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ON A CHARACTERIZATION OF PLANAR GRAPHS

C.C. CHEN

By introducing the concept of a polygon-extension of a planar
graph, we provide a.simple proof that a graph is planar if and

only if every strict elegant ring in the graph is even.

1. Introduction

Throughout, we consider undirected graphs on a finite set of vertices.
Following the notations used in [3], we denote the vertex set of a graph G
by VG and its edge set by EG . If G is a directed graph, C is a
directed circuit of G , and a, b are distinct vertices of VC , then we
used the notation C(a, ») to mean the direct subpath of C with origin
a and terminus b . If a=>b , then C(a, b) means the subpath of C
with vertex set {a} and empty edge set. If P is a path in G with end
vertices ¢, d , then we use IP to denote the set VP - {ec, d} .

Further, let X and Y be distinct paths or circuits of a graph G with
|VX A VY| 2 2 . Then an iy—path is a maximal nondegenerate subpath P of
Y for with IPn VX =@ and EPnEX=@ . An XY-path is a maximal
subpath P of Y for which EPC EX nEY and VPC VX n VY .

Let S be a collection of circuits of & . If the edges of G can
be directed so that every circuit of § is a directed circuit, then we say
that S 1is consistently orientable. The cyclic sequence of circuits
S = (co, Cry vens cn_l) with n > 3 is a ring in the graph G , if

(R1) S is consistently orientable,

(r2) ECi n ECj #@ ifandonly if 2 =75, 2 =4 + 1 (mod n)
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or 7 =24 -1 (mod n) ,
(R3) no edge of G belongs to more than two circuits of G .

We note that (R2) implies (R3) except when n = 3 .
Aring S=(Cp Cs -oes G )

n-ring. It is called an odd ring if n 1is odd, an even ring if n is

with 7n circuits is called an

even, a strict ring if |VCi n VCj| =1 vhenever EC. n ECj =@, an

elegant ring if, for each Z =0, 1, ..., n-1 , there is a unique Cici+1-

path (or equivalently, the common vertices on Ci and Ci+1 are those on
the path Mi where ECi n Eci+1 = EMi ), a perfect ring if it is elegant

and VCi n Y 7= @ whenever ECi n ECj = @ . We note here, and throughout

this paper, that all subscripts are taken as being modulo n .

Let P(G) bve a planar embedding of a planar graph G . For each
vertex x of G , we shall denote by N(x) the set of all vertices y of
G adjacent to x and E(x) the set of all edges of G with one end at
x . Let e, e, € E(x) (say e = {z, yl} , e, = {=, y2} ). We say that

1> €, are neighbouring edges in P(G) if and only if we can draw a curve

C 1in the plane Joining Y, and Y such that ¢ does not intersect any
e in E(x) except possibly at ¥, and y2 and the open region in the

plane bounded by C , is disjoint from N(x) . We now construct a

€ %
graph P*(G) whose vertices are all ordered pairs (x, e) with =z € VG ,
e € E(x) and, for any two vertices (x, e), (y, f) in VP*(G) , we draw

an edge Jjoining them if and only if one of the following holds:
(i) =y and e, f are neighbouring;
(ii) x#y and e=7f.
We shall call P*(G) the polygon extension of G with respect to the
planar embedding P(G) . Intuitively speaking, P*(G) is obtained from
P(G) by replacing each vertex of degree n in P(G) with an n-gon and
Joining corresponding vertices as indicated in the figure below (for

n =14 ). Note that P#*(G) is always planar and if each vertex of G has

degree greater than or equal to 3 , then P#*(G) is always a cubic graph.
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The purpose of this paper is to make use of the concept of polygon
extensions of planar graphs to provide a simple proof of the following nice

characterization of planar graphs due to Holton and Little [3].

MAIN THEOREM. A graph G <is planar if and only if every strict

elegant ring in G 1is even.

REMARK. Throughout this paper, whenever S denotes a ring in a graph
G , we assume without loss of generality that each edge of (G is also an

edge of a circuit Ci of S , since we are concerned only with the sub-

graph of G which is the union of all circuits of S .

2. Basic lemmas
The following results will be useful in the sequel.

LEMMA 1 ([7], Kuratowski's Theorem). G <& planar if and only if no

subgraph of G 18 homeomorphic to K5 or K3 3

LEMMA 2 ((2]). There exists an odd strict elegant ring in K5 and

in K .
3,3

Let C be a circuit in the plane. We shall write I(C) to mean the
open region in the plane bounded by C , I(C) to mean the closed region

bounded by C , and O(C) to mean the region consisting of all points not

in I(C) .
LEMMA 3. Let S = [Co, Cis woes Cn-l) be a strict elegant ring in a

planar graph G and P(G) a planar embedding of G . Then, for each i ,
either I(C;) n VP(G) =@ or olc;) nve(c) = ¢ .

