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Abstract
A concept for a femtosecond pulse compressor based on underdense plasma prisms is presented. An analytical model is
developed to calculate the spectral phase incurred and the expected pulse compression. A 2D particle-in-cell simulation
verifies the analytical model. Simulated intensities (∼1016 W/cm2) were orders of magnitude higher than the damage
threshold for conventional gratings used in chirped pulse amplification. Theoretical geometries for compact (tens of cm
scale) compressors for 1, 10 and 100 PW power levels are proposed.
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1. Introduction

Since the invention of the chirped pulse amplification tech-
nique for generating high-power, ultra-short pulses[1], there
has been a rapid development of petawatt class facilities
around the world, from one in 1998 to more than 50 in
the mid-2010s[2] to several at the 10 PW level and beyond
today[3]. There are multiple limitations to continuing to
extend these facilities to ultra-high powers, but one critical
technology that has been identified as a challenge[4] is the
pulse compressor, which currently relies on large gratings.
Conventional optics have a damage threshold that depends
on the coating type and either the fluence or intensity of
the incident laser light. In practice, the fluence threshold is
at most 1 J/cm2[5]. Thus, for the 0.1–1 kJ energies required
to make petawatt laser pulses, the gratings must be on the
square meter scale or larger, which is both a technological
and a cost limitation. There is, however, a scientific interest
in further increasing the power for studies of, for example,
optics in the relativistic regime[6] to the behavior of matter in
extremely strong electromagnetic fields[7–9].

One alternative to conventional chirped pulse amplifica-
tion using a grating compressor is the use of plasma, which
has intensity limits for degradation of performance that are
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many orders of magnitude higher than conventional optical
elements. In principle, plasma could be used to compress
a chirped pulse through group velocity dispersion, which
recently has been theoretically demonstrated for mm-scale,
near critical-density plasma[10]. At lower plasma densities,
however, the required path lengths would be too long for
practical use. This motivates the use of a structured plasma
that can take advantage of geometric dispersion to compress
a pulse over a much smaller spatial footprint.

The use of parametric processes, such as Raman[11,12]

and Brillouin[13,14] scattering, has been explored for ampli-
fiers or for volume compression using plasma Bragg grat-
ings[15]. These schemes rely on the generation of periodic
structures and operation at near-relativistic laser intensities,
Iλ2 � 1017 W/cm2, where I is the intensity and λ is the
wavelength. At such intensities, there are multiple nonlinear
processes that can degrade performance, for example, wave-
breaking and pre-depletion of the pump laser pulses by ther-
mal plasma[16], and laser filamentation instabilities[17]. More
recent studies have considered the replacement of the con-
ventional gratings with transient plasma transmission grat-
ings[18,19]. As transmission gratings require a small amount
of plasma and the dispersion comes from geometric consid-
erations, the scheme should be less sensitive to nonlinearities
or plasma inhomogeneity. Another method for obtaining the
required angular dispersion is through transverse plasma
density gradients, which have previously been studied in the
context of plasma lenses[20–22] and for laser steering[23,24].
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Figure 1. Schematic of a plasma prism based on ionization of hydrogen
gas in an additively manufactured gas cell[25].

In this paper, we present an approach for pulse compres-
sion using prisms of uniform underdense plasma that may
be made using shaped gas cells, as shown in Figure 1.
This design has the advantages of beginning only with gas
(and so being reproducible at high repetition rates), using
simple geometry, withstanding intensities several orders of
magnitude higher than conventional gratings, and remaining
relatively compact. With these advantages, plasma-prism
compression may offer an approach to plasma-based com-
pression for the next generation of high-power lasers.

2. Dispersion in plasma

The linear dispersion relation for light propagating in an
unmagnetized plasma is ω2 = c2k2 + ω2

p, where ωp =√
e2ne/meε0 is the plasma frequency for electron number

density ne. The refractive index is therefore n(ω) =√
1−ω2

p/ω
2. For convenience, we define the relative density

of plasma N = ne/nc, where nc = ε0meω
2
0/e2 is the critical

density for the central frequency of the laser, ω0, and ε0, e
and me are the vacuum permittivity and electron charge and
mass, respectively.

The temporal profile of a linearly chirped Gaussian pulse
can be expressed as follows:

E(t) = E0�
(

e−iω0te− 1
2 (1+iC0)(t/τ0)2

)
, (1)

where E0 is the pulse amplitude, τ0 is the half-width at the
1/e level of intensity and C0 is the linear chirp factor. The

bandwidth-limited duration of the pulse is τ1 = τ0/

√
1+C2

0.

