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Stability of Equilibrium Solutions in Planar
Hamiltonian Difference Systems

Cristian Carcamo and Claudio Vidal

Abstract. In this paper, we study the stability in the Lyapunov sense of the equilibrium solutions
of discrete or diòerence Hamiltonian systems in the plane. First, we perform a detailed study of
linear Hamiltonian systems as a function of the parameters. In particular we analyze the regular and
the degenerate cases. Next, we give a detailed study of the normal form associated with the linear
Hamiltonian system. At the same time we obtain the conditions under which we can get stability
(in linear approximation) of the equilibrium solution, classifying all the possible phase diagrams
as a function of the parameters. A�er that, we study the stability of the equilibrium solutions of
the ûrst order diòerence system in the plane associated with mechanical Hamiltonian systems and
Hamiltonian systems deûned by cubic polynomials. Finally, we point out important diòerences with
the continuous case.

1 Introduction

_e importance of diòerence equations of the ûrst order has grown signiûcantly in
recent years as evidenced by the large number of publications existing in the literature
(see for example, [1, 15, 19]). In this paper we study particular systems of diòerence
equations of second order called discrete or diòerence Hamiltonian systems, which
were introduced, for example, in [2, 3, 9].

In order to describe ourmain contributions, we will recall the deûnition of discrete
Hamiltonian systems. We start with linear diòerence Hamiltonian systems. _ese
systems were formulated in [3], where some properties can be found.

Deûnition 1.1 Let A(n), B(n),C(n) ∈ MN×N(R) be matrices. A diòerence (or
discrete) linear Hamiltonian system is deûned as the second order diòerence system of
the form

(1.1)
∆x1(n) = A(n)x1(n + 1) + B(n)x2(n),
∆x2(n) = C(n)x1(n + 1) − AT(n)x2(n),

where ∆x(n) = x(n + 1) − x(n), B(n), and C(n) are Hermitian matrices of order
N × N in a domain D ⊂ Z and I − A(n) is non singular in D. _e system (1.1) is
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equivalent to

(∆x1(n)
∆x2(n)

) = M(n)(x1(n + 1)
x2(n)

) ,

where

M(n) = (A(n) B(n)
C(n) −AT(n)) .

Bohner [6] studied the eigenvalues of the matrix M(n) when this depends on one
parameter and gave conditions to have a lower bound for the eigenvalues. In [2] he
made an analysis of the linear Hamiltonian as a second order diòerence system.

Herea�er, we will assume that D = Z. _e system (1.1) naturally presents the in-
convenience of deûning a second order diòerence system, because we are interested in
studying the stability of the null solution, and themajority of the strong background of
stability theory is associated with diòerence systems of ûrst order. It is easily veriûed
that the system (1.1) can be reduced to a ûrst order system, namely,

(1.2) (x1(n + 1)
x2(n + 1)) = S(n)(x1(n)

x2(n)
) ,

where

S(n) = (E(n) F(n)
G(n) H(n)) ,

with

E(n) = (I − A(n))−1 , G(n) = C(n)(I − A(n))−1

F(n) = (I − A(n))−1B(n), H(n) = C(n)(I − A(n))−1B(n) + I − AT(n).

According to [3, p. 83], the matrix

S(n) = (E(n) F(n)
G(n) H(n)) ,

associated with the system (1.2) is symplectic for every n. For this reason, the study of
linear Hamiltonian diòerence systems (1.1) is reduced to the study of linear diòerence
systems of ûrst order. In [2, 3] the authors studied the linear Hamiltonian systems in
order to ûnd a parallel between the continuous and discrete cases; they study the sym-
plectic diòerence systems in particular. _e study consists of obtaining general prop-
erties of such systems. In [14] a preliminary study of the symplectic matrix associated
with the linear Hamiltonian system is made. In [17] general qualitative properties of
the linear Hamiltonian systems in diòerences are studied; the methods that are used
involve the Riccati type matrix. _e authors proceed to extend the qualitative proper-
ties of the continuous and nonautonomous linear Hamiltonian systems. Zhang et al.
in [26,27] established several inequalities of the Lyapunov type forHamiltonian linear
systems in the planar case. Properties of disconjugacy for the discrete Hamiltonian
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systems are considered in [3, 5, 7, 16, 23]. Other studies of the linear Hamiltonian sys-
tems with time-scales are considered in [4,8]. According to [5], Hamiltonian systems
in diòerence equations are deûned as follows.

Deûnition 1.2 Let H ∈ C1(R2N ,R), and denote by ∇H(z) the gradient of H in z.
_e diòerence Hamiltonian system for H is deûned by

(1.3) ∆x(n) = J∇H(Lx(n)), n ∈ Z,

where x(n) = ( x1(n)
x2(n)

) , with x i(n) ∈ RN , i = 1, 2, L is deûned by Lx(n) = ( x1(n+1)
x2(n)

) ,
and J = ( 0 −IN

IN 0 ) is the standard symplectic matrix with IN the identity matrix of
order N .

Zheng [29] studied the existence ofmultiple periodic solutions usingMorse theory.
In [11] the Hamiltonian system

(1.4)
∆x1(n) = −Hx2(n, x(n)) ,
∆x2(n) = Hx1(n, x(n)) ,

is considered, whereH(n, x(n)) is periodic in n and superlinear when ∥x∥ → ∞. _e
existence of homoclinic orbits is proved using critical point theorems.

