context in which undefined
-- appears.

undefined :: a
undefined = error "Prelude.undefined"

8.2 Module PreludeList

-- Standard list functions

module PreludeList (
map, (++), filter, concat, concatMap,
head, last, tail, init, null, length, (!!),
foldl, foldl1, scanl, scanl1, foldr, foldr1, scanr, scanr1,
iterate, repeat, replicate, cycle,
take, drop, splitAt, takeWhile, dropWhile, span, break,
lines, words, unlines, unwords, reverse, and, or,
any, all, elem, notElem, lookup,
sum, product, maximum, minimum,
zip, zip3, zipWith, zipWith3, unzip, unzip3)

where

import qualified Char(isSpace)

infixl 9 !!
infixr 5 ++
infix 4 ‘elem‘, ‘notElem‘

-- Map and append
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

concat :: [[a]] -> [a]
concat xss = foldr (++) [] xss

concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f = concat . map f

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

8.2. MODULE PRELUDELIST 115

-- head and tail extract the first element and remaining elements,
-- respectively, of a list, which must be non-empty. last and init
-- are the dual functions working from the end of a finite list,
-- rather than the beginning.

head :: [a] -> a
head (x:_) = x
head [] = error "Prelude.head: empty list"

tail :: [a] -> [a]
tail (_:xs) = xs
tail [] = error "Prelude.tail: empty list"

last :: [a] -> a
last [x] = x
last (_:xs) = last xs
last [] = error "Prelude.last: empty list"

init :: [a] -> [a]
init [x] = []
init (x:xs) = x : init xs
init [] = error "Prelude.init: empty list"

null :: [a] -> Bool
null [] = True
null (_:_) = False

-- length returns the length of a finite list as an Int.
length :: [a] -> Int
length [] = 0
length (_:l) = 1 + length l

-- List index (subscript) operator, 0-origin
(!!) :: [a] -> Int -> a
xs !! n | n < 0 = error "Prelude.!!: negative index"
[] !! _ = error "Prelude.!!: index too large"
(x:_) !! 0 = x
(_:xs) !! n = xs !! (n-1)

-- foldl, applied to a binary operator, a starting value (typically the
-- left-identity of the operator), and a list, reduces the list using
-- the binary operator, from left to right:
-- foldl f z [x1, x2, ..., xn] == (...((z ‘f‘ x1) ‘f‘ x2) ‘f‘...) ‘f‘ xn
-- foldl1 is a variant that has no starting value argument, and thus must
-- be applied to non-empty lists. scanl is similar to foldl, but returns
-- a list of successive reduced values from the left:
-- scanl f z [x1, x2, ...] == [z, z ‘f‘ x1, (z ‘f‘ x1) ‘f‘ x2, ...]
-- Note that last (scanl f z xs) == foldl f z xs.
-- scanl1 is similar, again without the starting element:
-- scanl1 f [x1, x2, ...] == [x1, x1 ‘f‘ x2, ...]

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
foldl1 _ [] = error "Prelude.foldl1: empty list"

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

116 CHAPTER 8. STANDARD PRELUDE

scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f q xs = q : (case xs of

[] -> []
x:xs -> scanl f (f q x) xs)

scanl1 :: (a -> a -> a) -> [a] -> [a]
scanl1 f (x:xs) = scanl f x xs
scanl1 _ [] = []

-- foldr, foldr1, scanr, and scanr1 are the right-to-left duals of the
-- above functions.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
foldr1 _ [] = error "Prelude.foldr1: empty list"

scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanr f q0 [] = [q0]
scanr f q0 (x:xs) = f x q : qs

where qs@(q:_) = scanr f q0 xs

scanr1 :: (a -> a -> a) -> [a] -> [a]
scanr1 f [] = []
scanr1 f [x] = [x]
scanr1 f (x:xs) = f x q : qs

where qs@(q:_) = scanr1 f xs

-- iterate f x returns an infinite list of repeated applications of f to x:
-- iterate f x == [x, f x, f (f x), ...]
iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

-- repeat x is an infinite list, with x the value of every element.
repeat :: a -> [a]
repeat x = xs where xs = x:xs

-- replicate n x is a list of length n with x the value of every element
replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

-- cycle ties a finite list into a circular one, or equivalently,
-- the infinite repetition of the original list. It is the identity
-- on infinite lists.

cycle :: [a] -> [a]
cycle [] = error "Prelude.cycle: empty list"
cycle xs = xs’ where xs’ = xs ++ xs’

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

8.2. MODULE PRELUDELIST 117

-- take n, applied to a list xs, returns the prefix of xs of length n,
-- or xs itself if n > length xs. drop n xs returns the suffix of xs
-- after the first n elements, or [] if n > length xs. splitAt n xs
-- is equivalent to (take n xs, drop n xs).