The frequency bandwidth of the pulse may be quantified by
the half-width of

∣∣̂E (ω)
∣∣2 at the 1/e level, �ω = 1/τ1

[26].
A frequency component ω propagating in a dispersive

medium will incur a spectral phase � (ω) = ωP/c, where
P is the optical path length:

P =
∫

n(r)dr, (2)

integrated along the frequency-dependent path of propaga-
tion. Expanding � in a Taylor series about ω0 yields

� = �0 + (ω−ω0)�
′
0 + 1

2
(ω−ω0)

2� ′′
0

+ 1
6
(ω−ω0)

3� ′′′
0 +. . . , (3)

where �0 = � (ω0) and � ′
0 = ∂�/∂ω

∣∣
ω=ω0

are the phase
and group delays, respectively, which only displace the pulse
and do not affect the phase fronts or temporal profile. The
second-order phase,

� ′′
0 ≡ ∂2�

∂ω2

∣∣∣∣
ω0

= 1
c

(
2
∂P
∂ω

+ω
∂2P
∂ω2

)∣∣∣∣
ω0

, (4)

is the group delay dispersion (GDD) incurred within the
medium.

Depending on its sign, the GDD will increase or decrease
the linear chirp of a pulse. For instance, the GDD necessary
to compress a linearly chirped pulse to the bandwidth limit
is � ′′

0 = C0τ
2
0 /

(
1+C2

0

)
[26]. Third-order dispersion (TOD),

� ′′′
0 ≡ ∂3�

∂ω3

∣∣∣∣
ω0

= 1
c

(
3
∂2P
∂ω2 +ω

∂3P
∂ω3

)∣∣∣∣
ω0

, (5)

and higher order terms will distort the Gaussian pulse
shape. The spectral phase incurred within an optical system
will affect a pulse traveling through it via Êpost (ω) =
Êpre (ω)ei�(ω).

3. Compressor design

The prism compressor is constructed from four plasma
prisms. Figure 1 shows a concept for implementation
of such a plasma prism in practice, based on additively
manufactured gas cells that have been used successfully in
laser-wakefield acceleration experiments[25]. The prisms are
arranged symmetrically across a central ‘mirror’ axis, as
shown in Figure 2. The apexes of the prisms are spaced a
distance L apart, with the second prism apex elevated above
the first, forming an angle α. The mirror axis is at a distance
M from the tip of the second prism. Each prism has a uniform
relative plasma density N < 1. All frequency components
enter the first prism and exit the second prism at the
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Figure 2. Path of lower frequency (red) and higher frequency (blue) rays
through the plasma-prism compressor.

Brewster’s angle θB = arctan
(√

1−N
)

with respect to the
surface. The half-angle of each prism is the Brewster’s angle
in plasma θ ′

B = arctan
(
1/

√
1−N

)
. A ray with frequency

ω enters the second prism at an angle ϕ2, which becomes
ϕ′

2 inside the prism. On the other boundary, it exits the
plasma at angle ϕ′

1, which becomes θB upon exit to vacuum.
These angles can be expressed in terms of the frequency and
refractive index of the plasmas as follows:

ϕ2 (ω)= arcsin
(
sin2θ ′

B ·
√

n2 (ω)−sin2θB− cos2θ ′
B · sinθB

)
,

(6)

ϕ′
2 (ω) = 2θ ′

B −ϕ′
1 (ω), (7)

ϕ′
1 (ω) = arcsin(sinθB/n(ω)) . (8)

A ray with frequency ω that travels through the tip of the
first prism will travel a length a1 between the two prisms, a2

within the second prism and a3 from the second prism to the
mirror. Lengths a1,a2 and a3 are a function of frequency and
are derived from the geometry of the prism arrangement as
follows:

a1 = L
cosα

cos
(
α + θB −2θ ′

B

)
cosϕ2

, (9)

a2 = L
cosα

sin2θ ′
B sin

(
2θ ′

B − θB −α −ϕ2
)

cosϕ2 cosϕ′
1

, (10)

a3 = M − L
cosα

sinθB cosϕ′
2 sin

(
2θ ′

B − θB −α −ϕ2
)

cosϕ2 cosϕ′
1

. (11)

Assuming sharp vacuum–plasma boundaries, the inte-
gration in Equation (2) can be estimated as P(ω) =
2(a1 (ω)+n(ω)a2 (ω)+a3 (ω)). In principle, it is not neces-
sary for the boundaries to be sharp for the concept to work,
since for refraction under the ray-tracing approximation,
Snell’s law holds for non-sharp. In practice, the additional

Figure 3. Allowed values of L and α such that � ′′
0 = 10,000 for densities

N varying from 0.1 to 0.005 (colored lines, labeled).

phase accumulation from boundary ramps could be pre-
compensated using a spectral phase control device.