In this paper ourmain objective is to study the stability of the equilibrium solution,
which we suppose is (0, 0), for the linear Hamiltonian system (1.1) and for the non-
linear Hamiltonian systems (1.3) in the planar and autonomous cases. Our strategy is
to reduce the study of the stability of the equilibrium solution (0, 0) of the two previ-
ous situations to one diòerence system of ûrst order associated with the Hamiltonian
system. _us, we can apply the standard theory of diòerence equations in order to get
our results. _e analysis of the stability of the null solution of the associated Hamil-
tonian system is relatively new. Although there are several results in the literature
about asymptotic behavior for solutions of diòerence equations, little is known for
Hamiltonian diòerence systems.

To get our results, we have organized the work as follows. In Section 2 we study
the stability of the null solution of a symplectic diòerence linear system as a function
of the parameters associated to the matrix. Next, we relate the conditions of stability
with the parameters of the associated linear Hamiltonian system. In particular, we
characterize all the possible phase portraits of the linear system in the bi-dimensional
case as a function of the involved parameters. Also, we analyze all the possible normal
forms associated with the symplectic matrix and associated with the Hamiltonian lin-
ear system. Here, we emphasize that given the spectra of a symplectic matrix, where
we are in the critical case; that is, the product of the eigenvalues is 1. In Section 3
we study the Lyapunov stability for the null solution of a particular, but interesting,
Hamiltonian system, which is associated with a mechanical system. Diòerent cases
are analyzed and important diòerences are observed when they are compared with
the continuous case. Finally, we analyze Hamiltonian diòerence systems deûned by
polynomials of degree three.

_e proofs of our main results are achieved by the convenient use of Lyapunov
theorems (see [1, 15, 20]) and the Chetaev _eorem (see [10, 12]).
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Zhang [28] studied the stability of the null solution in systems which are perturba-
tions of linear Hamiltonian systems, but the perturbation are not necessarily Hamil-
tonian, as in system (1.4).
An important point is that in the study of stability in the Lyapunov sense of the null

solution in a Hamiltonian system for the continuous case, the existence of resonance,
the theory of normal form, and the existence of a ûrst integral each play an important
role (see details in [24, 25]).

2 Analysis of the Type of Stability of the Null Solution for Linear
Hamiltonian Difference Systems in the Bidimensional Case

We intend to prove particular properties of system (1.2) coming from the system (1.1)
when it is compared with the linear diòerence system in the general case.

It is evident that the point (0, 0) is a solution of (1.2). Next we are going to study
the type of stability (linear) of the null solution of (1.2) for the autonomous case.

Let a linear Hamiltonian system of 2 × 2 be given by

∆x(n) = M (x1(n + 1)
x2(n)

) ,(2.1)

M = (a c
b −a) ,(2.2)

where a, b, c ∈ R and 1− a ≠ 0. _en the associated linear symplectic system (1.2) has
the form

(2.3) x(n + 1) = Sx(n), n ≥ n0 ,

where the symplectic matrix is

(2.4) S = (
1

1−a
b

1−a
c

1−a
(1−a)2+bc

1−a

) .

In [15] the existence of 11 possible phase portraits for the bidimensional linear dif-
ference system of ûrst order are shown. In our case, the fact that the matrix S of the
linear system (2.3) is symplectic implies that det S = 1. _us, if λ1 , λ2 are its eigenval-
ues, then λ1λ2 = 1, and so ∣λ1∣ ∣λ1∣ = 1. _erefore, for the symplectic system (2.1), there
are only the following possibilities:
(a) Saddle type, i.e., λ1 > 1 and λ2 < 1. In this case the phase portrait is topologically

given in Figure 1; therefore, the origin is unstable.
(b) Degenerate type, i.e., λ1 = λ2 = 1 (or λ1 = λ2 = −1). In general, if the system

with eigenvalues λ1 and λ2 is diagonalizable, it is veriûed that the phase portrait
is given in the le� side of Figure 2. _us, the phase space is full of equilibrium
solutions, and in particular, each of them is stable.

On the other hand, if the system is nondiagonalizable, we have that its phase
portrait is topologically given in the right side of Figure 2. _erefore, the origin
is unstable.
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Figure 1: Saddle point (unstable) with λ1 > 1 and λ2 < 1.

Figure 2: Degenerate cases. Le�: diagonalizable, stable; Right: nondiagonalizable, unstable.

(c) Center type. In this case the eigenvalues are given by λ1,2 = α ± iβ, with β ≠ 0.
Set ω = arctan β

α . _en the solution of the system

(y1(n + 1)
y2(n + 1)) = ( α β

−β α)(y1(n)
y2(n)

)

is given by

y1(n) = ∣λ1∣n( y10 cos(nω) + y20 sin(nω))
y2(n) = ∣λ1∣n(−y10 sin(nω) + y20 cos(nω)) .

In this case ∣λ1∣ = 1, and we obtain an equilibrium that is a center where all the
orbits are circular with radius r0 =

√
y2
10 + y2

20, and the phase portrait is topolog-
ically given in Figure 3. _erefore, the origin is stable. We should emphasize that
for a symplectic 2 × 2 matrix, it is not possible to have the situation λ ∈ C with
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Figure 3: Center with ∣λ1 ∣ = 1.

∣λ∣ ≠ 1. In fact, the nature of the symplectic matrices implies that if λ is complex,
then 1/λ is an eigenvalue and λ and 1/λ are also eigenvalues.
We will denote by µ1,2 = ±

√
a2 + bc the eigenvalues associated with matrix (2.2).

On the other hand, the eigenvalues associated with the symplectic matrix (2.4) are

(2.5) λ1,2 =
1 + (1 − a)2 + bc ±

√
(1 + (1 − a)2 + bc)2 − 4(1 − a)2

2(1 − a) .

Considering ∆M = a2 + bc, it is veriûed that

∆S = ∆M [∆M + 4(1 − a)] .

By virtue of the previous properties we have the following result.

