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EVALUATING SYMPLECTIC GAUSS SUMS

AND JACOBI SYMBOLS

ROBERT STYER

§ 1. Introduction

Stark [9] has explicitly evaluated some symplectic Gauss sums when
the "denominator" matrix has odd prime level. This result is useful in
computing the exact tranformation formulas of multivariable theta func-
tions (see Stark [10], Friedberg [3] and Styer [11]). It is particularly
useful when considering theta functions with quadratic forms having an
odd number of variables, often a troublesome case (see Eichler [2] and
Andrianov-Maloletkin [1]).

Stark restricted his evaluation to symplectic Gauss sums with odd
prime level denominators. In this paper, we find results analogous to
the classical "reduction" theorems that allow one to decompose a Gauss
sum into ones with odd prime level or level 4 or 8. To compute Gauss
sums with denominators of even level, we must define 4-signatures and
8-signatures of certain submatrices. These signatures involve invariants
which are more subtle than the determinants used in the odd prime level
case.

Consideration of Gauss sums naturally suggests the concept of Jacobi
symbols. We define a symplectic Jacobi symbol, verify a number of ex-
pected properties, and finally state a reciprocity law for this symbol.

In the final section, we apply our results to extend a theorem of
Stark [10] calculating the transformation formulas for theta functions
over algebraic number fields. Stark did the case when the lower right
corner of the transformation matrix is odd, but not when it is even. By
introducing the concept of 4-signatures for algebraic integers, wre are able
to handle the general case. We end with a brief comment referring to
Andrianov and Maloletkin's paper [1] concerning theta functions with
quadratic forms. We evaluate the multiplier system when the quadratic
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2 ROBERT STYER

form has an odd number of variables, illustrating the usefulness of our

results on the symplectic Gauss sum and symplectic Jacobi symbol.

§2. The symplectic Gauss sum

Multivariate Gauss sums appear in the literature as far back as 1872

(see Weber [12]). We, however, will give the definition used by Stark [9].

Maass [7] defines coprime symmetric pairs ofnXn integral matrices

(C, D) and shows that a pair is coprime symmetric iff it can be completed

to give a symplectic matrix whose lower "row" is (C, D), The pair (C, D)

is called an even symmetric pair if D'C is an even symmetric matrix,

that is, an integral symmetic matrix with even diagonal elements. We

will be interested in coprime even symmetric pairs (C, D) with det D Φ 0.

For convenience, we will abbreviate "coprime even symmetric with

det Ό Φ 0" by CESD.

Given (C, D) CESD, and given m e Zn, the symplectic Gauss sum is

defined by:

GD(C) = Σ ei'mD-'Cm) .
m mod tD

Here e(x) = exp {πix} and m1 ~ m2 mod ιD iff mι — m2 = lDmQ for some

m0 e Z \ One can easily show that a complete set of representatives

m mod ιD has (det D\ members.

In the classical case, one reduces the explicit calculation of the

Gauss sum to the case where the denominator D is either prime or 4.

With matrices, the concept of "prime" is replaced by "prime level."

Given (C, D) CESD, the martix D is said to have level d if d is the least

positive integer such that dD~xC is an integral even symmetric matrix.

Since (C, D) is coprime even, this means that d is precisely the highest

invariant factor dr of D whenever df is odd. (See Newman [8] for

definitions). If dr is even, however, the level d is 2d'. In any event,

the level d does not depend on C.

The following theorem is exactly analogous to the classical reciprocity

law; this version follows Stark.

THEOREM 1 (Reciprocity Law). Let (C, D) be CESD and suppose that

det CφO. Then
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Here sgnD'C is the usual signature of a symmetric matrix.

The following lemma will simplify later calculations.

LEMMA 1. (a) Let (C, D) be CESD and assume that

D1 and CΊ being the same size. Suppose that (C4, A ) is CESD, and thus

there exists an integral matrix we denote Cf such that C^Cf = I + DMZ

with CCf, ιM) CESD. Then

GD(C) = GDχ{Cχ ~ C2C*CS)-GD2(C4) .

(b) If D2 is unίmodular, then

GD{C) = GDι(Cd

(c) C2 = 0 iff C3 = 0 in which case

GD(C) = G

Proof The condition (C, D) CESD implies that Dϊ1Cι and D^C, are

symmetric and that DϊιC2 = ^D^C^). Maass [7] shows that any coprime

symmetric pair can be completed to give a matrix in the symplectic

group, and similarly ('Cf, ιM) exists.

In general, GD(C) = GUDV(UCtV~1) for unimodular matrices U and V.

We will take U = I and ι V = ( - τ — \ Then

TOimodίΰi I L \ 0 I A 0 JD
d fZ>

\C, C4Λ -CfC3 IJlXmJ)

Consider the matrix product in brackets. One can multiply this out

and use the relations and symmetry conditions to simplify the product.

After tedious but trivial calculations, one gets

/ J Γ X C , - C2C*C3) + <C/C*MC3 ! -'fi'-flf \
V -MC3 I D^C, ) '

When we put this back into the Gauss sum and notice that

e{tmι

tCi

tCfMC3m1} = e{2ίm»MC,ιnI} = 1,

we obtain the desired result for part (a).
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4 ROBERT STYER

Part (b) is an immediate corollary of (a) by taking Cf = 0 and

M = D2\

Part (c) is also an immediate consequence of the relations used in

the proof of (a), since (C4, D2) will be CESD. In fact, it is easy to show

that the hypotheses of (c) may be weakened to either D{1C2 or D^C^

integral. This concludes the proof of Lemma 1.