The overall spectral phase applied by the compressor is
parameterized by N, L and α, that is, � = � (ω;N,L,α). The
compressor geometry was optimized using these parameters
such that � ′′

0 = C0τ
2
0 /

(
1+C2

0

)
and higher order distortions

were minimized. To quantify the distorting effect of TOD
in particular, the parameter q = 1

6� ′′′
0 �ω3 is defined as the

contribution of TOD to the incurred phase at ω = ω0 +�ω.
Figure 3 shows the parameter phase space of L and α such
that � ′′

0 = 10,000 (e.g., designed to compress a pulse with
τ0 = 1000 fs, C0 = 100 to τ1 = 10 fs) for normalized densities
N varying from 0.1 to 0.005 and assuming sharp plasma
boundaries. The angle α is defined to be negative when the
apex of the second prism is below the first, and is limited
above by the angle of refraction of the highest frequency in
the pulse and limited below by the first prism. Thus, α is
constrained by � ′′

0 (ωmax) < 2θ ′
B −θB −α < π/2, where ωmax

can be approximated as ω0 +2�ω. Larger densities and more
negative values α apply the necessary GDD in less distance.
While the initial linear chirp is eliminated from the pulse,
TOD is significant in this region of parameter space. Using
Equations (9)–(11) and (5), we calculate q along each line
plotted in Figure 3 and plot it in Figure 4. Here, q decreases
with decreasing N and decreasing α, but always remains
q > 2. The criterion for minimal shape distortion is q � 0.1,
which is not possible by optimizing parameters N, L and α

alone.
Figure 5 shows the shape distorting effects of TOD on

a bandwidth-limited pulse. When q is 0, the pulse is near
transform-limited. As q increases, the peak intensity drops,
and additional peaks appear earlier in time.

To correct TOD errors, the spectral phase of the uncom-
pressed pulse may be pre-compensated in the front end of
the laser chain. Alternatively, a correcting plasma slab with
a polynomial density profile can be inserted at the mirror
axis. This is the plane where the frequency components of
the incoming pulse are spatially dispersed, vertically.
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Figure 4. Third-order distortion q for densities N varying from 0.1 to 0.005
such that � ′′

0 = 10,000, showing that TOD needs to be compensated for.

Figure 5. Effects of TOD on a bandwidth-limited pulse showing that q > 2
corresponds to a severe TOD phase error.

Halfway through the compressor, a ray with frequency ω

is located a distance y above the first prism:

y(ω) = L
cosα

(
sinα + cosθB cosϕ′

2 sin
(
2θ ′

B−θB−α−ϕ2
)

cosϕ′
1 cosϕ2

)
,

(12)

which to first order in frequency is y(ω) = y0 + A(ω−ω0).
Define a rectangular slab of plasma centered horizontally at
the mirror axis with width W and relative density profile
N (y(ω)) = N0 +B(y− y0)

3. The spectral phase accumulated
over a length W is

� (ω) = ω

c
Wn(ω) = ω

c
W

√
1− N (ω)ω2

0

ω2 , (13)

for which the GDD is

∂2�

∂ω2

∣∣∣∣
ω0

= W
cω0

√
1−N0

(
N0

1−N0

)
, (14)

and the TOD is

∂3�

∂ω3

∣∣∣∣
ω0

= −3W
cω2

0

√
1−N0

(
N0

(1−N0)
2 −BA3ω3

0

)
. (15)

From Equations (5) and (15), it follows that B must equal

B = 1
A3ω3

0

(
N0

(1−N0)
2 +�0′′′

cω2
0

3W

√
1−N0

)
, (16)

and the correcting slab will compensate for the TOD
incurred by the other four prisms.

4. Simulation in OSIRIS

The full plasma-prism compressor, including TOD compen-
sation, was simulated in two dimensions with the particle-in-
cell (PIC) framework OSIRIS [27,28]. OSIRIS solves Faraday
and Ampere’s laws in differential form using the finite dif-
ference time domain technique. By solving these equations,
OSIRIS captures effects that cannot be modeled with ray
tracing, such as the finite pulse width and duration and
nonlinear plasma dynamics.