Proposition 2.1 If ∆M = 0, then λ1,2 = 1. Moreover, if b = 0, then the following hold:
(i) If c = 0, then the null solution of (2.3) is stable and is of degenerate type and

diagonalizable (see Figure 2).
(ii) If c ≠ 0, then the null solution of (2.3) is unstable and is of the degenerate type and

nondiagonalizable (see Figure 2).
In the case b ≠ 0, the null solution of (2.3) is unstable and is of degenerate type and non
diagonalizable (see Figure 2).

Proof Since ∆M = 0, it can be veriûed from (2.5) that λ1,2 = 1. To prove the other
items, we note that if ∆M = 0 and b = 0, then a = 0. _us, the matrix S in (2.4)
assumes the form

S = (1 0
c 1) .

_en, under the condition c = 0, proof of item (i) follows. In the case c ≠ 0, S is not
diagonalizable, and therefore we obtain the conclusion of item (ii).
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_e condition b ≠ 0 implies that c = − a2b , and then we have that the symplectic
matrix S in (2.4) has the form

S =
⎛
⎝

1
1−a

b
1−a

− a2
b(1−a)

1
1−a

⎞
⎠
.

_en the eigenspace associated with the eigenvalue 1 has dimension one, which im-
plies that the matrix is not diagonalizable, and therefore the null solution is unstable.
_us, we conclude the proof of the proposition.

Now consider the following situation.

Proposition 2.2 (i) Assume that ∆M > 0 and that 1 − a > 0. _en the equilibrium
solution (0, 0) of (2.3) is unstable and is of saddle type (see Figure 1).

(ii) Assume that ∆M > 0 and 1 − a < 0.
(a) If ∆M + 4(1 − a) > 0, then the equilibrium solution (0, 0) of (2.3) is unstable

and is of saddle type (see Figure 1).
(b) If ∆M +4(1−a) < 0, then the equilibrium solution (0, 0) of (2.3) is stable and

is of center type (see Figure 3).
(c) If ∆M + 4(1 − a) = 0, then the equilibrium solution (0, 0) of (2.3) is unstable

if b ≠ 0. For b = 0 and c = 0 the equilibrium point is stable, and if c ≠ 0 the
equilibrium solution is unstable.

Proof In (i) it is veriûed that

λ1,2 = 1 + ∆M

2(1 − a) ±
√
∆M [∆M + 4(1 − a)]

2(1 − a) ,

and clearly

λ1 = 1 + ∆M

2(1 − a) +
√
∆M [∆M + 4(1 − a)]

2(1 − a) > 1.

So, (i) is proved.
_e proof of the case (ii)(a) is obtained by observing that the eigenvalue

λ2 = 1 + ∆M

2(1 − a) −
√
∆M [∆M + 4(1 − a)]

2(1 − a) > 1.

For case (ii)(b) we have that the eigenvalues are given by

λ1,2 = 1 + ∆M

2(1 − a) ±
i
√
−∆M [∆M + 4(1 − a)]

2(1 − a) ,

which satisfy ∣λ1,2∣ = 1. _us, we verify that the matrix S is semisimple, and therefore
the null solution must be stable.
For case (ii)(c) we have that λ1,2 = −1. _en the type of stability of the null solution

is decided according to the diagonalization of the matrix S. It follows that (a − 2)2 =
−bc; that is, a = 2 ±

√
−bc, so there are two possibilities for the matrix S in (2.5),
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namely,

S =
⎛
⎝

−1
1+
√

−bc
−b

1+
√

−bc
−c

1+
√

−bc
−2 + 1

1+
√

−bc

⎞
⎠

or S =
⎛
⎝

−1
1−
√

−bc
−b

1−
√

−bc
−c

1−
√

−bc
−2 + 1

1−
√

−bc

⎞
⎠
.

It is veriûed that for b ≠ 0 the eigenspace associated with the eigenvalue −1 (of al-
gebraic multiplicity 2) has dimension 1, where the solution (0, 0) of (1.2) is unstable.
For the case b = 0 (i.e., a = 2) it is shown that if c = 0, the solution (0, 0) of (1.2) is
stable, and in the case c ≠ 0, the solution (0, 0) of (1.2) is unstable. _is concludes the
proof.

Remark 2.3 It is important to call the attention to the fact that condition

∆M + 4(1 − a) < 0,

could be true, since

∆M + 4(1 − a) = a2 + bc + 4 − 4a = (a − 2)2 + bc,

which holds if bc < 0 and ∣bc∣ > (a − 2)2.

Now, we will proceed to the analysis of the case ∆M < 0.

Proposition 2.4 Assume that ∆M < 0.
(i) If 1 − a < 0, then the null solution (0, 0) of (2.3) is unstable and is of saddle type

(see Figure 1).
(ii) If 1 − a > 0 and

(a) ∆M + 4(1 − a) > 0, then the equilibrium (0, 0) of (2.3) is stable and is of the
center type (see Figure 3);

(b) ∆M + 4(1 − a) < 0, then the equilibrium (0, 0) of (2.3) is unstable and is of
saddle type (see Figure 1);

(c) ∆M + 4(1 − a) = 0, then the equilibrium (0, 0) of (2.3) is unstable and is of
degenerate type and nondiagonalizable (see Figure 2).

Proof To prove item (i), we observe that ∆M[∆M + 4(1 − a)] > 0 and

λ2 = 1 + ∆M

2(1 − a) −
√
∆M[∆M + 4(1 − a)]

2(1 − a) > 1.

_erefore, the origin (0, 0) is unstable and is of saddle type.
For (ii)(a), from the hypotheses, we have that ∆M [∆M + 4(1 − a)] < 0, and so its

eigenvalues are of the form

λ1,2 = 1 + ∆M

2(1 − a) ± i

√
−∆M [∆M + 4(1 − a)]

2(1 − a) .