Proof. Without loss of generality, we need only to consider the case

1 =0 . Since S 1is elegant, either I(Co) n VC1 =@ or
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O(CO) nve, = # (say the former).
cLaM. I(c,) nve, =8 .

Indeed, let e = {a, b} be a common edge of Cl and 02 . Since §
is strict, either a ¢ VCO or b § VCO (say the former). Hence, we must
have a € O(Co) n V02 . Suppose to the contrary that I(Co) n VC2 £#0,
say c € I(Co] N VC, . Then Ce(c, a) n ve, # # and Cg(a, e) n VCo # g .
This however contradicts the fact that S 1is strict and elegant. Thus, we
must have I(CO) nve, = @ , as claimed.

By exactly the same argument as that for the above claim, we have
I(Co) nve, = ¢ for all Z =1, 2, ..., n-1 . Therefore

I(Co) n VP(G) = @ , completing the proof.

LEMMA 4. et s = (c., C c

IEERREE n-l) be a strict elegant ring in a

0’
planar graph G and P(G) be a planar embedding of G . Then, for each
1 , all adjacent edges in C% are also neighbouring edges in P(G) .

Proof. Let e, = {a, bl} s ey = {a, b2} be two adjacent edges of
¢; - By Lemma 3, either 1(c;) nvP(G) = @ or ofc,) nvP(6) =¢ . In
the first case, we let ( Dbe any curve lying entirely within I(Ci)
except for the two ends bl’ b2 of C ; where in the second case, we let
C be any curve lying entirely within O(Ci) except for the two ends

bl’ b2 of C . Then the open region in the plane bounded by C, es €,
is disjoint from W&N(a) . Thus, by definition, e, and e, are neigh-
bouring edges, ;s reguired.

LEMMA 5 ([3]). Let S = (CO, Crs =oes Cn-l) be a perfect ring in a

planar graph G . Then S 1is even.

Proof. Here as in [3], for each < , we shall denote the origin of

the unique Ci0i+l—path by vi and the terminus by ui . We shall also
te th t C.lu. . .. . i .. .- .
denote e path 1'(u‘L, vt) by Pl Note that Pz is a ClCl+1 path

Suppose to the contrary that S is not even. Then we have the following
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two cases to consider.
CASE 1. n=3.
let e

In this case, let e, be the edge of P, incident on v

1 0 0° 2
be the other edge of CO incident on vo and let 63 be the other edge
of Cl incident on vo . Thus el ¢ E02 , and e2, e3 cannot both belong
to E02 . Thus if vo € V02 then the degenerate path with vertex set

{vo} is either a COCQ-path or a ClCQ—path. Since there must be a non-
degenerate such path, the elegance of S 1is contradicted. Thus vo f V02
and similarly U, t VC2 . It is now immediate that CO v Cl v 02 is a

subdivision of K3 3 a contradiction to the planarity of G .
b

CASE 2. n=5.

In this case, the graph

n-2
kgo [bk+1(vk, uk+1) v Ck+1(vk+1’ uk)] v Co(vn—l’ uO)

v Co(vo, un—l) V] PO v P1 u P2

is a subdivision of K3 3 again a contradiction to the planarity of G .
t]

The proof of Lemma 5 is therefore complete.

3. The proof

If a graph G is non-planar, by Lemma 1, it contains a subgraph

homeomorphic to K5 or K3 3 - Hence, by Lemma 2, G contains an odd
3

strict elegant ring.

Conversely, assume that G 1is planar. Let § = (C

0 Cys =5 C, 1)

n-1
be any strict elegant ring in G . We need only to prove that S 1is even.
First, let P(G) %be a planar embedding of G and P*(G) the polygon-
extension of G with respect to P(G) . For each % and each z in

VC, , we denote by z* the set {(z, e), (x, f)} wvhere e, f are the two
edges of Ci incident on x . Let Cz = U[x* | = € VCi) . Then, by Lemma

L, Cz forms a circuit in P#*(G) . Let S* = (CS, Ci, cees C;_l)
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Evidently, S* is a ring in P*(G) . The elegance of S* follows
immediately from that of S . We shall show that S* is a perfect ring.
Indeed, let C;, Cg be any two circuits in S* with EC; n EC} =g .
Then ECi N ECj =¢. If VCi n VCj = @ , then it follows from our

constructions that ch n VC? =@ . On the other hand, if VCi n VCj is

not empty, then, by the strictness of S , it must be a singleton. Let
= i 4 * * %
Ve, o ch {z} . Now if veE n Vc"7 #0,1let (y, e) € et n Vc‘7 Then,

y €ve, n VCj and so y =x . Also e € E(z) n ECi n ECj c ECi n E63 =0,
a contradiction. Thus in any case, we must have ch n VC; = @ , showing

the S* is a perfect ring. Since P*(G) is planar, by Lemma 5, S* is

even (that is, 7 is even). Hence S is even, as required.
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