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RIGIDITY FOR ELLIPTIC ISOMETRIC IMBEDDINGS

NOBORU TANAKA

Introduction

The main purpose of the present paper is to give the details of the
results announced in the P. J. A. note [11], establishing some global
theorems on rigidity for a certain class of isometric imbeddings.

We first introduce the notion of an elliptic imbedding: An im-
bedding f of a manifold M in a Euclidean space R™ is called elliptic if
it is generic in a suitable sense and if the second fundamental form
corresponding to any normal vector == 0 of the imbedding has at least
two eigenvalues of the same sign. We then prove a rigidity theorem
(Theorem 2.4) which may be roughly stated as follows: Let f; be an
imbedding of M in R™. Assume that 1) f is elliptic, 2) it is “infini-
tesimally rigid” and 8) M is compact. If two imbeddings f and f’ of
M in R™ lie both near to f, with respect to the C3-topology and if they
induce the same Riemannian metric on M, then there is a unique Euecli-
dean transformation o of R™ such that f/ = af. Moreover we apply
Theorem 2.4 to the canonical isometric imbedding f, of a compact her-
mitian symmetric space M = G/H in the Euclidean space R™, where
m = dim G. In fact it is shown that the imbedding f, satisfies the
conditions 1), 2) and 3) stated above (Proposition 3.3 and Theorem 3.4).
Thus we obtain a rigidity theorem (Theorem 3.5) for imbeddings around
fi» which turns out to be a partial generalization of the famous theorem
of Cohn-Vossen.

In §1 we first define an important differential operator L = Lf,
which is associated with every imbedding f of M in R™ satisfying con-
dition (C), where “condition (C)” is the very generality condition to impose
on an elliptic imbedding. It is shown that the operator L is, in a
suitable sense, equivalent to the differential operator @,,, ‘“the operator
of infinitesimal isometric deformations” of f (Theorem 1.2). We then
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proceed to the definition of an elliptic imbedding and find that an im-
bedding f is elliptic if and only if the operator L is elliptic.

In §2 we prove Theorem 2.4. The proof heavily depends on Theorem
2.3 which is the principle of upper semi-continuity concerning the oper-
ators Lf parametrized by the elliptic imbeddings £ and which is analogous
to Theorem 4 in Kodaira-Spencer [4]. Finally § 8 is devoted to the proof
of Theorem 3.4, which needs some calculations on the Laplacian 4 of
the hermitian symmetric space M = G/H.

Preliminary remark

Throughout the present paper we shall always assume the differ-
entiability of class C=.

Let F be a differentiable vector bundle over a differentiable manifold
M. E, will denote the fibre of E over a point pe M. I'(E) will denote
the vector space of differentiable cross sections on M. An inner product
{,> in F is an assignment which assigns to every point p € M an inner
product {, > in the fibre E, and which is differentiable in an appropriate
sense.

§1. Elliptic imbeddings

1.1. The differential cperator @,,. Let M be a connected differentiable
manifold. 7T denotes the tangent bundle of M and T7* its dual. S?T*
denotes the vector bundle of symmetric tensors of type () on M. For
a,fe T}, a-B denotes the symmetric product of « and g, being an ele-
ment of S*T}.

Let R™ be the space of m real variables and «,,---,x, the canonical
coordinates of it. As usual R™ is an m-dimensional Euclidean space
(flat Riemannian manifold) with respect to the Riemannian metric ds* =
>l.dai.  R™ is also considered as an m-dimensional Euclidean vector
space with respect to the inner product {, > defined as follows: <a,b) =
> ab;, where a = (a,,-+,0,), b= (b, --+,b,) €R™

Let @ = (@, -+, ) and 8= (B, - - -, Bn) be R™-valued 1-forms on M
and let f=(fy, -+, fn) be an R™-valued function on M. <a,B)> denotes
the cross section of S*T* defined by <{a, B> = D, a;p; or

{a, )X, Y) = $(a(X), B(Y)) + <a(Y), B(X)}) .
for all X,YeT, and pe M. {f,a) denotes the 1-form on M defined by
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ey =23 fiag or {f,ax(X) = {f,a(X)>. df denotes the exterior deriva-
tive of f:df=(df, - -, dfm)-

Let I'(M, m) be the vector space of differentiable maps of M to R™,
which may be regarded as the vector space of R™-valued differentiable
functions on M. Let &M, m) be the subset of I'(M,m) consisting of all
the imbeddings of M in R™. We assume €M, m) + ¢. For fe &M, m),
we denote by @(f) the Riemannian metric f*ds? on M which is induced
from ds? by the imbedding f; We have

D(f) = <df,df .

Given a Riemannian metric v on M, fe &M, m) is called an isometric
imbedding of the Riemannian manifold (#,v) in the Euclidean space R™
if @(f) coincides with the given .

The assignment f— @(f) gives a map @ of the set €M, m) to the
set RWM) of Riemannian metrics on M. For fe&M,m), we define a
differential operator @., of I'(M,m) to I'(S’T*), the differential of the
map @ at f, by

D, (w) = 2{df, duy
for all we I'(M,m).

1.2, The second fundamental forms. Let f be an imbedding of M in
R™. Let T be the vector bundle on M which is induced from the tan-
gent bundle T(R™) of R™ by the imbedding f. The Riemannian metric
ds® on R™ induces an inner product in the vector bundle 7’ and the
tangent bundle T of M may be identified with a subbundle of 7. This
being said, the normal bundle N of f is the orthogonal complement of
T in T" with respect to the inner product in 77: 7" =T @ N. T’ being
a trivial bundle in a canonical manner, every fibre 7 of 7' may be
identified with the Euclidean vector space R™ and hence a cross section
of 7" may be regarded as an R™-valued function on M and vice versa.