_ey satisfy ∣λ1,2∣ = 1 and are distinct. In conclusion, the solution (0, 0) of (1.2) is
stable and is of center type.
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For (ii)(b) from the hypotheses, we note that 1 + ∆M
2(1−a) < −1, and so

λ2 = 1 + ∆M

2(1 − a) −
√
∆M [∆M + 4(1 − a)]

2(1 − a) < −1.

_us, ∣λ1∣ > 1, where we conclude that the equilibrium (0, 0) of (1.2) is unstable and
is of saddle type.
Finally, for the case (ii)(c) we know that ∆M = −4(1 − a), and so λ1,2 = −1. Anal-

ogously to the proof of Proposition 2.2(ii)(c), we prove that the equilibrium (0, 0) of
(1.2) is unstable, degenerate, and nondiagonalizable.

Taking into account the expression of ∆M and of ∆S , we can point out the following
properties.
(a) If ∆M = 0, then ∆S = 0.
(b) If ∆S = 0, then ∆M = 0 or ∆M = 4(a − 1).
(c) If ∆M = 0, then λ1,2 = 1 or system (1.2) is degenerate.
(d) If ∆M > 0, then µ1 ∈ R+ and µ2 ∈ R−.

In synthesis, the stability of the null solution for a planar and autonomous linear
symplectic diòerence system associated to a linear Hamiltonian diòerence system is
summarized as shown in Figure 4.

Figure 4: Type of stability for the null solution for planar and autonomous linear symplectic
diòerence system.

2.1 Analysis of the Stability of the Null Solution of the Planar System (2.3) through
Normal Form of Symplectic Matrices

_estudy of stability of the equilibrium solution (0, 0) can be also considered through
the process of normalization of symplectic matrices applied to S deûned by equation
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(2.3). _e study of the normal form has been considered, for example, in [21, 22,
24]. Here, all the possible scenarios according to the eigenvalues of the matrix S are
analyzed. In our study, we will focus our attention to the case S ∈ M2×2(R). _e
details of our arguments are discussed with depth in [25] and [22].

Let x(n+ 1) = Sx(n), x(n) ∈ R2 be a diòerence system with S a symplectic matrix
as in (2.4). We characterize the possible normal form as follows:

Case 1. λ1 ∈ R − {0} and λ2 = 1
λ1
, where λ1 ≠ 1. According to the theory of normal

forms, the possible normal forms are:

S1 = (λ1 0
1 λ−1) or S2 = (λ1 0

0 λ−1
1
) .

For these symplecticmatrices, according to (2.4), we obtain that the associatedHamil-
tonian matrices are

H1 = (
λ1−1
λ1

0
1
λ

1−λ1
λ1

) or H2 = (
λ1−1
λ1

0
0 1−λ1

λ1
,
)

respectively.

Case 2. λ1 = λ2 = 1. Here the possible normal forms for S are

S1 = (1 0
1 1) or S2 = (1 0

0 1) .

_en according to (2.4), the Hamiltonian matrices are

H1 = (0 0
1 0) or H2 = (0 0

0 0,)

respectively.

Case 3. If λ1 = λ2 = −1, then normal forms of S are

S1 = (−1 0
1 −1) or S2 = (−1 0

0 −1) .

_en according (2.4), the Hamiltonian matrices are

H1 = (2 0
1 2) or H2 = (2 0

0 2,)

respectively.

Case 4. If λ1 = iβ and λ2 = −iβ, then the normal form of the matrix S is given by

S = ( 0 β
−β 0) .

Notice that if we consider the previous expression for S, it is not possible to have this
form S, because in this case we obtain that 1

1−a = 0, which is impossible.
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3 Study of Nonlinear Planar Hamiltonian Systems

Here we will point out some results that characterize the stability in the sense of Lya-
punov of one equilibrium point of a Hamiltonian system, which are associated with
mechanical systems. Moreover, we study the stability of the equilibrium solutions de-
ûned byHamiltonian functions deûned by cubic polynomials. Initially, we remember
that a mechanical system corresponds to the diòerential equation of second order

(3.1) ẍ1 = ∇U(x1),
where U ∶RN ∖ S → R is a diòerentiable function (at least of class C1) to real values
and S denotes the set of singularities ofU . In this case,U is called a potential function
and the associated Hamiltonian function is given by

(3.2) H = H(x1 , x2) =
1
2
∥x2∥2 −U(x1),

where the variable x2 is called conjugate variable.
In order to compare our results with the continuous case for mechanical systems

of the form (3.1), we ûrst recall the Dirichlet _eorem. It was proved by Dirichlet [13]
and formulated by Lagrange [18].

_eorem 3.1 Let x∗1 be an isolated critical point that is a local maximum of U. _en
the equilibrium solution (x∗1 , 0) of the Hamiltonian system associated with (3.2) is sta-
ble.

Proof _is result is a consequence of Lyapunov’s _eorem, deûning the Lyapunov
function asV(x1 , x2) = H(x1 , x2)+U(x∗1 ). Formore details of the proof, see [25].

Considering the Hamiltonian function given in (3.2), the diòerence Hamiltonian
system is given by

(3.3)
∆x1(n) = x2(n),
∆x2(n) = ∇U(x1(n + 1)) .

Since ∆x(n) = x(n + 1) − x(n), it follows that system (3.3) is of ûrst order, which
assumes the form

(3.4)
x1(n + 1) = x1(n) + x2(n),
x2(n + 1) = x2(n) + ∇U(x1(n) + x2(n)) .

Next, we are going to analyze the planar case H = 1
2 x

2
2 − U(x1), where U is a

diòerentiable function. In particular, system (3.4) is reduced to

(3.5)
x1(n + 1) = x1(n) + x2(n),
x2(n + 1) = x2(n) +U ′(x1(n) + x2(n))

_e characterization of the equilibrium solution of the system (3.5) is the following
proposition.