The next theorem is the heart of Stark's calculation of the explicit

transformation formulas for theta functions [9].

THEOREM 2 (Stark). Let (C, D) be CESD, and suppose that level

D = p,p an odd prime. Let detD = ±pk for some 1 < k < n and define

{pD~1CYΊc) to be any k X k principal submatrix with non-zero determinant

mod p. Then

GD(O = 4

Here εp = 1 if p = 1 mod 4 and εp = ί if p = — 1 mod 4.

A crucial idea in Stark's proof is to "diagonalize" pD~ιC modulo p.

One then uses Lemma 1 (c) to reduce the multivariable Gauss sum to a

product of classical Gauss sums. Diagonalization essentially involves the

Smith normal form (see Newman [9]) and we will also use this important

tool. The Smith normal form says that there exist unimodular matrices

U and V such that UDV — diag (dl9 d2y , dn) with the invariant factors

di satisfying d1\d2\- - -\dn. One can easily verify that (C, D) CESD implies

that (UσV-\ UDV) is CESD, and

GD(C) = GnyίUC'V-1) .

In the classical case, one reduces the Gauss sums to be prime powers.

This theorem is the analogy in the syrαplectic case.

THEOREM 3. (a) Let (C, D) be CESD and suppose that D = DXD2 =

D'2D[ with |det Dλ\ = |det D[\. Suppose that there exist matrices RuR[,R2,R'2i

such that DXRX + D'Ά = I and R[D[ + R2D2 = I. Further assume that

R2Dϊ1CtU1

tR'1 is an integral matrix.

Then

= GDl(CtD2).GD,(CtD'1).

(b) Suppose D = DXD2 with {level Du level D2) = 1. Then there exists
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suitable D[ and A such that this equation of Gauss sums is true for any

C with (C, D) CESD.

Proof. Let mx mod lD[ and m2 mod tΏ2 be complete sets of representa-

tives. We claim that tD2

tR2mι + tD[tR[m2 is a complete set of representa-

tives mod Φ . Since |det D\ = |det A | |det A I? we need only show that
tΏ2

tR2mι + tΏ'λ
tR'1m2 = 0 mod ιΌ implies that m{ = 0 mod ιD[ and m2 = 0

mod * A Let tD2

tR2m1 + tD[tR[m2 — ιΏm^ for some m0 e Zn. Then tD2

tR2mι

+ (I — tD2

tR2)m2 = Φ / ΰ ^ o Thus, m2 Ξ 0 mod ιD2. Similarly, one shows

that / n , Ξ θ mod i A

Choose the m mod Ẑ) to be this set tD2

tR2mι + tUγ

tR!xm1, Then

GzXC)= Σ e{ίm2)-1Cm}= Σ Σ
77i mod */) 7?7i mod ί/)^ m2 mod *Z>2

= Σ Σ e(tm1R2D2D
1CtD2

tR2m1)
mi mod JZ)^ m2 mod tD2

e(tmιR2D2D-1CtD{tR[m2)e(tm2RiDϊtCtD-uD2

tR2mί)

'β(tm2R[DίD-'1CtDίtRίm2)

= Σ e(tm1R2D^1CtD2

tR2m1)

Here we have used the hypothesis that R.D^C'D^Rί = ^R^C'D^R^

is an integral matrix.

We will now show that m1 is a complete set of representatives

mod ιD[ iff ^ 2 ^ ! is a complete set of representatives mod Ά Since

|det AI — |det A I, we need only show that tR2mί = 0 mod tD1 implies that

mί = 0 mod ' A Let tR2mί = ^ ^ o for some m0 e Zn. Multiply both sides

by Ά and use the hypotheses to obtain ( I — ^^R^m^ = ^^D^m^ from

which one deduces that mι = 0 mod ι A- A very similar argument shows

that τn2 mod * A is a complete set of representatives iff tR'1m2 mod * A is

a complete set of representatives. Applying these facts to the two ex-

ponential sums above, we get the desired Gauss sums.

For the proof of (b), let D = DXD2 with dx = level A and d2 = level A

Choose unimodular matrices U and V such that UDV is diagonal; thus,

UDV= 'V'D'U. Define A = ί / u V ί A and A = ^ A ^ V 1 ; clearly ΰ -

A A and |det A | = |det A | Since by hypothesis (du d2) = 1, there exist

ru r2eZ with c ^ + d2r2 = 1. Define i?! = r&Dϊ1, R[ = r^D^', R2 =

r2d2D,\ and i?̂  - r2d2D
f

2~\ Clearly Ai?! + A#2 = -RίA + ί?zA = /. Also,
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6 ROBERT STYER

RzD^OD^Ri = RzT&D^C is integral for any C, hence we can apply part

(a) to conclude the proof of this theorem.

The next step in the classical case is to reduce prime power Gauss

sums to prime Gauss sums. The following theorem is the analogy in

the symplectic case.

THEOREM 4. (a) Let (C, D) be CESD and let C = CXC2C[ with Cx, C2,

and C[ integral matrices. Let D2 satisfy CXD2 = DιC[ and |det D2\ = |det D\.

If (C2, A ) is CESD, then

GD(C) = GDi{C2) .

(b) Let (C, D) be CESD and let D = A A A with A , D2, and D[

integral matrices satisfying [ det Z>j | = [ det Z?ί |. Define C2 = D^CΉΊ. If

(C2, D2) is CESD, then

\detD1\GD£C2).

(c) Let (C, D) be CESD. Then there exists an integral decomposition

D^DJ)2D[ with I det AI = |detl>ί| and (C2, D2) CESD. Furthermore, if

level D is odd, then level D2 is an odd squarefree integer, and if level D

is even, then level D2 is either four or eight times an odd squarefree integer.