Let V be the covariant differentiation® (Riemannian connection) as-
sociated with the Riemannian metric v = @(f). Given an R™-valued
tensor field @ = (ay, -+, a,) of type (}) on M, we define the covariant
derivative e of @ in an obvious manner: Va = (Va,, ---,Va,). Note
that Vyu = du(X) = Xu for all XeT, and R™-valued functions » on M.

The following proposition is known.

L Ag for the covariant differentiation F, we use the same notations as in [3].
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PROPOSITION 1.1. For all X, YeT,, the vectors Vilyf are in the
fibre N, of the normal bundle N.

Proof. We have {Iyf,V,f> =uvY,Z) for all Y, Z<cT,, whence
TV Vaf> + FefiVal o f) = Wx)(Y,Z) =0
For al' XeT,. Hence we have
IV 2fiVxf> =0,
TV xfiVef) + VxfiValvf> =0

for all X, YeT,. Since Vylyf=VyVxf and since T, is composed of
the vectors Vyf(Y €T,), we have V'xVxfe N, and hence Vy/'yfe N,, prov-
ing our assertion.

Let us now consider the following condition (C)® for the imbedding
f: At each pe M, the fibre N, of N is spanned by the vectors of the
form Vylyf, where X, YeT,.

For ae N,, we define an element ¢, of S*T} by

0o(X,Y) = a, V5V xf),

which is usually called the second fundamental form of f corresponding
to the normal vector a. Then we see that f satisfies condition (C) if
and only if the map 6: Nsa— 0,¢ S*T* is injective.

1.3. The differential operator L. In what follows we assume that
the imbedding f satisfies condition (C). By the above remark the image
N of N by 6 forms a subbundle of S*T*, which will be called the bundle
of second fundamental forms of f.

We define a differential operator D of I'(T*) to I'(S*T*) by
D)X, Y) = Txo)(Y) + Tye)(X)

for all o I'(T*) and X, YeT,, and denote by = the projection of S*7T*
onto the factor bundle S?7%*/N. Then the composition L = zoD is a
differential operator of I'(T*) to I'(S*T* /N).

THEOREM 1.2. Let f be an imbedding of M in R™ satisfying con-
dition (C) and let «eI'(S*T*). Then the solutions u of the equation

2 This is equivalent to the condition that, at each pe M, the vector space Rm is
spanned by the vectors of the form (3f/dx:)(p), (6%f/dx:0x;)p), where x1,---,%, is a co-
ordinate system of M at p.
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O, (W) =a are in a one-to-one correspondence with the solutions ¢ of
the equation Lo = ma, and the correspondence u— ¢ is given by the
relation ¢ = u,df).

Proof. Let uelI'(M,m). Put ¢ = <{u,df) and denote by X the vector
field on M which is dual to the 1-form ¢ with respect to the Riemannian
metric v. Put

1.1 v=u—Xf.
Then we have
(0, Af(V)> = Cu, dF(Y)> — <AFX), df(Y)y
=¢Y) —uX,Y) =0

for all Y eT,, showing that v may be regarded as a cross section of
N. Furthermore from (1.1) we get

1.2) Veuw =Vyv + Vil xf + Ty X)f

for all YeT,. Since <v,V,f) =0 for all ZeT,, we have {Vyv,V,f) =
—Lv, VeV ,f) for all Y, ZeT,. Therefore it follows from (1.2) and
Proposition 1.1 that
Fyu,Vofy =Wy X) V2> + Vyv,V o>
=wvlVyY,Z) — v, ViV 2f)
and hence

Fyu,Vof) = Wyp)2) — 6,Y,2),

where 6, is the cross section of N defined by ©,), = 0(w(p)). Commuting
Y and Z in the above equality, we also obtain

FVzu,Vyf) = WV(Y) — 0,Z,Y).
Therefore from these two equalities we get
1.3) 2{df,duy = Dp — 26, .

Now suppose that » is a solution of the equation @.,(u) = «. 6, being
a cross section of N, we know from (1.3) that ¢ is a solution of the
equation Ly = na. Conversely let ¢ be a solution of the equation Ly =
na. Since Dy — a is a cross section of N and since 6: N — N is an
isomorphism, there is a unique cross section v of N such that Dy — «
= 20,. If we put u =v + Xf,X being the dual to ¢, then we can see
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from the above argument that {u,df)> = ¢ and that # is a solution of
the equation @,,(u) = «. We have thereby proved Theorem 1.2.

1.4. An elliptic imbedding. Let f be an imbedding of M in R™
satisfying condition (C). Let & be any covector at any point peM,
i.e., £eTk. The symbol (&) of the operator L at & is a linear map of
T# to S*T%/N, defined as follows: Take a function f on M such that
J®) =0 and df, = & and, for any ye T}, take ¢ € I'(T*) such that ¢, = 7.
Then o(¢)y = L(f¢),. We have

D(fo)(X,Y) =Vxf-oY) + Vyf - o(X) + fDo(X,Y)
for all X, YeT,, whence D(f¢), = 26-n. Therefore we get
(1.4) o8y = 2r(&-p) .

The operator L is called elliptic if the symbol ¢(§) is injective at
any non-zero covector & (For the theory of elliptic linear differential
operators on manifolds, we refer to [10].) Furthermore we shall say
that a subbundle of S?T* is elliptic if it contains no non-zero elements
of the form &.7, where & and y are covectors with the same origin, or
equivalently if every symmetric form (s 0) in the subbundle has at least
two eigenvalues of the same sign.