Proposition 3.2 _e equilibrium solutions of the system (3.5) are characterized by
(x∗1 , x∗2 ) where x∗1 is a critical point of U and x∗2 = 0.
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Proof Set f (x1 , x2) = (x1 + x2 , x2 + U ′(x1 + x2)). _en f (x1 , x2) = (x1 , x2) if and
only if x1 + x2 = x1, x2 +U ′(x1 + x2) = x2. _en x2 = 0 y U ′(x1) = 0.

Fromnow onwewill assumewithout loss of generality that (0, 0) is an equilibrium
solution for the nonlinear system (3.5), i.e., 0 is a critical point ofU . We are interested
in determining the type of stability of the solution (0, 0). We are going to analyze an
analogous result to the Dirichlet _eorem in the discrete case for the planar system
(3.5).

Initially we propose the linear stability of the equilibrium solution (0, 0) of the
mechanical system (3.5). _e linearized system (3.5) around the point (0, 0) and de-
noting µ = U ′′(0), it follows that the linear part is the symplectic matrix ( 1 1

µ 1+µ ) .
_us the associated eigenvalues are

λ1,2 = 1 + µ
2
±

√
µ(µ + 4)

2
.

According to the notation for the associated symplectic matrix S in (2.4) we must
have that a = 0, b = 1, and c = 1 + µ.

_eorem 3.3 (i) If µ > 0, then the null solution of (3.5) is linearly unstable (of
saddle type) and is also unstable in the Lyapunov sense.

(ii) If µ = 0, then the null solution of (3.5) is linearly unstable (degenerate case).
(iii) If µ ∈ (−4, 0), then the null solution of (3.5) is linearly stable (center type). If

µ ∈ (−∞,−4), then the null solution of (3.5) is linearly unstable (saddle type) and
is also unstable in the Lyapunov sense. If µ = −4, then the null solution of (3.5) is
linearly unstable (degenerate case).

Proof _e proof of item (i) is clear, because if µ > 0, then λ1 > 1.
In item (ii) we have that ∆M = 0, so λ1,2 = 1, and by Proposition 2.1 it follows that

(0, 0) is linearly unstable (degenerate case, the linear part is non diagonalizable).
For the item (iii) and µ ∈ (−4, 0), by Proposition 2.4(i) it follows that (0, 0) is

linearly stable, since the eigenvalues are

λ1,2 = 1 + a
2
±

i
√
−a(a + 4)

2
,

i.e., of the center type. For µ ∈ (−∞,−4), by Proposition 2.4(ii), we have that (0, 0)
is linearly unstable (saddle type), and thus is unstable in the Lyapunov sense. Finally,
if µ = −4, it follows that λ1,2 = −1, so by Proposition 2.4(iii) we have that (0, 0) is
linearly unstable (degenerate, nondiagonalizable linear part).

Remark 3.4 _e condition µ > 0 in the previous proposition in particular tells us
that 0 is a local minimum of U . _us our result shows that there is a great diòer-
ence between the continuous and the discrete case, because in the continuous case
the equilibrium (0, 0) is always stable in the Lyapunov sense.

To complete the study of the nonlinear stability of the solution (0, 0) of (3.5) by
_eorem 3.3, we need to analyze the case µ ∈ [−4, 0].
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_eorem 3.5 If µ ∈ (−4, 0) with U such that U(0) = 0 and analytic in a neighbor-
hood of 0, then the origin of system (3.5) is unstable in the Lyapunov sense.

Proof We consider the quadratic form V(x1 , x2) = αx2
1 + βx2

1 , with α and β chosen
conveniently. _en if we take µ = U ′′(0) and calculating the diòerence of V , we have

∆V(x1 , x2) = V(x1 + x2 , x2 +U ′(x1 + x2)) − V(x1 , x2)

= α(x1 + x2)2 + β(x2 +U ′(x1 + x2))
2 − αx2

1 − βx2
2

= 2αx1x2 + αx2
2 + 2βx2U ′(x1 + x2) + β(U ′(x1 + x2))

2

= 2αx1x2 + αx2
2 + 2βx2µ(x1 + x2) + β( µ(x1 + x2))

2

= 2αx1x2 + αx2
2 + 2βµx1x2 + 2βµx2

2 + βµ2x2
1 + 2βµ2x1x2

+ βµ2x2
2 + O(∥x∥3)

= βµ2x2
1 + 2(α + βµ + βµ2)x1x2 + (α + βµ + βµ2)x2

2 + O(∥x∥3).

For the case µ ∈ (−1, 0) we take α > 0 and β > 0 such that − 1
µ < β

α < − 1
µ(1+µ) . With

this election, we verify that V is deûnite positive in a neighborhood of the origin and
the quadratic form βµ2x2

1 +2(α+βµ+βµ2)x1x2+(α+βµ+βµ2)x2
2 is positive deûnite

by the Hurwitz criterion. In fact, βµ2 > 0 and

det( βµ2 α + βµ + βµ2

α + βµ + βµ2 α + βµ + βµ2) = −(α + βµ)(α + βµ + βµ2),

which is positive because of the hypotheses. In the case µ ∈ (−4,−1) we take β <
− α

µ(1+µ) , and in particular, β is negative. _us, in a neighborhood of the origin, ∆V is
negative deûnite and V takes positive values. Finally, by the_eorem of Instability of
Lyapunov, we conclude that the origin of the system (3.5) is unstable in the Lyapunov
sense.

3.1 Hamiltonian Polynomials of Degree 3

We consider the Hamiltonian function

H = β
2
x2
2 + αx1x2 +

γ
2
x2
1 +

e
3
x3
2 .