Proof of (a).

GD(C) = Σ e{tmD'ιCιCzC[m) = Σ e(tmtCίD^C2Cίm) .
m mod tD m mod ιD

We will be done if we show that m mod Φ is a complete set of

representatives iff C[m mod ιD2 is a complete set of representatives. Let

m = 'Dm, for some rooeZ\ Then C[m = C^Dm* = 'Dl'Cjn^ so C[m, =

0 mod ιD2. This finishes the proof of (a).

If det C Φ 0, we may use the leciprocity law to get a proof of (b).

For when det C Φ 0, we have the following equalities by applying Theorem

1 and part (a) above.

GD{C) = e{\ sgn (D'

= e{\ sgn (

= e{\ [sgnίZJ'O - sgn(D/C2)]}|det C-Ό| 1 / 2 |det

If det C = 0, tedious but straightforward unimodular transformations

reduce us to the above case. Choose unimodular matrices U and V such

that
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-ft J)
with det C* Φ 0. (See Maass [7]). Choose unimodular U' and V such that

U'D2V' = (D* °) and U'CJV'-1

with det C2* =£ 0. Since rank C = rank C2, one easily verifies that D*9

A*> C*, and C2* are all the same size.

Let A = U-ιDxU' and A - VfUxV'\ One can check that

Matrix multiplication shows that A and D[ are of the forms

where £)* and A* are the same size as £)*, and W is a unimodular

matrix which we may take to be I. We conclude that

GD(C) = GAC*) = |det A Ί GDί(Ct) = [det A |C 2 (C 2 ) ,

which finishes the proof of (b).

To prove part (c), we use the Smith normal form for D. Choose

unimodular U and V such that D* — UDV — d i a g ^ , , dn) where the

invariant factors satisfy dι\dz\- - -\dn and each dί > 0. Let C* = UC'V'1.

Let vp(d) be the p-adic valuation, so vp(pr) = r and vp(0) = oo. Write

each di as df?d", 1 <ί <n; here d" is the odd squarefree part of dt

when d̂  is odd, d" is twice the odd squarefree part of dt when v2(di) is

odd, and d" is four times the odd squarefree part of dz when v2(di) is

non-zero even. One can verify that d[ \ d21 | d'n. Let

Df = diag (dί, dί, , dθ and A* - diag (d/', dί', , d?) .

We will show that C2 = Df^C^Df is integral and that (C2, A) is

CESD. Fix an arbitrary prime p, and let v == ι;p. Define αr̂  = ^(dj and

β. = y(dθ then by hypothesis 2/3̂  < α€ < 2βt + 2 for 1 < i < n. One can

easily show that at — as > βi ~ βj for 1 <j <ί <n, and also that βx < β2

< .. </3,<oo.

Set C* = ( c ^ i . ^ n and C2 = ( c ? ; ) ^ , ^ . By hypothesis, (C,fl) is

symmetric so (C*, JD*) is symmetric, hence c^d^ = diCjt. Thus, υ(cόi) =
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v(cί3) + (a3 - at). Since C2 = D*'C*D* = (d'^c^d^i^n, we also have

v(c<ff) = φ.^) + (βj — β/) for 1 < ί, j < n. If i <j then j8< < βj9 hence

φ # ) > 0. If i>j, then φ $ ) = v(Cίj) + (& - βt) = v(cH) + (α< - a3) -

(βί - βj) > iKpji) > 0. In any case, υ(c$) > 0 for 1 < ί, j < n, so C2 is

p-integral. Since p is an arbitrary prime, C2 is integral.

We need to show that D^C^ is even, equivalently, that v2{d/

i

/c(ff)

> 1. Since D*ιC* is even, υ2(dίci^) > 1. If ^(c^) > 1, then ^2(cί }) = v2(cu)

> 1 follows from above. If u2(cQ > 1, then by the construction of d'i',

υ2(d'/) > 1. In any case, υ2(d'M?) > 1.

Finally, we set A = U'D* and J^ = D*V\ Then D - A A A with

|detAI = |det Dί\ and (C2, A ) is CESD, so we may apply part (b). Level

D2 is either d" when d^ is odd or 2d" when d^ is even. This concludes

the proof of Theorem 3.

Using Theorems 3 and 4, we can reduce the computation of the

symplectic Gauss sum to the computation of sums with odd prime level,

with level 4, or with level 8. Theorem 2 of Stark evaluates the odd

prime level case. We wish to compute the even level cases. First, how-

ever, we need to refine some classical algebraic results.

Let A 0 B be the matrix (^ ^\ and © A be the matrix (^A ^λ

with r copies of A on the diagonal. Further, let Ik be the k X k identity

matrix.

LEMMA 2. Let S be an integral symmetric n X n matrix with odd

determinant.

Suppose S is not even. Then there exists a unimodular matrix U such

that ιUSU = (Ik Θ - In_k) + 2S' = (Ikl Θ 3/fc2 Θ - 3/fc3 Θ - Iki) + 4S" where

S' and S" are integral even symmetric matrices, 0 < k < n, and kx + k2

+ K + k± = n.

Suppose S is even. Then there exists a unimodular matrix U such

that

>USU = (θ»(J 2 ) © ©»/*-*(? J)) + 2S>

= (θ,,(ί J) θ φta(2 _l) θ θ,3(? J)) + 4S",

where S/ and S" are integral even symmetric matrices, 0<k<nj2, and

kx + k2 + k3 = Λ/2.

https://doi.org/10.1017/S0027763000020924 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020924


GAUSS SUMS

Proof. Newman [8, pg. 68] shows that over Z/2Z, if S has odd de-

terminant, there exists U unimodular over Z/2Z such that ^SU^I mod 2

when S is not even or = ®n/2(+ ^)mod2 when S is even.