By (1.4) we have the following

PROPOSITION 1.3. The differential operator L associated with f is
elliptic if and only if the bundle N of second fundamental forms of f
s elliptic.

We shall say that an imbedding fof M in R™ is elliptic if it satisfies
condition (C) and if the bundle N is elliptic.

PRrROPOSITION 1.4. Let f be an imbedding of M in R™. We assume
that f is elliptic and that M is compact. Then the solution space of the
equation D..(w) = 0 is finite dimensional.

This follows immediately from Theorem 1.2 and a well known theo-
rem on elliptic operators.

§2. A rigidity theorem for elliptic imbeddings

2.1. Imbeddings and Euclidean transformations. Let O(m) be the or-
thogonal group of degree m. A FEuclidean transformation of R™ is a
transformation o of the form:
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ax = bx + ¢ (xeR™,

where b e O(m) and ce R™. The set E(m) of Euclidean transformations
forms a Lie group.

Let o(m) be the Lie algebra of skew-symmetric matrices of degree
m, being the Lie algebra of O(m). An infinitesimal Euclidean transfor-
mation of R™ is a map A of R™ to itself of the form:

Ax =Bx+c¢ (xeR™,

where Beo(m) and ceR™ The set e(m) of infinitesimal Euclidean
transformations forms a Lie algebra, being the Lie algebra of E{(m).

Let M and R™ be as in §1. For fe €(M,m) and a € E(m), we have
afe@M,m) and

D(af) = o(f) .

Thus the group E(m) acts on €(M,m) as a transformation group and
the map @ is an invariant. It is clear that E(m) leaves invariant the
subset €, of (M, m) composed of all the imbeddings satisfying condition
(C) as well as the subset €, of ©(M,m) composed of all the elliptic
imbeddings.

PropPOSITION 2.1. The group E(m) freely acts on the subset €, of
S(M, m).

Proof. Suppose that af = f, where a e E(m) and fc¢€,. Then bf +
¢ =f, whence bV yf=Vxf and bV xVyf = VxVyf for all X, YeT,. Since
the vectors Vyf, ViVyf span the vector space R™, we have b = ¢, the
identity, and ¢ = 0, proving our assertion.

PROPOSITION 2.2. Let f be an imbedding of M in R™.

(1) For all Ace(m), Af is a solution of the equation @..(u) O.

@) If f satisfies condition (C), then the map e(m)s A — Afe I'(M,m)
18 tnjective.

This is clear from the invariance of @ and Proposition 2.1.

Let p(f) denote the dimension of the solution space of the equation
?..(w) =0, which is also the dimension of the solution space of the
equation Ly = 0 by Theorem 1.2. Then Proposition 2.2 implies

o(f) = dim E(m) = im(m + 1),
provided that f satisfies condition (C).
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2.2. Upper semi-continuity of the dimension o(f). Let us introduce
the C7-topology in the set I'(M,m). (Let J be the vector bundle on M
consisting of all the r-jets of local differentiable maps of M in R™.
For ueI'(M,m), let j,u denote the r-jet of u at pe M. Then the as-
signment p — jLu gives a cross section j7u of J7, and the map j7: I'(M, m)
su— jue I'(J7) is injective. This being said, the C -topology in I'(M,m)
is the topology in I'(M,m) which is induced from the compact-open
topology in I'(J7) by the injective map j7.) We denote by &M, m), the
subset €, m) of I'(M,m) equipped with the C"-topology.

We shall prove the following

THEOREM 2.3 (cf. [4], Theorem 4). Let f, be an imbedding of M in
R™. We assume that f, is elliptic and that M is compact. Then there
is a meighborhood U,(fy) of f, in (M, m), such that o(f) < p(fy) for
every fe U,(f,).

In what follows, Ff, Nf,Lf with respectively mean the covariant
differentiation F, the bundle N, the operator L which correspond to an
imbedding fe &M, m).

The Riemannian metric v = @(f) differentiably depends on the 1-jet
7*f of f, that is, the components g;; of v with respect to a coordinate
system x,, - - -, , of M are differentiable functions of j'f:v = >, ; 9.;dx.dx;
and g¢;; = Gyoj'f, where G;; are differentiable functions defined on an
open set of J'.

(2.1) It follows that the covariant differentiation I/ = F* differenti-
ably depends on the 2-jet 7% of f, that is, the Riemann-Christoffel
symbols %, associated with g,; are differentiable functions of 7°f in an
analogous sense to the above.

(2.2) Hence the derivative IFf differentiably depends on 7%f, that is,
the components of FIf with respect to the coordinate system z,,---,x,
are differentiable functions of 7%f.

We choose once for all a subbundle F of S*7* complementary to
Nto, By (2.2) we know that there is a neighborhood V(f;,) of f, in
&M, m),. such that every fe V(f,) is elliptic. If we choose V(f,) suffi-
ciently small, we also find that S27* = Nf@® F for every fe V(f,). Hence
the operator Lf(fe V(f,)) may be regarded as an operator of I'(T*) to
I'(F). From (2.1) we infer that the operator Lf differentiably depends
on the 2-jet /*f of f. Namely let «,---,2, be a coordinate system of
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M at any point p, and let «, -+, a; be a moving frame of F' defined on
a neighborhood of p,., Then we have

Lip =3 (S a4 2% + b a,
7 \%,j axj 7
where ¢ e I'(T*) and ¢ = 3 ; u,dw;, and the components af;, b are differ-
entiable functions of j%f.
We are now able to prove Theorem 2.3 in a standard fashion by
using some basic facts in the theory of elliptic operators. For com-
pleteness we ghall accomplish the proof in Appendix.