_us, the associated Hamiltonian system is given by

∆x1(n + 1) = βx1(n + 1) + γx2(n) + ex2
2(n),

∆x2(n + 1) = −αx1(n + 1) − βx2(n).
It can be reduced to the ûrst order diòerence system

(3.6)
x1(n + 1) = 1

1 − β x1(n) +
γ

1 − β x2(n) +
e

1 − β x
2
2(n)

x2(n + 1) = − α
1 − β x1(n) + ( 1 − β − αγ

1 − β )x2(n) −
αe

1 − β x
2
2(n).

It is clear that (x1(n), x2(n)) = (0, 0) is an equilibrium solution of (3.6).
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_eorem 3.6 For β ≠ 1, αγ < 0, and e ∈ R− {0} the null solution of (3.6) is unstable
in the Lyapunov sense.

Proof LetV(x1 , x2) = x1x2 be a Chetaev’s function, which is positive in the ûrst and
third quadrants, and is negative in the second and fourth quadrants. It is veriûed that

∆V(x1 , x2) = V( f (x1 , x2)) − V(x1 , x2)

= − α
(1 − β)2 x

2
1 + (γ − αγ2

(1 − β)2 )x
2
2 −

2αγ
(1 − β)2 x1x2

+ ( e + 2αγe
(1 − β)2 )x

3
2 +

2αe
(1 − β)2 x1x2

2 +
αe2

(1 − β)2 x
4
2 .

Considering only the ûrst quadrant, it is enough to consider β ≠ 1, α < 0, γ > 0 and
e > 0. In the third quadrant, we take β ≠ 1, α < 0, γ > 0, and e < 0. _erefore, in
both cases, in the region V > 0, we must have that ∆V is positive deûnite, so by the
_eorem of Chetaev, we conclude that the null solution of system (3.6) is unstable.
For the second quadrant, the convenient parameters are β ≠ 1, α > 0, γ < 0, and

e < 0. In the fourth quadrant we take β ≠ 1, α > 0, γ < 0, and e > 0. _en in both
cases, in the region V < 0, we have that ∆V is negative deûnite, so by the_eorem of
Chetaev, we conclude that the null solution of the system (3.6) is unstable.

Next, we study the Hamiltonian system, where the Hamiltonian is given by

H(x1 , x2) =
α
2
x2
1 + βx1x2 + γx2

2 + p(x2),

where p(x2) is a polynomial starting with terms of order greater or equal to 3 in the
variable x2. We will assume that β ≠ 1. _us, the associated Hamiltonian system is
given by

(3.7)
x1(n + 1) = 1

1 − β x1(n) +
γ

1 − β x2(n) +
1

1 − β p′(x2(n)),

x2(n + 1) = − α
1 − β x1(n) + (− αγ

1 − β + 1 − β)x2(n) −
α

1 − β p′(x2(n)).

It is clear that the origin is an equilibrium solution of system (3.7), since p′(0) = 0. In
order to study the type of stability of the solution (0, 0) we will analyze the Chetaev
functionV(x1 , x2) = x1x2. It is clear that this function is positive in the ûrst and third
quadrants. Moreover, through the solutions of (3.7), we have that

(3.8) ∆V(x1 , x2) = −
α

(1 − β)2 x
2
1 −

2αγ
(1 − β)2 x1x2 + ( −αγ2

(1 − β)2 + γ)x2
2

− 2α
(1 − β)2 x1p′(x2) + (− 2αγ

(1 − β)2 + 1)x2p′(x2) −
α

(1 − β)2 ( p′(x2))
2
.

To decide the sign of ∆V , we will ûrst analyze the particular case where p(x2) =
e
3 x

3
2 +

f
5 x

5
2 , so we can formulate the following result.

_eorem 3.7 Assume β ≠ 1, αγ < 0, and p(x2) = e
3 x

3
2 +

f
5 x

5
2 such that e ⋅ f > 0. _en

the null solution of the system (3.7) is unstable in the Lyapunov sense.
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Proof By the form of p2 it is veriûed in (3.8) that ∆V assumes the form

∆V(x1 , x2) = −
α

(1 − β)2 x
2
1 −

2αγ
(1 − β)2 x1x2 + (− αγ2

(1 − β)2 + γ)x2
2

− 2α
(1 − β)2 x1(ex2

2 + f x4
2) + ( −2αγ

(1 − β)2 + 1)x2(ex2
2 + f x4

2)

− α
(1 − β)2 (ex

2
2 + f x4

2)2 .

In the ûrst quadrant, considering the restrictions α < 0, γ > 0, e > 0, and f > 0, we
have that ∆V is positive deûnite. For the third quadrant, taking α < 0, γ > 0, e < 0
and f < 0, we get that ∆V is positive deûnite.

In the second quadrant it is enough to consider α > 0, γ < 0, e < 0, and f < 0,
while in the fourth quadrant we take e > 0, f > 0, and then we will have that ∆V is
negative deûnite.

_e conclusion of the theorem follows from Chetaev’s _eorem.

Remark 3.8 _e previous theorem can be generalized if we take p(x2) such that

p(x2) =
n
∑
j=1

α jx
2 j+1
2

2 j + 1
,

where p(x2) is an arbitrary polynomial at least of degree 3 without variations of sign.
Under these conditions it is veriûed that the null solution of system (3.7) is unstable.
In a more general way, we can take a polynomial p(x2) such that p′(x) is positive or
negative depending on the sign of the parameters α and γ.

Now, we consider the Hamiltonian function

H(x1 , x2) =
α
2
x2
2 + βx1x2 +

γ
2
x 1
1 +

f
3
x3
1 +

e
3
x3
2 + gx2

1 x2 + hx1x2
2 .