We can in fact take U to be unimodular over Z ([9], pg. 109).

Newman's construction of U involves elementary row and column

operations which actually give that ΉSU = diag (au , an) mod 8 or
n/2 /O/Ύ 1 \

= © ( i i oh ) m ° d 4. When S is not even, the results of the lemma
ί=1 ^ ^^ί/ /2a \ \

follow immediately. When S is even, we consider conjugations of ί -, . ,
for all α, b mod 4. For instance,

?)(? 1)6 D - G -*)+<? 3
Similar calculations reduce one to the matrices stated in the lemma,

which concludes the proof.

These results motivate the following definitions. Let S be an integral

symmetric matrix with odd determinant. If S is not even, define the

4-signature and the 8-signature of S by sgn4S = 2k — n and sgn8S = kλ

Sk2 — 3k3 — kA. If S is even, define the 4-signature and 8-signature of S

by sgn4S = 4k and sgn8S = 0.

When det S is even, there generally are not 4 or 8 signatures. For

special S, however, there are well-defined signatures. Let S = U[(0 ® Si)

+ 2STΪ7 with U unimodular, det Sj odd and S' integral even symmetric.

We define sgn4S - sgnA(Sί). When S = U[(0®S1) + 4S/]tU9 define sgn8S

= sgn^SJ. Straightforward matrix manipulations show that the signa-

tures are defined independently of the choice of U, Sί9 or S'. The par-

ticular cases of interest are S = 2DιC for D of level 4 and S = 4D~1C

for D of "strict" level 8, which are discussed in the following theorem.

THEOREM 5. Let (C, D) be CESD. Let r = rank2D be the rank of D

over Z/2Z.

(a) If D has level 4, then

GD(C) = e j ^

(b) If D has level 8 and |detD| = 4"~r, equίvalently, if every invariant

factor of D is either 1 or 4, then

https://doi.org/10.1017/S0027763000020924 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020924


10 ROBERT STYER

GD(C) = e | l s

Proof of (a). D has level 4, so there exist unimodular U and V such

that UDV =

that
0 2 In _ r

Y One can easily verify that (C, D) CESD implies

2 σ

2£C ! Cn_r

where Cr is an r X r integral even symmetric matrix and Cn-r is an

(n — r) X (n — r) integral symmetric matrix with odd determinant. In

fact, a usual construction of V shows that one may take Cn-r to be con-

jugate to any principal (n — r) X (n — r) submatrix with odd determinant.

By Lemma 1 (b), GD(C) — G2In_r(Cn_r). Suppose Cn_r is not even. Choose

a unimodular W such that ιWCn.rW - (Ik Θ - In-r-*) + 2S for some

integral even symmetric S. Then using Lemma 1 (c),

G2 7 n. r(Cn_ r) = G27n_r(/fcΘ - - Π
i l

which is a product of one-dimensional Gauss sums. Direct computation

shows that G2(l) = e(l/4) 21/2 and G 2 ( - 1) = e( - 1/4)21/2.

We conclude that

GD(C) = e{-L (A - - r - - e{lsgn4Cre_rj|det D 1/2

The proof when Cn_r is even is exactly the same, except that one

reduces the Gauss sum to a product of Gauss sums of the form Gn Λ\Λ o ) )«π i\\ vo2A\i Δ)7

^ Ay Once again direct computation yields the desired result.
The proof of (b) is essentially the same; when the appropriate Cw_r

is not even, one gets a product of Gauss sums of the forms G4(l), G4(3),

G4(—3), and G4(—1) which one can easily evaluate. When Cn_r is even, the

appropriate Gauss sums are GQOJL 4 jY ^ ( ^ ( ( i - 2 / ) ' a n d GQl)\\l o))
which are all equal to 4. This concludes the proof of this theorem.

When D has level 8, but contains 2 as an invariant factor, the

situation is much more complicated.

THEOREM 6. Let (C, D) be CESD, and let D have level 8. Let r =

rank2(Z)) and | de tD | = 2d. Then there exists a unimodular matrix V such

that
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AM, AMλ
2S2 2MΛ .

2ίM3 sj

Si is an integral even symmetric matrix. Mίy MZ9 and Mz are integral

matrices; S2 is an integral symmetric (2r — d) X (2r — d) matrix with odd

determinant] and SA is an integral symmetric (d — r) X (d — r) matrix with

odd determinant.

Finally,

[sgn4(S2 - 2'M,S*M,) + sgn8(S4)]} .

Here S} is any integral symmetric matrix such that S2S} Ξ / m o d 4 ,

and Sf is integral symmetric matrix such that S4Sf = Jmod2.

Proof. The conditions on D imply that there exist U and V with

UDV=(In-r®2I2r-d®4Id.r). One can easily show that (C, D) CESD

implies that

(S, Mx MΛ
UC'V-ι= 2'Λίj S2

\4<M2 VMZ

and that y~1(4Z)~1C)ίy~1 has the desired form. Using Lemma 1, one can

verify that

G 2 / 2 r_ s(S 2 - 2>M3SΐM3)Gi!a_r(St)

- 2MSS*'M3).

Sf and Sf are easy to find since the determinants of S2 and S4 are odd.

Applying Theorem 5 completes the proof.

This theorem now completes the results needed to calculate an

arbitrary Gauss sum. Theorems 3 and 4 decompose a Gauss sum into

the basic cases which Theorems 2, 5, and 6 evaluate explicitly.