2.3. A rigidity theorem for elliptic imbeddings.

THEOREM 2.4. Let f, be an imbedding of M in R™. We assume
that f, is elliptic, o(fy) = tm(m + 1) and that M is compact. Then there
is a neighborhood U(f,) of f, in €(M,m)s having the following property:
If f, f e Uf) and if O(f) = O(f"), there is a unique Ewuclidean transfor-
mation @ of R™ such that f’ = af.

Proof. For f, ffe&M,m), weputu=f — fand h = f+ 3u. Then
we can find a neighborhood U(f;) of f, in €@, m), such that, for any
S feUf), k is in U(f), where U,(f,) is a neighborhood of f; in
©(M, m)s having the property in Theorem 2.3. Let f, f/ € U(f;,) be such
that @(f) = @(f’). This clearly gives @,,(w) = 2{dh,du> = 0. Since ke
U.(f), we have :

ymm + 1) < ph) < p(fy) = ym(m + 1),

whence p(h) = {m(m + 1). From these facts and Proposition 2.2 we see
that there are a unique B e o(m) and a unique ce R™ such that

u=DBh+c=B(f+ iu) + c.

We have det (1 — 1B) # 0, because B is a skew-symmetrix matrix. There-
fore it follows that

vu=1—1iB)"'Bf+ (1 —iB)¢
and hence
=0+ QA—iB"Bf+ 1 - B .

An easy calculation shows that 1 + (1 — {B)~'B is an orthogonal matrix,
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proving the existence part of Theorem 2.4. The uniqueness part follows
from Proposition 2.1.

2.4. Remarks on the operator L. Let f be an imbedding of M in R™
satisfying condition (C). If we put % = dim M, then we have m = n +
dim N and dim N = dim N < dim $*T* = {n(n + 1), where N (resp. N) is
the normal bundle (resp. the bundle of second fundamental forms) of f.
Hence the dimensions % and m must satisfy the inequalities:

n<m< inn + 3).

We shall now explain (without proof) how the properties of the
operator L associated with f depend on the dimensions » and m and
how the operator is connected with the imbedding problem for Rie-
mannian manifolds.

a) The operator L is over-determined when n < m < {n(n + 1).

b) PROPOSITION 2.5. In order that the operator L is elliptic, it is
necessary that® n <m < inn + 1) or n =2 and m = 3.

¢) The fibre N » of N at pe M, being a subspace of S*T¥, may be
identified with a vector space of symmetric endomorphisms of the Eu-
clidean vector space T, (The inner product in T, is defined by the
Riemannian metric v = @(f).). This being said, we define a subspace
g, of Hom(T,,T,) by g, = o(T,) + N,, where o(T,) is the vector space
of skew-symmetric endomorphisms of T,. We note that the vector
bundle g = [ g, may be regarded as the symbol® of the equation Ly = 0.

Let g be ghe t-th prolongation” of the subspace g, of Hom (T,,T,).
Then we have dim g = ndim N.

We say that the imbedding f is involutive if g, is involutive® at
every pe M. In order that fis involutive, it is necessary that in(n + 1)
<m < in(n + 3).

PROPOSITION 2.6. The tmbedding f is itnvolutive if and only if the
equation Lo = 0 is involutive.

THEOREM 2.7. If f is itnvolutive, then the equation @.,(w) = a has
a local solution for any given local cross section « of S*T*, where every-
thing should be considered in the real analytic category.

3 It is easy to show that n < m < in(n + 1) or n is even and m = jn(n + 1). The
second case occurs only when n = 2, which follows immediately from [1], Theorem 1.

4 See [8].

» and ® See [9].
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The E. Cartan’s result [2] indicates that every Riemannian manifold
M of dimension % can be locally isometrically imbedded in the Euclidean
space of dimension in(n + 1) by an involutive imbedding, where as above
everything should be considered in the real analytic category.

d) The case where m = in(n + 3). Since N = S¢T*, the operator L
is reduced to 0 and hence the equation @,.(u) = « has a global solution
for any given « e I'(S*T*), which is a basic fact in the theory of Nash
[6]. An example of such an imbedding is the canonical isometric im-
bedding of the real projective space P*(R) in the space of symmetric
matrices of degree n + 1 with vanishing trace (cf. 3.1, Example.)

e) The case where n =2 and m = 8. The imbedding f is always
involutive, and it is elliptic if and only if the second fundamental form
corresponding to any normal vector (s 0) is definite. Consider the case
where M = S?, the unit sphere in R®. Then f is elliptic if and only if
the image f(S? of S? by f is an ovaloid in R’ and when f is elliptic,
we know the following facts: 1% o(f) = im(m + 1) = 6, 2°. the equation
D.(w) = a has a global solution for any given ae I'(S*T*). These facts
play an important role in the solution [7] of the Weyl problem.

f) The case where n =3 and m = n + 1. Consider the case where
the rank of the second fundamental form corresponding to any normal
vector (s 0) is at least 3. Then the imbedding f is elliptic, and we can
prove the following facts: 1°. The equation Ly = 0 is of finite type or
more precisely, dimg, = gn(n — 1) + 1, dimg’ =n and g@ = 0, 2°. the
equation is formally integrable”, 3°. o(f) = im(m + 1) without compact-
ness assumption.