take :: Int -> [a] -> [a]
take n _ | n <= 0 = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

drop :: Int -> [a] -> [a]
drop n xs | n <= 0 = xs
drop _ [] = []
drop n (_:xs) = drop (n-1) xs

splitAt :: Int -> [a] -> ([a],[a])
splitAt n xs = (take n xs, drop n xs)

-- takeWhile, applied to a predicate p and a list xs, returns the longest
-- prefix (possibly empty) of xs of elements that satisfy p. dropWhile p xs
-- returns the remaining suffix. span p xs is equivalent to
-- (takeWhile p xs, dropWhile p xs), while break p uses the negation of p.

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)

| p x = dropWhile p xs’
| otherwise = xs

span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs’)

| p x = (x:ys,zs)
| otherwise = ([],xs)

where (ys,zs) = span p xs’

break p = span (not . p)

-- lines breaks a string up into a list of strings at newline characters.
-- The resulting strings do not contain newlines. Similary, words
-- breaks a string up into a list of words, which were delimited by
-- white space. unlines and unwords are the inverse operations.
-- unlines joins lines with terminating newlines, and unwords joins
-- words with separating spaces.

lines :: String -> [String]
lines "" = []
lines s = let (l, s’) = break (== ’\n’) s

in l : case s’ of
[] -> []
(_:s’’) -> lines s’’

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

118 CHAPTER 8. STANDARD PRELUDE

words :: String -> [String]
words s = case dropWhile Char.isSpace s of

"" -> []
s’ -> w : words s’’

where (w, s’’) = break Char.isSpace s’

unlines :: [String] -> String
unlines = concatMap (++ "\n")

unwords :: [String] -> String
unwords [] = ""
unwords ws = foldr1 (\w s -> w ++ ’ ’:s) ws

-- reverse xs returns the elements of xs in reverse order. xs must be finite.
reverse :: [a] -> [a]
reverse = foldl (flip (:)) []

-- and returns the conjunction of a Boolean list. For the result to be
-- True, the list must be finite; False, however, results from a False
-- value at a finite index of a finite or infinite list. or is the
-- disjunctive dual of and.
and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (||) False

-- Applied to a predicate and a list, any determines if any element
-- of the list satisfies the predicate. Similarly, for all.
any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p

-- elem is the list membership predicate, usually written in infix form,
-- e.g., x ‘elem‘ xs. notElem is the negation.
elem, notElem :: (Eq a) => a -> [a] -> Bool
elem x = any (== x)
notElem x = all (/= x)

-- lookup key assocs looks up a key in an association list.
lookup :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup key [] = Nothing
lookup key ((x,y):xys)

| key == x = Just y
| otherwise = lookup key xys

-- sum and product compute the sum or product of a finite list of numbers.
sum, product :: (Num a) => [a] -> a
sum = foldl (+) 0
product = foldl (*) 1

-- maximum and minimum return the maximum or minimum value from a list,
-- which must be non-empty, finite, and of an ordered type.
maximum, minimum :: (Ord a) => [a] -> a
maximum [] = error "Prelude.maximum: empty list"
maximum xs = foldl1 max xs

minimum [] = error "Prelude.minimum: empty list"
minimum xs = foldl1 min xs

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

8.3. MODULE PRELUDETEXT 119

-- zip takes two lists and returns a list of corresponding pairs. If one
-- input list is short, excess elements of the longer list are discarded.
-- zip3 takes three lists and returns a list of triples. Zips for larger
-- tuples are in the List library

zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (,)

zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]
zip3 = zipWith3 (,,)

-- The zipWith family generalises the zip family by zipping with the
-- function given as the first argument, instead of a tupling function.
-- For example, zipWith (+) is applied to two lists to produce the list
-- of corresponding sums.

zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith z (a:as) (b:bs)

= z a b : zipWith z as bs
zipWith _ _ _ = []

zipWith3 :: (a->b->c->d) -> [a]->[b]->[c]->[d]
zipWith3 z (a:as) (b:bs) (c:cs)

= z a b c : zipWith3 z as bs cs
zipWith3 _ _ _ _ = []

-- unzip transforms a list of pairs into a pair of lists.

unzip :: [(a,b)] -> ([a],[b])
unzip = foldr (\(a,b) ˜(as,bs) -> (a:as,b:bs)) ([],[])

unzip3 :: [(a,b,c)] -> ([a],[b],[c])
unzip3 = foldr (\(a,b,c) ˜(as,bs,cs) -> (a:as,b:bs,c:cs))

([],[],[])