§3. The symplectic Jacobi symbol

In the classical case, Gd(cc0) = (cld)Gd(c0) when d is odd. This sug-

gests the following definition.
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12 ROBERT STYER

DEFINITION. Let (CC0, D) and (Co, D) be CESD and suppose that det

D is odd. The symplectic Jacobi symbol is defined by

(C/A Co) = GD(CC0)IGD(C0).

This lemma will later yield the multiplicativity of the symplectic

Jacobi symbol.

LEMMA 3. Let D have odd determinant, and let Cu C2, C3, and C4 be

integral matrices such that the pairs (CXC2, D), (C3C4, D), (QQ, D) and

(CZC2,D) are CESD. Furthermore, assume that for each prime p\detD,

one of the products CXC2, C2C4, CλC^ or CZC2 has non-zero determinant

mod p. Then

Proof. Choose U and V so that UD V is in Smith normal form. Let

Cί = UC19 C2 = CSV-1, Cί = UCS, and CJ = C{V~\ Since G^C.Cj) =

GuDviUCiC/V'1), the lemma and its hypotheses will be true for (Cu C2,

C8, C4; D) iff it is true for (Cί, Cί, Cί, Cί; UDV). Therefore, without loss

of generality we may assume D is diagonal.

For D diagonal, if level D is not a prime power, write D = A A =

A A with A and A diagonal matrices with (level A , level A) = 1. By

Theorem 3,

If a prime p|det A , then pJ( det D2, hence there exists a product Cfij such

that p J(det(CiCjD^. Therefore, the lemma and its hypotheses hold for

(Cu C2, C3, C4; D) iff they hold for (Cl9 C2D2, C3, C4A; A) and (Cu C2DU C3,

C4A A) Thus, without loss of generality we may assume that D is a

diagonal matrix with odd prime-power level.

Let level D = pk for some odd prime p. By renumbering, we may

assume p)(det CXC2. There exists a unimodular U such that CJJ'= diag

(1, 1, , 1 , detd)modp f c , hence by replacing (Cu C2, C3, C4; D) by (CJJ,

U~ιC2ί CJJ, i7"JC4; D) we may assume that Cj = C M + pkCU2 for C M a

diagonal matrix. (See Newman [8] pg. 36). Now D = A A A for Dl9 A

diagonal matrices with level A = P- We know from the proof of Theorem

4(c) that (CtC^D) CESD implies that (D^C.CjD,, A) is CESD. Clearly

D^C^iDi is an integral matrix, and therefore so is Cί — A^CΊA Now

Since Cί is invertible over the p-adic integers,
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DϊιC2Dx isp-adically integral. But pkD±1C2D1 is integral over the ordinary

integers, hence C2 = Dϊ1C2Dί is an integral matrix. Similar arguments

which use the fact that pJfάetC^ show that C3 = A ' Q A and C[ =

Dΐ1C4D1 are also integral matrices. One can now verify that the lemma

and its hypotheses hold for (Cl9 C2, C3, C4; D) iff they hold for (Cί, C'2, C£, C[\

D2). We may therefore assume that D has odd prime level p, that p \ det

CλC2, and that Cx is a diagonal matrix mod p.

A simple permutation transformation shows that we may assume that

D = (In_ r ®plr) for some 1 < r < n. For i = 1, 2, 3, 4, let Ct = ( ^ ^Λ

where P* is an (n — r) X (n — r) matrix and ^ is an r X r matrix. If

(CiCj,D) is CESD, straightforward matrix multiplication shows that RtPj

+ StRj ΞΞ Omodp and (pD^dCj)™ = i?,Q; + S.S^ .

Because of the assumption that Q is an invertible diagonal matrix

modp, i?! = Omodp and Pt and Sj are invertible modp. Then (CλC2, D)

CESD implies that R2 = Omodp. By hypothesis, C2 is invertible modp

so P2 and AS2 must be invertible modp. Similar arguments show that

R3 = Ri = Omodp.

Now we will apply Theorem 2 of Stark. For (C.Cj, D) CESD,

GD(CίCj) = 4 det(2p^C^,)- \ ,
V p /

The lemma now follows as a corollary of the multiplicativity of the usual

Jacobi symbol, which concludes the proof.

Lemma 3 underlies the multiplicative properties of the Jacobi symbol,

as is evident in the next theorem.

THEOREM 7. Let (CC09 D) and (Co, D) be CESD with det D odd.

(a) Suppose there exists C'o with (det Cί, det D) = 1 such that (CCΌ, D)

and (CJ, D) are CESD. Then (C/A Co) - (C/A Cί).

(b) Suppose that C = CXC2 with (QC, 2?) cmd (C2C0, D) Cί Si). As-

sume that (det Co, det D) - 1. ΓΛen {C.CJD, Co) = (d/A Co)

(C2/A Co).

(c) Lei D = A A = A A sαίis/y the hypotheses of Theorem 3 for both

pairs (CCo, JD) and (Co, Z3). TOe^i (C/A Co) = (C/A,
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Proof of (a). We need only show that GD{CCQ)GD(C'O) = GD(CC'0)GD(C0)

which follows from the hypotheses about C'Q and Lemma 2. To prove (b),

need to verify that G D(CXC2C^)G D{C0) = GD{CXC^GD{C2C^ which also follows

from the hypotheses about Co and Lemma 2.

The proof of (c) follows easily from the definitions and Theorem 3,

completing the proof of Theorem 7.