§3. Rigidity for some classes of elliptic imbeddings

3.1. The canonical isometric imbedding of a compact hermitian symmetric
space. Let M be a global hermitian symmetric space. (For the theory
of hermitian symmetric spaces, we refer to [3].) Let I and v be the
almost complex structure and the Riemannian metric respectively on M.
Let G be the largest connected group of automorphisms (holomorphic
isometries) of M. The group G transitively acts on M and hence the
space M may be expressed as the homogeneous space G/H, where H is
the isotropy group of G at a fixed point 0 of M. In the following we
assume that G is compact and semi-simple.

7 See [8].
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Let g be the Lie algebra of G and B its Killing form. Note that
B is negative definite. Let §) be the Lie algebra of H and m the or-
thogonal complement of §) in g with respect to the Killing form B. We
have [, m] C m and [m,m] C ). Let = be the projection of G onto M.
Then the linear map ms X —» =, X, e T, = T(M), is an isomorphism, by
which we shall identify the two vector spaces m and 7T,. This being
said, we make the second assumption that the Riemannian metric v is
induced from the Killing form B, that is,

wX,Y) = —-B(X,Y)

for all X,YeT,.

It is well known that there is a unique element Z, in the centre of
§ such that IX = [Z,, X] for all X e T, and such that H is the centralizer
of Z, in G, i.e., H ={aecGlad aZ, = Z,}. (See [3], Theorem 9.6.) By the
second property of Z,, we see that the map Gsa — ad aZ,e g induces a
map f of M to g. Furthermore we see that f is an imbedding and that
it is equivariant, i.e.,

Sflap) = ad a f(p)

for all ae G and pe M.
Let us now define an inner product <, > in g as follows:

(X,Y> = —B(X,Y)

for all X,Yeg. Thus if we put m = dimg, g may be regarded as the
m-dimensional Euclidean space R™ with respect to a fixed orthonormal
base X,,---,X, of g. Note that ada:g— g is an orthogonal transfor-
mation for all ae G. Let I/ be the covariant differentiation associated
with the Riemannian metric v and R its curvature.

PROPOSITION 3.1. (1) f is an isometric imbedding of the hermitian
symmetric space M in the Euclidean space g = R™ ([5]).

(2) f satisfies condition (C).
B) ViVyf = (RUIX,Y)IZ)f

for all X,Y,ZecT, and pe M.
First we shall prove the following.

LEMMA 3.2. For all X,YeT,=m, we have:
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1) Xf=-—-IX.
@2 Vilyf=101X,Y] = —I[X,IY].
Proof. If we put u(t) = n(exp tX), we have

f(t) = ad(exp tX)Z, = 3] {‘T(ad X)'Z, .

We have (du/dt)(0) = z,X = X and hence
Xf=adXZ,=1[X,Z] =~—-IX,

proving (1). Let X be the vector field on M induced by the 1-parameter
group of transformations: R X M s (t,p) — (exptX)pe M. Then (d*fou/
dt)(0) = XXf and hence

XXf = (ad X)*Z, = [X,[X, Z,]] = [IX, X].
On the other hand
XXf=Vilsf+ TxXf.

u(t) is an integral curve of X and at the same time a geodesic, whence
VX = 0. Therefore VyVyf=I[IX,X]. Since Vilyf = VW yf and since
[IX,Y] + [X,1IY] = [Z,,[X, Y]] = 0, it follows that VyVyf = [IX, Y], prov-
ing (2).

Proof of Proposition 3.1. By Lemma 3.2, (1) we have <Xf,Yf> =
—B(X,1Y) = —B(X,Y) =uX,Y) for all X,YeT, Since fis equivari-
ant, it follows that <(Xf,Yf) =u(X,Y) for all X,YeT, and peM,
proving (1). We have ) = [m,m]. Hence (2) follows from Lemma 3.2,
(2) and the equivariance of f. By Lemma 3.2 and the equivariance of
f, we have

VXVYf: [VIXf’VYf]

for all X,YeT, and pe M. Therefore by using I =0, we have, for
all ZeT,,

Vil xVof = WiV ixfi Vefl + Wixf, V2V vf]
= [[VIZf)VIXfLVYf] + [VIXf’ [szf,Vyf]]
=Wz, WixfiVef1l.

Considering the case where »p = 0 and using Lemma 3.2, (1), we have
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VAVsVyf = —1Z,[X,IY]]
for all X,Y,ZecT, Since
R(UIX,VIZ = —[[IX,Y],1Z],
it follows that
ViVisVof = —lIX, Y], Z] = (RUX,Y)IZ)f .

Now (3) follows from this equality and the equivariance of f.

We denote by E the subbundle of S*T* which consists of all the
hermitian forms (e S?T*) with respect to the almost complex structure
I. As is easily observed, E is elliptic.

PROPOSITION 3.3. The bundle N of second fundamental forms of f
is a subbundle of the bundle E of hermitian forms. In particular the
imbedding f is elliptic.

Proof. By Lemma 3.2, (2) and the equivariance of f, we have
VXVYf == VIXVIYf
for all X,YeT,. Proposition 3.3 is immediate from this fact.

EXAMPLE. Let us consider the case where the hermitian symmetric
space M = G/H is the n-dimensional complex projective space P*(C).
We have

G=Un+1/C and H=U1) x Un)/C,

where C is the centre of U + 1) and the isotropy group H is con-
sidered at the point 0 = (1,0,---,0). Hence g = su(n + 1) and dimg =
n* + 2n. Let z, ---,2, be the homogeneous coordinates of P*(C). Then
the imbedding f = f™ is given by

FPzgy o+ y2n) =4 —1 (72—5_’;]—1 — Tij;) (esu(n + 1)),

where |z = >, |2.,f. Finally we note that the two bundles N and E
just coincide.