8.3 Module PreludeText

module PreludeText (
ReadS, ShowS,
Read(readsPrec, readList),
Show(showsPrec, show, showList),
reads, shows, read, lex,
showChar, showString, readParen, showParen) where

-- The instances of Read and Show for
-- Bool, Maybe, Either, Ordering
-- are done via "deriving" clauses in Prelude.hs

import Char(isSpace, isAlpha, isDigit, isAlphaNum,
showLitChar, readLitChar, lexLitChar)

import Numeric(showSigned, showInt, readSigned, readDec, showFloat,
readFloat, lexDigits)

type ReadS a = String -> [(a,String)]
type ShowS = String -> String

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

120 CHAPTER 8. STANDARD PRELUDE

class Read a where
readsPrec :: Int -> ReadS a
readList :: ReadS [a]

-- Minimal complete definition:
-- readsPrec

readList = readParen False (\r -> [pr | ("[",s) <- lex r,
pr <- readl s])

where readl s = [([],t) | ("]",t) <- lex s] ++
[(x:xs,u) | (x,t) <- reads s,

(xs,u) <- readl’ t]
readl’ s = [([],t) | ("]",t) <- lex s] ++

[(x:xs,v) | (",",t) <- lex s,
(x,u) <- reads t,
(xs,v) <- readl’ u]

class Show a where
showsPrec :: Int -> a -> ShowS
show :: a -> String
showList :: [a] -> ShowS

-- Mimimal complete definition:
-- show or showsPrec

showsPrec _ x s = show x ++ s

show x = showsPrec 0 x ""

showList [] = showString "[]"
showList (x:xs) = showChar ’[’ . shows x . showl xs

where showl [] = showChar ’]’
showl (x:xs) = showChar ’,’ . shows x .

showl xs

reads :: (Read a) => ReadS a
reads = readsPrec 0

shows :: (Show a) => a -> ShowS
shows = showsPrec 0

read :: (Read a) => String -> a
read s = case [x | (x,t) <- reads s, ("","") <- lex t] of

[x] -> x
[] -> error "Prelude.read: no parse"
_ -> error "Prelude.read: ambiguous parse"

showChar :: Char -> ShowS
showChar = (:)

showString :: String -> ShowS
showString = (++)

showParen :: Bool -> ShowS -> ShowS
showParen b p = if b then showChar ’(’ . p . showChar ’)’ else p

readParen :: Bool -> ReadS a -> ReadS a
readParen b g = if b then mandatory else optional

where optional r = g r ++ mandatory r
mandatory r = [(x,u) | ("(",s) <- lex r,

(x,t) <- optional s,
(")",u) <- lex t]

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

8.3. MODULE PRELUDETEXT 121

-- This lexer is not completely faithful to the Haskell lexical syntax.
-- Current limitations:
-- Qualified names are not handled properly
-- Octal and hexidecimal numerics are not recognized as a single token
-- Comments are not treated properly

lex :: ReadS String
lex "" = [("","")]
lex (c:s)

| isSpace c = lex (dropWhile isSpace s)
lex (’\’’:s) = [(’\’’:ch++"’", t) | (ch,’\’’:t) <- lexLitChar s,

ch /= "’"]
lex (’"’:s) = [(’"’:str, t) | (str,t) <- lexString s]

where
lexString (’"’:s) = [("\"",s)]
lexString s = [(ch++str, u)

| (ch,t) <- lexStrItem s,
(str,u) <- lexString t]

lexStrItem (’\\’:’&’:s) = [("\\&",s)]
lexStrItem (’\\’:c:s) | isSpace c

= [("\\&",t) |
’\\’:t <-

[dropWhile isSpace s]]
lexStrItem s = lexLitChar s

lex (c:s) | isSingle c = [([c],s)]
| isSym c = [(c:sym,t) | (sym,t) <- [span isSym s]]
| isAlpha c = [(c:nam,t) | (nam,t) <- [span isIdChar s]]
| isDigit c = [(c:ds++fe,t) | (ds,s) <- [span isDigit s],

(fe,t) <- lexFracExp s]
| otherwise = [] -- bad character

where
isSingle c = c ‘elem‘ ",;()[]{}_‘"
isSym c = c ‘elem‘ "!@#$%&*+./<=>?\\ˆ|:-˜"
isIdChar c = isAlphaNum c || c ‘elem‘ "_’"

lexFracExp (’.’:c:cs) | isDigit c
= [(’.’:ds++e,u) | (ds,t) <- lexDigits (c:cs),

(e,u) <- lexExp t]
lexFracExp s = lexExp s

lexExp (e:s) | e ‘elem‘ "eE"
= [(e:c:ds,u) | (c:t) <- [s], c ‘elem‘ "+-",

(ds,u) <- lexDigits t] ++
[(e:ds,t) | (ds,t) <- lexDigits s]

lexExp s = [("",s)]

instance Show Int where
showsPrec n = showsPrec n . toInteger

-- Converting to Integer avoids
-- possible difficulty with minInt

instance Read Int where
readsPrec p r = [(fromInteger i, t) | (i,t) <- readsPrec p r]