We remark, however, that the hypothesis concerning Co in Theorem

7(a) is necessary. For instance, let D = (~ A, C = ίQ A, Co = ίo Q),

and Co = ί-, Q). Then one can calculate that (C/D, Co) = 1 whereas

(C/A C'o) = - 1.

Another standard property of Jacobi symbols is periodicity. For the

symplectic Jacobi symbol, the presence of Co complicates matters, but

one could easily show periodicity from that of the Gauss sums. The

presence of Co also complicates the removal of square factors from the

levels of C and D. We could easily derive such results, however, by

slightly revising the hypotheses of Theorem 4. We will content ourselves

with the following theorem that will be useful later.

THEOREM 8. Let (CC0, D) and (Co, D) be CESD with det D odd.

(a) (C/D, Co) = ± 1

(b) If ceZ with (c, det D) = 1, then (d/D, Co) = (c/detD) where the

right side is the usual Jacobi symbol.

Proof. The proof of a) closely parallels that of Lemma 2. We first

reduce to the case of D diagonal, next to the case of D prime-power

level, and finally to the case of D prime level. Theorem 2 of Stark

implies that

(C/D, Co) = (
V p p

where | d e t D | — pk. This proves a).

From this equation it is clear that when C = cl, (d/D, Co) = (cfc/p)

= (cjpk) for D of level p. If one retraces the steps used to decompose D,

one reconstructs the invariant factors of D. This demonstrates b) and

concludes the proof of the theorem.

In the classical case, εp = β{l/4(l — sgn4p)} for p an odd positive

integer, and the reciprocity law says that (pjq) = εpqlεpεq(qlp) (see Eichler

[2]). This suggests the following definition: for an integral symmetric S
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with odd determinant, let ε(S) — e{(l/4)(sgnS — sgn4S)}. We will now

state the reciprocity law for the symplectic Jacobi symbol.

THEOREM 9. Let (CC0, D\ (Co, D), (D'CΌ, C) and ('CO, C) be CESD with

det C and det D odd. If Co = 2U for some unίmodular U, then

(C/A 2E7) - εφί(CC7))e( - JD'ϋX - CC7) (D/C, - 2<U).

Proof. The proof is a straightforward application of Theorem 1 and

Theorem 3.

Co) =
| d e t C | 1 / 2 G C o ( - D)

Gtcχ-DQ GC(-D*CO) G<t-'Co)

|det C

'Co - sgnCC0]

tCa(— DC)G,cχC)

When Co — 2 [7, the evaluation given is a corollary of Theorem 5, con-

cluding the proof of this theorem.

It is interesting to note, however, that in the classical case when

C = c, D = d, and Co = 2, one can verify that

— [sgndc — sgn4dc] — [sgnd — sgn4d] — [sgnc — sgn4c]> = (— l)n

4 J

where n = c^Λ-.ά^l± + ^ c
 -Λ.I^Λ^LL. This agrees with

2 2 2 2
Hasse [4] and Hecke [5].

We also note that when Co = 2U and C — V for unimodular U and V,

(V/D, 2E7) = el— [sgnD^VU) - sgn.D^VU)] - [sgnD'U- sgn.D'U]] .

If C = 2V, replace sgn4 by sgn8. These correspond to the classical

supplementary laws. Unfortunately, there are also choices for C which

require the complicated criterion of Theorem 6, and we will not pursue

the matter further.
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§ 4. Transformations of multivariable theta functions

Stark [10] uses symplectic Gauss sums to explicitly evaluate trans-

formation formulas for theta functions defined over algebraic number

fields. He embeds these theta functions into the symplectic theta function,

then uses Theorem 2 to determine the explicit multiplier system of the

symplectic theta function. He evaluates the symplectic multiplier system

in terms of the original algebraic numbers whenever the lower right

corner of the transformation matrix is essentially a first degree odd prime

ideal. In this section, we will consider more general cases, in particular

the case when even prime factors occur.

The theta functions considered by Stark are defined for a field K of

degree n with ring of integers Θ(K\ different S), and any (fractional)

ideal m. In particular,

θκ(z, m) = Σ e{tr(V + ίy\μf)} .

Stark actually defines a more general theta function; its transformation

formula, however, is essentially the same as this one. One of his extra

variables does allow us to change ideals within ideal classes, so we will

assume that m is an odd integral ideal.

These theta functions transform under certain subsets of SL(2, K).

The transformation formula, however, only depends on the lower row (ϊ, δ).

Here for given ideals mί and m2, (7, δ) satisfy ϊ e © m ^ , δ e n^nv1, ϊδ e

2S)m2

1 and if (ϊ) = d δ n i ^ and (δ) = bm1m2~
1 then (c, b) = 1.

For any ideal m, let [μl9 μ29 , μn] be an integral basis for m. Let

μ{ί) be the ίth conjugate of μ e K. Define the n X n matrix M associated

to the ideal m by M = (μψ)ι<i,j<n. Consider the ideals πti and m2 above

and their associated matrices Mί and M2. Let diag(Λ) = diag(^(i))i<i<^ for

any λ e K. Then Stark defines the symplectic embedding (C, D) of the

pair (r, δ) by C = Mr1diag(r) ίM2"
1 and D = M;1 άmg(δ)M2.

Stark shows the following results.

THEOREM 10. (a) (C, D) is CESD. If (δ) = bm{m^\ then |detZ>| =

N(b). The results are independent of the choice of bases for nti and m2.

Also, sgnD'C = sgndf.
(b) θκ{z, nij) transforms under certain matrices with bottom row (ΐ, δ).