3.2. A rigidity theorem associated with the isometric imbedding f: M — g.
In the next paragraph we shall prove the following

THEOREM 3.4. Let f be the isometric imbedding of the compact
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hermition symmetric space M in the Euclidean space g = R™ defined in
3.1. Then we have p(f) = tm(m + 1).

By Proposition 3.3, Theorems 2.4 and 3.4 we have the following

THEOREM 3.5. Let f be as in Theorem 3.4. Then there is a neigh-
borhood U(f) of f in &M,m)s having the following property: If f/,f”
e U(f) and if O(f) = O(f"), there is a unique Euclidean transformation
a of g such that f = af’.

Remark 1. Consider the isometric imbedding f* of PY(C) in 3u(2)
= R (See 3.1, Example.) PYC) is isomorphic with the sphere S%(v2)
of radius 4/ 2 in R’ as Riemannian manifolds. Therefore Theorem 3.5
is a partial generalization of the theorem of Cohn-Vossen.

Remark 2. It is well known that the sphere S(+/2) in R® or the
isometric imbedding £ is locally deformable. (For example, see [2].)
Therefore the isometric imbedding f of the hermitian symmetric space
M in g is locally deformable, provided that P'(C) appears in the de Rham
decomposition of M. We shall see in the proof of Theorem 3.4 that the
equation Ly = 0 associated with the isometric imbedding f™ of P*(C) in
su(n + 1) is of infinite type, which suggests that f™ is locally deform-
able. However the problem to examine it seems to be rather complicated
and difficult.

3.3. Proof of Theorem 3.4. The proof is devided into several steps.

I. M is a Kahlerian manifold: I = 0 and M is also a symmetric
space: VR = 0. Since the Riemannian metric » is induced from the
Killing form B of g, we know that M is an Einstein space ([3], Propo-
sition 9.7):

S R(X,e)e; = —} 3 R(ey, e)IX = 31X .

(In the following X,Y,Z will denote any vectors at any point p e M and
e, -+ +,6, any orthogonal frame at the point p, where n = dim, M.)
For a,8e I'(®? T*) we define a function <{«, s> by

{e, B) = ?1" Z aley, -, eip),@(eiu ceey€y,)

and put
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(o, ) = j o fydv,

the inner product of « and B8, where dv is the volume element of the
oriented Riemannian manifold M.

Let 6 be the adjoint operator of the exterior differentiation d of
I'(APT*) to I'(A*'T*) with respect to the inner products (,). Then the
operator 4 = éd + do is the so called Laplacian. In terms of I, we have:

@R, -+, Xpo) = L (DT Xy, -, Ky o5 Xy s
)Xy, -+, X)) = —; V.o Xy, -, Xp) .
We have
Af = =3V Ve
for a function f and
dop = =3 V. Ve + do

for a 1-form ¢.
II. Let E’ be the subbundle of S*T* which consists of all the anti-

hermitian forms (e S*T*) with respect to I: S°T* = EDE’. (xecST* is
anti-hermitian if «(IX,1Y) = —a(X,Y).) We define a differential operator
L, of I'(T*) to I'(E’) by

L)X, Y) = 3 (D)X, Y) — (D)X, IY))

for all pe I'(T*), i.e., Ly is the anti-hermitian part of De. N is a
subbundle of E by Proposition 3.3 and henee a solution of the equation
Ly = 0 is necessarily a solution of the equation Ly = 0.

Remark. Let ¢ be a local 1-form on M and X the vector field dual
to ¢ with respect to v. The fact that ¢ is a solution of the equation
Lyp = 0 means that Dy = Lyv, Ly being the Lie derivation, is hermitian.
Hence if X is an analytic vector field, then ¢ is a solution of the equa-
tion Ly = 0. It follows that the equation Ly = 0 is of infinite type.
In particular consider the case where M = P*(C). Then N =E and
hence L may be identified with L,. Consequently the equation L¢ = 0
is of infinite type.

Let L¥ be the adjoint operator of L, with respect to the inner pro-
ducts (,). In terms of V/, L may be expressed as follows:
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(Lifa)(X) = —ZZ_ Vea)(es, X)
for all «e I'(E’). Indeed we have, for all e I'(T*),
Ly @y = 2 ep)eelen €)
= 5 F.pe) — T ele)Tulen e

where B is the 1-form defined by B(X) = >, ¢(e))a(X, e;). Since the inte-
gral of §8-dv over M is 0, we obtain the desired formula.
For ¢ e I'(T*) we define ol € I'(T*) by (eD)(X) = o(IX).

LEMMA 3.6.

2LFLyp = do + dop — (do(eIDI — 2¢ .
Proof. We have:

3P Deen X) = 3. 77X + 3 P x0)(e) ,
Z V.V xp)e) = Z VxV.0)e) — ; o(R(es, X)e,)

= (—ddp + $p)(X) .

Hence

(GR) 2 . De)ew, X) = (—4p — dép + ¢)(X) .

We have:
; Ve Do)ley, IX) = ; Vo 1e.9IX) + ; VeV ixp)ey) ,
22V Ve )IX) = —Zi] T 107 . 0)AX)
Z = —Zi'. Vo )T X) + ; o(R(le; e)1X) ,
; VeV 1ixo)e) = (—(do(eI)] — 39)(X) .