The laser pulse is initialized with a Gaussian temporal and
transverse profile with 1/e intensity duration τ and width
w0. The simulation window moves in the x direction at the
speed of light and is of size (4000 c/ω0) × (4500 c/ω0) =
509 μm × 573 μm and had 8192 × 8192 = 6.7 × 107 grid
points. The time step used was �t = 0.395/ω0 = 0.168 fs.
Each simulation cell contained two electrons, for a total of
1.3 × 108 particles. For a pulse wavelength of 0.8 μm, the
(angular) frequency is ω0 = 2.355 fs−1. The laser pulse
started with length τ0 = 100 fs, chirp factor C0 = 10,
amplitude a0 = 0.05 and spot size w0 = 12.84 μm,
corresponding to a Rayleigh length of zR = 647 μm.
Here, a0 = eE0/(mecω0) is the normalized vector potential
amplitude of the laser electric field. The pulse was polarized
in the x–y plane. The prism system had relative plasma
density N = 0.2, distance between apexes L = 800 μm and
angle α = −8◦. The correction slab had width W = 100 μm,
central relative density N0 = 0.03 and density growth factor
B = 1.512×10−7 μm−3.

Figure 6 shows the intensity profile of the pulse overlaid on
the prism compressor at seven locations along its trajectory.
Simulation outputs are plotted roughly every 1.8 ps. The
pulse can be seen compressing in duration as it travels from
left to right through the system. The system is symmetric
about the mirror axis at x = 1350 μm. The dashed lines
show the results of ray tracing through the compressor for
frequencies ω0 ±2�ω, calculated by applying Snell’s law at
each boundary and propagating to the next boundary. The
simulated pulse remains confined by these paths for roughly
three Rayleigh lengths before the effects of diffraction can
be observed in the transverse spreading of the pulse. This
spreading could be mitigated by beginning with a larger
spot size w0 ≥ 2

√
c(L+M)/ω0, such that the length of the

system is no more than one Rayleigh length.
Figure 7 compares the initial and final pulse profiles with

the transform-limited profile and theoretically predicted
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Figure 6. Full compression of a pulse with duration τ0 = 100 fs is simulated in OSIRIS using a plasma-prism system. The plasma density profile is plotted
in yellow. Seven simulation outputs are plotted with timestamps. The dashed lines show the expected paths of ω0 ±2�ω frequency components.

Figure 7. Comparison of initial, simulated, analytical and transform-
limited pulse power profiles.

profile. The simulated pulse ends with a full width at
half-maximum (FWHM) of 22.4 fs, a compression ratio
of 7.4 from its initial duration of 166.5 fs and 1.3 times
the transform-limited duration of 16.6 fs. The simulated
profile has a 20% narrower FWHM and longer tails than the
analytical profile, likely due to wavefront curvature that the
theory cannot account for. Both have a peak power of 83 GW.

5. Discussion

The OSIRIS simulation confirms the feasibility of femtosec-
ond pulse compression using plasma prisms. Estimating the
resulting pulse shape given a particular compressor geometry
with the analytically derived expressions can be completed
near instantly, whereas the OSIRIS simulation ran in parallel
for roughly 12 hours on 36 cores. The compressor used a
relatively high density of N = 0.2 to shrink the system to
less than 3 mm in length to reduce computation time. There
are other effects that need to be accounted for to improve the
accuracy of this analytical estimation, including diffraction,
wavefront curvature and more realistic density profiles at the
prism–vacuum interfaces. However, it should be noted that,
having been successfully demonstrated by direct ab initio
simulation at high density/compact size, scaling up to higher
powers with larger focal spots, where the Rayleigh length
is longer, would be even more accurately described by ray
tracing.

The compression of a pulse is sensitive to the exact
GDD incurred. The simulation geometry applies a GDD of

864 fs2, 13.6% less than 1000 fs2 necessary to achieve the
transform limit. The resulting pulse is 35% longer and has
38% less power than if it were transform-limited. The system
geometry could be further optimized to compress pulses
closer to the bandwidth limit.