Finding the particular transformation formula reduces to evaluating the

symplectic Gauss sum GD(C).
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(c) If (δ) = prrtjirta"1 where p is a first degree prime ideal of norm p

υith (p, 2S5ntiTn2) = 1, then

e (

|det£>|1/2 P\ p

Stark could easily have shown the following.

THEOREM 11. The Gauss sum GD(C) obtained by Stark9s embedding

)/ (7, δ) has the same value as the Gauss sum C(2δ'1ΐ) defined by Hecke [5]

vhenever (b, 22)m1tn2) = 1.

Proof. Hecke defines a Gauss sum for an algebraic number ω by

2(ω) = Σi e(2tr(ωμ2)) where (ω) = B/(αS) with (α, b) = 1. Whenever
/i modα

b, 2S)m2) = 1,

C(2δ-'r) = Σ e(2tr(23-'r^) = Σ e(ίm*diag(δ-1?y)m*)
// mod b /« mod b

m* - (1,1,

Then

C ( ω ) =
mod b

(^) = ^(M2~
1diag(/«)M2)

zM27n;i< is an integral column vector. This

ast sum will be Stark's GJC) once we show that μ = 0 mod b iff m(μ) =

) mod tΌ. Assume that m(μ) = 0 mod ιD so m(μ) — Φ^o for m0 e Zn. Then

ind thus

Γhe right hand vector is integral over K, so the left side is integral over

K. When (b, mO = 1, this means that μδ~ι is integral in K, hence μ = 0

mod b. The converse is similar, which concludes the proof.

COROLLARY 1. Let ϊ e Θ(K\ ϊ0 e 2S)m1m2, and (δ) = bmitnϊ1 with (b, 2Π0)

= 1. Let C = Mΐ1 diag(Γ)Mi and let (Co, D) ί>e Stark's symplectic embedding

yf (r0, «). 2%en (C/A Co) - (r/b).

We could use the reciprocity law in Theorem 9 to obtain a reciprocity

iaw for algebraic integers extending that of Hecke [5], We will not do

this, but only note that Hecke's "primar" requirement essentially eliminates
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the 4 signatures of the matrices. For the more general reciprocity law,

one requires 4- and 8-signatures of algebraic integers.

Our goal is to evaluate GD(C) in cases where b may involve even

ideals. Therefore, we also will be forced to consider the concept of a

4-signature of an algebraic integer.

DEFINITION. Fix a fractional ideal m. Let Δ e ©m2 be chosen such

that for each prime ideal p\{2), if (Δ) = ©prqm2 with (p, q) = 1, then r = 0

or r > 2. Define the 4-signature of Δ with respect to m by

sgn4(J, m) = sgnAiM-'άmgiΔYM-1)]

where the sgn4 on the right was defined just before Theorem 5.

If Δ e ©m"1 with m an integral odd ideal, define sgn4(J) = sgn4(iV(m)2J,

Θ(K)). That this is defined independently of m is apparent from the

following theorem.

THEOREM 12. Assume that Δ is always chosen with the appropriate

"evenness" conditions so the symbols below are defined.

(a) Let rrti and m2 have the same "even part", that is, xriί = q$2 and

tn2 = q$2 with qx and q3 odd ideals.

If Δ e <&m1 and Δ e S)m2, then

sgn4(J, mO = sgn4(J, m2).

(b) Let σ e S)m2. Then sgn4(J + 4σ, m) = sgn4(J, m). Let σ e K. Then

sgn4(σ2J, am) = sgn4(Δ, m). In particular, if a is odd, then sgn4(σ2Δ) = sgn4(Δ).

(c) Suppose that K is a normal field with odd discriminant, and that

there exists a first degree prime ideal f)|(2). Then

where (λ/p2) equals 1 when λ = 1 mod p2, equals — 1 when λ = — 1 mod p2,

and equals 0 when 2 Ξ O m o d p 2 .

Proof of (a). Since mx and m2 have the same "even part", we can

choose an odd integer a e m1m2~
1. Define T= aMϊ1M2; T is integral and

has odd determinant, hence is invertible mod 4. Thus,

https://doi.org/10.1017/S0027763000020924 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020924


GAUSS SUMS 19

which is the desired result.

The proof of b) is easy. Note that the matrix associated to σm is

liag(V)Λf.

To justify c), we modify the idea behind Stark's proof of Theorem

LOc). Since p is a first degree prime dividing (2), Θ(K)/p2 is isomorphic

bo Z/4Z. The matrix M associated to the ideal Θ(K) has non-zero de-

terminant modjD2 when the discriminant is odd. (Indeed, | d e t M ί M | is

the discriminant; see Lang [6]). By hypothesis on J, ΔU) ^ 2 m o d p 2 for

any 1 <j < n, and clearly diag(J) = dia.g((AU)lp2))moά p2. If we let JV be

an integral matrix with iV=Mmod p2, then sgn4(J) = sgn4((M"1diag(J)ίM"1))

= sgn^iV^diagίzl^Vp2)^"1)) = Σ;=i(Λ°W) This concludes the proof of

Theorem 12.

We are now ready to evaluate the Gauss sum factor of the theta

transformation formula of Stark's theta functions. Since even translations

do not affect the multiplier system, we may replace the pair (ϊ, δ) by

(T, 2ϊσ + δ) with σ e S)"^" 2 . In particular, with an appropriate σ, we may

assume that (δ) = b1b2m1m2~
1 with (bl9 2®m1m2) = 1 and b2|(2). There exist

ideals m3 with (m3,2ί>i) = 1 and m4 = m1m2m3"
1 such that δ = δ^2 with (δx)

— b1m1rn3~
1 = b1m4τn2~

1 and (̂ 2) = b2m3rn21 — b2m1m^1. Finally, choose v e

Sm^g such that (v) = jDS)mim3 with p a first degree prime ideal of norm

p with (p, 2S)m1m3) = 1. Let (oo) denote the product of all the real infinite

primes of K.