Hence >, V., 0UX) = —4p(X) and

(3.2) ; ¥, Dp)e;, IX) = (—(dé(eD)] — o)(X) .

Lemma 3.6 is immediate from (3.1) and (3.2).

III. By Lemma 3.6, every solution of the equation Ly =0 is a
solution of the equation:
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3.3) do = —ddp + (do(eI)I + 2¢

and the converse is also true. Let us now consider the following equa-
tion:

(3.4) Af = f,

f Dbeing functions.

LEMMA 3.7. () If f is a solution of equation (3.4), then df is a
solution of equation (3.3).
(2) Ewvery solution ¢ of equation (3.3) can be uniquely written as

p=df + o,

where f is a solution of equation (3.4) and ¢, is o solution of equation
(3.3) combined with the equation dp = 0.

Proof. This lemma is easy from the following facts: d4 = 4d,
04 = 46 and 6((df)]) = 0 for any function f.

A 1-form ¢ on M is called a Killing form if the vector field X dual
to ¢ with respect to v is a Killing vector field, i.e., Lyv = D¢ = 0.

LEMMA 3.8. The solutions f of equation (3.4) are in o one-to-one
correspondence with the Killing forms ¢ and the correspondence f — ¢
is given by the relation ¢ = (df)I. In particular the solutions of equa-
tion (8.4) form a vector space of dimension m(= dim g).

This fact is well known. (For example, see [12], Chapter IV.) The
next lemma is also known.

LEMMA 3.9. If we put f= (fy, -+, w) e, f= 2. X, then the

functions f, -+, fn form o base of the solution space of equation (3.4).
Proof. Let e, ---,e,, be an orthonormal base of m = T,. Then we
have

—> e, e, X1 = X RUes, e)X = IX = [Z, X]

for all X eT,, whence > ;[le;,e;] = —Z,. Therefore by Lemma 3.2, (2),
we have

Z VetVeif= Z [Iei; ez‘] = —Zo = —f(O) .
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This together with the equivariance of f yields 4f = f. Hence f, -+, fn
are solutions of equation (3.4). Lemma 3.9 now follows from Lemma 3.8.

LEMMA 3.10. If f is a solution of equation (3.4), then df is a
solution of the equation L¢ = 0.

Proof. By Lemma 3.9, it is sufficient to prove this for f = f,. We
have Dd f, = 2PV f,, and VVf, = <X;,VVf> is a cross section of N. Hence
we obtain Ldf; = 0.

Remark. It can be proved that the dimension of the solution space
of the equation Ly = 0 is equal to I + 2m, where [ is the dimension of
the solution space of the equation 4dp = 2¢, ¢ being 1-forms. Conse-
quently in the case where M = P*(C), our problem is reduced to the
problem to find the dimension .

IV. Let u be a solution of the equation @,.(w) = 0. By Theorem
1.2 there corresponds to # a solution ¢ of the equation Ly = 0. Since
¢ = <u,dfy, we have

u,Vyf) = oY)
and hence
T xu,Vyf> + u,ViVyf) = Wxp)(Y) .

We have O.,(w) = 2{df,duy = 0, meaning that Fyu,Vy.f> is skew-sym-
metric with respect to X and Y. Furthermore {u,V;V,f> is symmetric
with respect to X and Y. Therefore we obtain:

(3.5) u,VVyf) = HDp)X,Y),
(3.6) Fxu,Vyf) = $dp)(X, Y) .
LEMMA 3.11. (1) {du — u,Vxf> = —(dép)(X) .
2) du—u,Vxlyf> = ED4p — Dp)(X,Y) + }; (Lop)(R(es, Y)X, €) .
Proof. By (3.5) and (3.6) we have
Zi Ve, Vol xf> + Z Vo VoV xf) = %Zi V..Do)ey, X)

Z <VezVe¢ua VXf> + Z1,: <Veiu) VeiVXf> == %Zz: (Veidso)(ei, X) .

i

By Proposition 3.1, (3) we have
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; VeV Vi f> =3 <u,(Rle;, X)Ie) f>
—¥u, Xf) = —}0(X) .
Hence we obtain

=,V fy = §(—dp — dop + ¢)(X)
+ $0de)(X) — $p(X)
= —(dop) (),

proving (1).
By (3.5) and Proposition 8.1, (3) we have

T, VVvf> + o(RUX, Y)IZ) = 4V ,Dp)(X,Y) .
It follows that
Zl_ VT VaVuf> + Z; Fet, V.V 1V f>
+ ;’ Vo) RUX, Y)ie) = %;’ V. D)X, Y) .
Therefore from (3.5), (3.6) and Proposition 3.1, (3) we obtain

(du — u,VVyf>
=32 V.V, De)(X,Y) + 3 (de)(e;, R(IX, Y)Ie,)

+ 2 V) (BUX, V)e) — D)X, Y) .

I

We have
; V. De)X,Y)
= D(;. Vol o)X, Y) + HD)(X,Y) + 25 (Dp)(R(X, €)Y, )
= —(D4p)(X,Y) + (D)(X,Y) + 2 g (D¢;(R(X €)Y, ey)

Thus we have proved the equality:

(du — w,ViVyfy
= 3(D4p)(X,Y) — (De)(X,Y) + 2. (dp)es, RUX, Y)Ie,)

+ 2 P p)(RUX, YIe) — 3 (Do) (R(X, e)Y, e,) .