Additional OSIRIS simulations (not shown) indicate that
the trajectory of the pulse remains largely unaffected when
the sharp plasma boundaries are replaced by 200 μm ramps.
However, the GDD is sensitive to the presence of the ramp
(because of the added optical path). To incorporate this
into the analytical expressions one would need to trace
the frequency-dependent trajectory in a density gradient
and integrate the optical path length in Equation (2). Step-
function boundaries were assumed in the derivation of Equa-
tions (9)–(11) so that closed-form expressions for the partial
derivatives in Equations (4) and (5) would exist.

In the case of femtosecond pulses, the damage threshold
for conventional diffraction gratings is of the order of 1013–
1014 W/cm2[29,30]. The peak intensity of the simulated pulse
reached 1.14 × 1016 W/cm2. At this intensity, no nonlin-
ear phenomena that could disrupt the compression process
were observed. Although the simulated pulse power reached
83 GW, self-focusing was not observed. The critical power
for self-focusing is Pcr ≈ (17/N) GW[31], which for the
parameters here means that P/Pcr ∼ 1. Even for higher pow-
ers, however, previous studies have shown that self-focusing
may not occur for ultra-short pulses even if the pulse peak
power is many times larger than the critical power[32,33].

The fastest growing parametric instability that can dis-
rupt the compression would be stimulated Raman scattering
(SRS). A positive chirp in ultra-short pulses in underdense
plasma has been found to increase backward SRS[34,35].
Limiting backward SRS by constraining γ0τFWHM < 12,

where γ0 = (1/2)a0ω0

√(
ωp/ω0

)
/
(
1−ωp/ω0

)
is the SRS

growth rate[36], imposes an upper bound on the peak laser
intensity and optimal system geometry. In terms of the
prism density N, this constraint can be expressed as N <

1/
(
1+ (ln2/144) (ω0a0τ0)

2)2
. For the simulated parameters

N = 0.2 is less than NSRS = 0.36, which is consistent with
the absence of SRS in the simulations.

Given the constraints on beam spot size and prism density,
Table 1 lists theoretical design parameters that could be
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Table 1. Proposed design parameters for higher power compres-
sors that supply a GDD of 1000 fs2.

1 PW 10 PW 100 PW

a0 0.01 0.01 0.01
w0 [mm] 1.7 5.5 17
N 0.05 0.03 0.01
α [◦] –6 –16 –24
L [mm] 131 151 364
M [mm] 100 100 140
N0 0.01 0.01 0.01
W [mm] 10 10 10
B [mm−3] 3.79×10−4 9.70×10−4 1.75×10−3

used for compact high-power systems that incur a GDD of
1000 fs2, such as for compressing a τ0 = 1 ps, C0 = 100 pulse
to τ1 = 10 fs. The total system size for these compressors
is on the scale of 1 m. Note that in practice, the gas would
require ionization. For hydrogen gas the barrier suppression
ionization (BSI) intensity is of the order of 1014 W/cm2,
which is two orders of magnitude below the peak intensity,
and so the gas may be considered to be fully ionized far
before the main pulse peak intensity. However, the initial
1 ps long chirped pulse would be close to the BSI intensity
and may therefore require some system for (pre-)ionizing
the plasma along the laser path, for example, ionization by
a second laser, electrical discharge or cylindrically focusing
in the z direction to result in higher intensity in the earlier
prisms.

Ionization of the plasma will be an important consider-
ation for an experimental demonstration. It should also be
noted that the studies here only considered collisionless ideal
plasma, but it is clear that thermal corrections, fluctuations,
collisional effects, etc., will affect the dispersive properties
of the plasma prisms and potentially laser energy absorption.
For random fluctuations, however, the resulting phase errors
may be expected to average to zero over long scales. The
effects of ionization and neutral gas as well as non-sharp
plasma–vacuum boundaries may generate non-zero averag-
ing phase errors that may need compensation. Proof-of-
principle experiments and detailed calculations investigating
these effects are left for further work.

6. Conclusions

A novel compressor for high-power femtosecond pulses
based on underdense plasma prisms can operate at inten-
sities that are orders of magnitude higher than systems
using diffraction gratings or solid-state prisms. An analytical
model was developed to calculate the spectral phase acquired
in the compressor and the corresponding pulse compression.
The theory was verified with OSIRIS PIC simulations. Using
only plasma prisms, it is impossible to completely eliminate
TOD through geometric optimization. However, the TOD

could be compensated in the laser front end or by introducing
a plasma slab with a cubic density profile at the center of the
compressor. Within these constraints, a compact high-power
compressor with overall dimensions of less than 1 m can be
designed. At the intensities simulated (1016 W/cm2), neither
self-focusing nor SRS was observed.
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