THEOREM 13. Let (ΐ, δ), δίf δ2 and v be as above. Then

Here e(M = e{(l/4)(sgn^ - sgn 4 M} and X(δd =
quadratic character defined modulo ^m^g '^oo) . If hi is a first degree

prime ideal of norm b, then X(δl) = £d£pε(— ̂ î ) (d^rVbi).

Proo/. Let A=Af^diagfoXMi, A' - M ^ M i a g ^ O ^ , A =M8"
1diag(3ί)Af2,

and D^ = Mr 1 diag^Λί*. Then D = D ^ , = D ^ . Since (b1? b2) = 1, one

can easily construct matrices which satisfy the hypotheses of Theorem 3a).

Thus,

GD(C) = GnXC'Dt) , GBΛC'DS)

|detD| 1 / 2

Now level D'2 = 2 and [det JDJ| = Λ (̂b2) so we may apply Theorem 5 and
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Theorem 12 to evaluate the last Gauss sum factor as e{l/4sgn4(2<5"*Y)}.

Let λ = ^ and L = Mi1 diagtf)'Mr1.
Δ

Let Nί = M^diagWAf! and iV3 = tM3diag(^) ίM3-
1. One can verify the

hypotheses of Theorem 4a) to obtain

GDl(2L) _ GDχ{2NxLN,) _ ( σ l D 2 C ) GDl(2C0)

| de tAΓ 2 |detAΓ / 2 *' |detA| 1 / 2

where C = M^(hi)Mx and Co = M;\vyM;\ By Corollary 1, (C7Dlf 2C0)

Choose an ideal m5 with (m5, 2p) = 1 such that v = vy2 with (vθ =

pmiΠts"1 and (v2) = S)m5m3. Let Co = CiC2 with Cj = M ^ d i a g ^ O M j and C2

= M5~
1diag(v2)

ίM3~
1. Note that IdetCJ = p and C2 is unimodular. Using

Theorems 3, 5, and 2,

|det2C,

2W/2

r

l s g n 4 ( - DlC0))ep[

Here we used λ = Γδ2/2 but we could also have set λ = 2/32 for j8 6

®m1m3, say (/3) = SntiTngb, with (B, 2p) = 1. Since (2̂ /bO = 1 for this λ,

we have shown that

Let <5ί = δί + α with α e 4Sm?b2 and (3J, p) = 1. Let δi ~ δ1 mod(oo). Set

Di = M{1άisig(δί)M3 = Dί + (2L)A where A = ' M . d i a g t e / M M , is an

integral even symmetric matrix. Applying Theorem 1 and the periodicity

of the Gauss sum,

4 8 Ί |det2L

= e ί l s g n 8
14 |det2L|1/2 |detZ>ί|1/2
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This implies that X(δt) = X(δί) whenever δ, ~ δ[ mod 4S)m2b2(oo) and (δί, p)

= 1. If (δί, ί>) =£ 1, define X(δ[) to be X^).

Clearly %(δθ = X^/J2) for any μ e TΠjTΠgb with (μ, 2p) = 1. Choose any

a: e ^TΠimί'1; thus, aμ2 ei&vφ2. Suppose that δi + a• = δi mod(oo). Then

χ(δ1) = X(δ,μ2) = X(δ!//2 + or//2) = Zfo + a). We conclude that % is a character

mod^iΐtim^Xoo), which proves the theorem.

The proof of this theorem illustrates how the theorems regarding

symplectic Gauss sums and Jacobi symbols can be used. These methods

also apply to a theorem of Andrianov and Maloletkin [1]. They define a

theta function involving a quadratic form of m variables, embed it into

the symplectic theta function, and thus calculate the transformation

formula when m is even. The author [11] has already extended their

theorem to include m odd by using an analogy of Dirichlet's theorem

concerning primes in an arithmetic progression. This is actually stronger

than we need. Without reproducing the arguments of [1] and [11], we

only note that the problem reduces to evaluation of a Gauss sum GD(C)j

|detl)|1 / 2. Here D = Im®D and C^F-'^C. F is an integral even

symmetric m X m matrix with level q, C = 0 mod q, and after a suitable

translation we may assume that (det D, 2 det C) = 1. Replacing C by

4q2C does not change the Gauss sum, so we assume that (q~1C, D) is

CESD. Let qF~ι = (-°^ι—-j where Fx is an integral even symmetric

(m — 1) X (m — 1) matrix. Using Lemma la),

|detZ>|m/2 |detB| 1 / 2 |detD| (TO-1)/2

The first factor on the right becomes

Q

Continuing this procedure with the obvious definitions and using Theorem

7b) to multiply the Jacobi symbols, we finally get

m

Now Π (at — 'biF^b^q — άet(q2F~r) and so using Theorem 8b), one obtains
i = l

GD(C) = /detFXΓ GD(C)

|detί>Γ/2 VdetD/L|detZ>Γ/2
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The Gauss sum on the right can be evaluated using Theorems 3, 4, and
2 for any known (C, D), In particular, if άetD is odd squarefree, then
the Gauss sum on the left equals (2m det F/det D). Πpidetz? £p(cm/p) where
each c is a diagonal element of pD^C with (c,p) = 1. This gives an
alternate way to calculate the transformation formula when the quadratic
form has an odd number of variables, and illustrates again the usefulness
of the symplectic Gauss sum and symplectic Jacobi symbol.
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