_us, the Hamiltonian system is given by

∆x1(n) = βx1(n + 1) + γx2(n) + gx2
1 (n + 1) + 2hx1(n + 1)x2(n) + ex2

2(n),
∆x2(n) = −αx1(n + 1) − βx2(n) − f x2

1 (n + 1) − 2gx1(n + 1)x2(n) − hx2
2(n).

Assuming that g = 0, the associated system of ûrst order assumes the form

(3.9)

x1(n + 1) = x1(n) + cx2(n) + ex2
2(n)

1 − β − 2hx2(n)
,

x2(n + 1) = −α[ x1(n) + γx2(n) + ex2
2(n)

1 − β − 2hx2(n)
] + [1 − β − hx2(n)]x2(n)

− f [ x1(n) + cx2(n) + ex2
2(n)

1 − β − 2hx2(n)
]

2
,

where clearly x2(n) must be diòerent than 1−β
2h . By virtue of this restriction we must

assume that β ≠ 1.

https://doi.org/10.4153/CJM-2014-040-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-040-3


Stability of Equilibrium Solutions in Planar Hamiltonian Diòerence Systems 1285

For the case g ≠ 0, the associated diòerence system of ûrst order is
(3.10)

x1(n + 1) = 1 − β − 2hx2(n)
2g

±
¿
ÁÁÀ−x1(n)

g
− γx2(n)

g
− ex

2
2(n)
g

+ [1 − β − 2hx2(n)]2
4g2

x2(n + 1) = [−α − 2gx2(n) −
f (1 − β − 2hx2(n))

g
]

×
⎡⎢⎢⎢⎢⎣

1 − β − 2hx2(n)
2g

±
¿
ÁÁÀ−x1(n)

g
− γx2(n)

g
− ex

2
2(n)
g

+ [1 − β − 2hx2(n)]2
4g2

⎤⎥⎥⎥⎥⎦
+ f

g
x1(n) + ( 1 − β + γ f

g
)x2(n) + ( e f

g
− h)x2

2(n).

It is veriûed that (0, 0) corresponds to an equilibrium solution of system (3.9). To
analyze system (3.10) we must be very careful, because extra conditions are needed
in order to have an equilibrium solution at the point (0, 0). In fact, if x1(n + 1) =
f1(x1(n), x2(n)) y x2(n + 1) = f2(x1(n), x2(n)), then

f1(0, 0) =
1 − β
2g

±
¿
ÁÁÀ( 1 − β

2g
)

2
= 1 − β

2g
± ∣ 1 − β

2g
∣ ,

f2(0, 0) = [−α − f
g
(1 − β)][ 1 − β

2g
±
¿
ÁÁÀ( 1 − β

2g
)

2
]

= [−α − f
g
(1 − β)][ 1 − β

2g
± ∣ 1 − β

2g
∣ ] .

_us, if 1−α
g > 0, the origin is an equilibrium solution of system (3.10). It is veriûed

that the linearization of system (3.9) with β ≠ 1 around the equilibrium (0, 0) is given
by the symplectic matrix

S = (
1

1−β
γ

1−β
− α

1−β − αγ
1−β − β + 1) ,

whose eigenvalues have the form

λ1 = −
1

2(β − 1)[−αγ + β
2 − 2β + 2 +

√
(−αγ + β2 − 2β + 2)2 − 4(β − 1)2] ,

λ2 = −
1

2(β − 1)[−αγ + β
2 − 2β + 2 −

√
(−αγ + β2 − 2β + 2)2 − 4(β − 1)2] .

_e following theorem establishes the conditions that must be veriûed in order to
have stability in the case when g = 0.
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_eorem 3.9 Assume that in system (3.9) it is veriûed that β ≠ 1, (β2 − 2β − α2) > 0
and moreover that

13β4 + 4β2 + α2 + α2β2 + α2β2γ2 + 8αβ3γ + γ2 + β2γ2 + β6

+ e2 + β2e2 + 4γe + α2γ2 + 4αβe + 2α2γe

<12β3 + 2α2β + 2α2βγ2 + 4βγe + 2βγ + γ2e2 + 2αγ2 + 12α3 + 14αβe

+ 12αβ2γ + 2αβ4γ + 2αγ + 2βe + 6β5 + 2βγ2 + 2αβ2e + α2e2 + 2αe .

_en the null solution of the system (3.9) is asymptotically stable in the Lyapunov sense.

Proof Let V(x1 , x2) = x2
1 + x2

2 be a Lyapunov function. It is clear that this function
is positive deûnite in a neighborhood of the origin. Now we evaluate ∆V :

∆V(x1 , x2) = ( x1 + γx2 + ex2
2

1 − β − 2hx2
)

2
+ [ −αx1 − αγx2 − αex2

2

1 − β − 2hx2
+ (1 − β − 2hx2)2x2

1 − β − 2hx2

− f (x1 + γx2 + ex2
2)2

(1 − β − 2hx2)2 ]
2
− x2

1 − x2
2 =

= (x1 + γx2 + ex2
2)2

(1 − β − 2hx2)2 + [ (1 − β − 2hx2)(−αx1 − αγx2 − αex2
2)

(1 − β − 2hx2)2

+ (1 − β − 2hx2)3x2

(1 − β − 2hx2)2 − f (x1 + γx2 + ex2
2)2

(1 − β − 2hx2)2 ]
2
− x2

1 − x2
2

= (x1 + γx2 + ex2
2)2

(1 − β − 2hx2)2 + 1
(1 − β − 2hx2)4 [(1 − β − 2hx2)(−αx1 − αγx2 − aex2

2)

+ (1 − β − 2hx2)3x2 − f (x1 + γx2 + ex2
2)2] 2 − x2

1 − x2
2 .