-- Reading at the Integer type avoids
-- possible difficulty with minInt

instance Show Integer where
showsPrec = showSigned showInt

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

122 CHAPTER 8. STANDARD PRELUDE

instance Read Integer where
readsPrec p = readSigned readDec

instance Show Float where
showsPrec p = showFloat

instance Read Float where
readsPrec p = readSigned readFloat

instance Show Double where
showsPrec p = showFloat

instance Read Double where
readsPrec p = readSigned readFloat

instance Show () where
showsPrec p () = showString "()"

instance Read () where
readsPrec p = readParen False

(\r -> [((),t) | ("(",s) <- lex r,
(")",t) <- lex s])

instance Show Char where
showsPrec p ’\’’ = showString "’\\’’"
showsPrec p c = showChar ’\’’ . showLitChar c . showChar ’\’’

showList cs = showChar ’"’ . showl cs
where showl "" = showChar ’"’

showl (’"’:cs) = showString "\\\"" . showl cs
showl (c:cs) = showLitChar c . showl cs

instance Read Char where
readsPrec p = readParen False

(\r -> [(c,t) | (’\’’:s,t)<- lex r,
(c,"\’") <- readLitChar s])

readList = readParen False (\r -> [(l,t) | (’"’:s, t) <- lex r,
(l,_) <- readl s])

where readl (’"’:s) = [("",s)]
readl (’\\’:’&’:s) = readl s
readl s = [(c:cs,u) | (c ,t) <- readLitChar s,

(cs,u) <- readl t]

instance (Show a) => Show [a] where
showsPrec p = showList

instance (Read a) => Read [a] where
readsPrec p = readList

-- Tuples

instance (Show a, Show b) => Show (a,b) where
showsPrec p (x,y) = showChar ’(’ . shows x . showChar ’,’ .

shows y . showChar ’)’

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

8.4. MODULE PRELUDEIO 123

instance (Read a, Read b) => Read (a,b) where
readsPrec p = readParen False

(\r -> [((x,y), w) | ("(",s) <- lex r,
(x,t) <- reads s,
(",",u) <- lex t,
(y,v) <- reads u,
(")",w) <- lex v])

-- Other tuples have similar Read and Show instances

8.4 Module PreludeIO

module PreludeIO (
FilePath, IOError, ioError, userError, catch,
putChar, putStr, putStrLn, print,
getChar, getLine, getContents, interact,
readFile, writeFile, appendFile, readIO, readLn

) where

import PreludeBuiltin

type FilePath = String

data IOError -- The internals of this type are system dependent

instance Show IOError where ...
instance Eq IOError where ...

ioError :: IOError -> IO a
ioError = primIOError

userError :: String -> IOError
userError = primUserError

catch :: IO a -> (IOError -> IO a) -> IO a
catch = primCatch

putChar :: Char -> IO ()
putChar = primPutChar

putStr :: String -> IO ()
putStr s = mapM_ putChar s

putStrLn :: String -> IO ()
putStrLn s = do putStr s

putStr "\n"

print :: Show a => a -> IO ()
print x = putStrLn (show x)

getChar :: IO Char
getChar = primGetChar

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

124 CHAPTER 8. STANDARD PRELUDE

getLine :: IO String
getLine = do c <- getChar

if c == ’\n’ then return "" else
do s <- getLine

return (c:s)

getContents :: IO String
getContents = primGetContents

interact :: (String -> String) -> IO ()
-- The hSetBuffering ensures the expected interactive behaviour
interact f = do hSetBuffering stdin NoBuffering

hSetBuffering stdout NoBuffering
s <- getContents
putStr (f s)

readFile :: FilePath -> IO String
readFile = primReadFile

writeFile :: FilePath -> String -> IO ()
writeFile = primWriteFile

appendFile :: FilePath -> String -> IO ()
appendFile = primAppendFile

-- raises an exception instead of an error
readIO :: Read a => String -> IO a
readIO s = case [x | (x,t) <- reads s, ("","") <- lex t] of

[x] -> return x
[] -> ioError (userError "Prelude.readIO: no parse")
_ -> ioError (userError "Prelude.readIO: ambiguous parse")

readLn :: Read a => IO a
readLn = do l <- getLine

r <- readIO l
return r

https://doi.org/10.1017/S0956796803001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001011