Multiplying by (1 − α − 2hx2)4 on both sides we obtain the equality

(1 − β − 2hx2)4∆V(x1 , x2)
= (1 − β − 2hx2)2(x1 + γx2 + ex2

2)2

+ [(1 − β − 2hx2)(−αx1 − αγx2 − αex2
2)

+ (1 − β − 2hx2)3x2 − f (x1 + γx2 + ex2
2)2] 2

− (1 − β − 2hx2)4x2
1 − (1 − β − 2hx2)4x2

2

= (1 − β − 2hx2)2(x1 + γx2 + ex2
2)2

+ (1 − β − 2hx2)2(−αx1 − αγx2 − αex2
2)2

+ (1 − β − 2hx2)6x2
2 + f 2(x1 + γx2 + ex2

2)4

+ 2x2(1 − β − 2hx2)4(−αx1 − αγx2 − αex2
2)

− 2 f (1 − β − 2hx2)(−αx1 − αγx2 − αex2
2)(x1 + γx2

+ ex2
2) − 2 f x2(1 − β − 2hx2)3(x1 + γx2 + ex2

2)2

− (1 − β − 2hx2)4x2
1 − (1 − β − 2hx2)4x2

2 .
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A�er some manipulation and simpliûcation the expression on the right-hand side is
equivalent to

S = (2β + 4β3 − 4β4 − 5β2 + α2 + α2β2 − 2α2β)x2
1

+ (2β2γ + 2β2e − 4βγ − 4βe + 2α2γ + 8αβ + 8αβ3 − 2αβ4 − 12αβ2 + 2e

+ 2γ − 2α − 4α2βγ + 2α2β2γ)x1x2

+ (14β4 − 2β − 16β3 − 6β5 + β6 + 9β2 − 4βγe + 2β2γe − 2α2βγ2 + α2β2γ2

+ 8αβγ + 8αβ3γ − 2αβ4γ − 12αγβ2 + γ2 + e2 + β2γ2 + 2βe2 + β2e2

+ 2γe − 2βγ2 + α2γ2 − 2αγ)x2
2 + O(∥x∥3)

= −(β − 1)2(β2 − 2β − α2)x2
1 + 2(β − 1)(2αβ + α2γe + e + γ − α − αβ2)x1x2

+ (β − 1)2(β4 − 4β3 − 2αγβ2 + 5β2 + 4αβγ − 2β

+ α2γ2 + γ2 + e2 − 2αγ + 2γe)x2
2 + O(∥x∥3),

where O(∥x∥3) denotes terms of order equal and greater than 3. We observe that ∆V
is negative deûnite when S < 0. In fact, (β2 − 2β − α2) is positive, and furthermore

(3.11) 13β4 + 4β2 + α2 + α2β2 + α2β2γ2 + 8αβ3γ + γ2 + β2γ2 + β6 + e2 + β2e2

+ 4γe + α2γ2 + 4αβe + 2α2γe

< 12β3 + 2α2β + 2α2βγ2 + 4βγe + 2βγ + γ2e2 + 2αγ2 + 12α3

+ 14αβe + 12αβ2γ + 2αβ4γ + 2αγ + 2βe + 6β5

+ 2βγ2 + 2αβ2e + α2e2 + 2αe .

Now, we note that −(β − 1)2(β2 − 2β − α2) < 0 is negative and that det( s11 s12
s21 s22 ) > 0,

where

s11 = −(β − 1)2(β2 − 2β − α2),
s12 = (β − 1)(2αβ + α2γe + e + γ − α − αβ2),
s21 = (β − 1)(2αβ + α2γe + e + γ − α − αβ2),
s22 = (β − 1)2(β4 − 4β3 − 2αγβ2 + 5β2 + 4αβγ

− 2β + α2γ2 + γ2 + e2 − 2αγ + 2γe).
In fact,

det(s11 s12
s21 s22

) = −(β − 1)4( 13β4 + 4β2 + α2 + α2β2 + α2β2γ2 + 8αβ3γ

+ γ2 + β2γ2 + β6 + e2 + β2e2 + 4γe + α2γ2 + 4αβe − 12β3

− 2α2β − 2α2bc2 − 4βγe − 2βγ + 2α2γe − γ2e2 − 2αγ2

− 12α3 − 14αβe − 12αγβ2 − 2αβ4γ − 2αγ − 2βe − 6β5

− 2βγ2 − 2αβ2e − (α2e2 − 2αe)) .

By inequality (3.11) we have that the factor at the right-hand side of the determinant,
is less than zero and −(β − 1)4 < 0, we conclude that the quadratic form S is negative
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deûnite. _erefore, ∆V is negative deûnite. By Lyapunov’s _eorem for asymptotic
stability we conclude that the null solution of system (3.9) is asymptotically stable.

Example 3.10 Observe in system (3.9) that if α = e = 1 and β = 5
2 , the condition

β2 − 2β − α2 = ( 52 )
2 − 5 − 1 = 1

4 > 0 is satisûed, and substituting in (3.11), we verify
that 61629

64 < 15585
16 , which implies that the null solution of the system (3.9), given by

x1(n + 1) = x1(n) + x2(n) + x2
2(n)

− 3
2 − 2hx2(n)

x2(n + 1) = −[ x1(n) + x2(n) + x2
2(n)

− 3
2 − 2hx2(n)

] + [−3
2
− hx2(n)]x2(n)

− f [ x1(n) + x2(n) + x2
2(n)

− 3
2 − 2hx2(n)

]
2
.

is stable in the Lyapunov sense.

Finally, we point out that the value of f is arbitrary and is not relevant at the mo-
ment of analyzing the type of stability of the null solution.

Acknowledgments _e authors would like to thank the referee for valuable com-
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