Since A = R(IX,Y)I is symmetric with respect to v, we have

3 (g)(es, RUX, V)le) =0,
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> V.o(RUIX, Y)e) — 35 (Do) (R(X, €)Y, e)
= 4> (Do)(e;, RUX, Y)Ie;) — 23 (D)(R(X, €)Y, e;) .
By Lemma 3.12 below the right hand side of the last equality is equal
to —Z} (Lyp)(R(Y,e)X,e). We have thereby proved (2).
LEMMA 3.12. For 0¢c '(S?T*) we have the equality:
2, 0(RUX, Y)le;e) — 23 0(R(X, €)Y, €y
=2 Z 0/(R(€1, Y)X, ei) ’

where 6 s the anti-hermitian part of 6.

This is a lemma in general Kihlerian manifolds generalizing Propo-
sition 4.5 in [3] and can be proved just in the same way as that propo-
sition.

V. We know that a solusion of the equation Ly = 0 is also a solution
of the equation L,y = 0. Hence by Lemmas 3.7 and 3.10 every solution
¢ of the equation Ly = 0 can be uniquely written as

©® = df + @1
where f is a solution of equation (3.4) and ¢, is a solution of the
equations
3.7 Lp=24dp=0.

Therefore by Theorem 1.2, Proposition 2.2 and Lemma 3.8 we arrive
at the following conclusion: In order to prove o(f) = im(m + 1), it is
sufficient to show that, for any solution ¢ of equations (3.7), there is
A e o(m) such that ¢ = (Af,df>.

This being said, let ¢ be a solution of equations (3.7) and u the
corresponding solution of the equation @,.(x) = 0. (The correspondence
is given by Theorem 1.2.) Then our task is to show that there is
A co(m) such that u = Af.

LEMMA 3.13. If we put u = (u,, - - -,Uy,) then the functions u,, - - -, U,
are solutions of equation (38.4).

Proof. By Lemma 3.11, (1) and the fact that ép = 0, we obtain
3.8 {du — u,Vxf)>=0.
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Since ¢ satisfies equation (3.3), we have
{38.9) dy = (dé(pI)I + 2¢ .

Since A(pl) = (dp)l, it follows that 4(pl) = —ddé(pl) + 2¢I and hence that
J = d(pl) is a solution of equation (3.4). Therefore (df)I is a Killing
form by Lemma 8.8 and hence from (3.9) we get D4y = 2D¢. Conse-
quently by Lemma 3.11, (2) we obtain

(3.10) (du — u,Vilyf> =0.

Since, at each pe M, the vectors Vyf,ViVyf(X,Y eT,) span the vector
space g, it follows from (3.8) and (3.10) that du = u, proving Lemma
3.13.

By Lemmas 3.9 and 3.13 we see that u; are linear combinations of
Jus <y fm. Therefore there is a matrix A of degree m such that u = Af.

LEMMA 3.14. A is a skew-symmetric matrixz i.e., A € o(m).

Proof. If we put o' = —'Af, then we have

df,dw'y = —(df, ' Adf)
— —cAdf,df>
= —{du,df> =0,
meaning that «’ is a solution of the equation @.,(u) = 0. We now show
that the solution #’ just corresponds to the given solution ¢ of the equa-

tion Ly = 0. Indeed by (3.5) and Lemma 3.9 we have {u,f> = <u, 4f)
=0p = 0. Hence we have

W, Vxfy = — ALV = —{f,Vxu)
= —Vx{fiwy + T xfiuw
= o(X),
ie., {W,df)> = ¢, proving our assertion. Therefore we have u’ = u and
hence (A + ‘A)f = 0, from which follows that A + ‘A = 0 (cf. Proof of
Proposition 2.1).
We have thus completed proof of Theorem 3.4.

APPENDIX

In this appendix we shall accomplish the proof of Theorem 2.3, as
we promised.
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We first introduce inner products <, > in the vector bundles T* and
F. We define an inner product (,) in I'(T*) by

(p,¢) = L{(so, ¢ Hdv

for all ¢,¢’ € I'(T*), where dv is the volume density associated with some
Riemannian metric on M, and define a norm || || in I'(T*) by ||¢|f = (¢, ¢).
In the same way we define an inner product (,) and a norm | || in I'(F).
We also introduce a Sobolev norm | ||, in I'(T*).

For fe V(f,), let L™ be the adjoint operator of Lf with respect to
the inner products (,). Since Lf differentiably depends on 7%f, it follows
that the operator [ = Lf*Lf differentiably depends on the 3-jet 73f of
f in an analogous sense. We also note that [Jf is strongly elliptic, be-
cause L' is elliptic.

LEMMA A. There is a neighborhood V.(f,) of f, in €M, m)s such
that

el = CUL el + el

for all o I'(T*) and fe V,(f,), where C is a positive constant independent
of ¢ and f.

Proof. Since [ is strongly elliptic, we have the Garding inequality :
ol = C(IL | + llelP)

for all pe I'(T*), where C is a positive constant independent of ¢. Since
L* differentiably depends on 7%f, we have: For any ¢ > 0, there is a
neighborhood V:(f;) of f, in &M, m),. such that

[L'¢ — Lfg| < elloll,

for all e I'(T*) and fe V:(f;). Lemma A follows easily from these facts.

We are now in position to prove Theorem 2.3. Suppose that Theorem
2.3 is not true. Then there is a sequence f; (1 = 1,2, - - -) of elements in
&M, m) such that f; — f, in €M, m) and p(f) > o(f,). Hence, for each
i, we can find k= p(f}) + 1 elements ¢, ..., 0@ in I'(T*) such that
Lfip® = 0 and (¢{?, ¢{?) = 0,,, By Lemma A we have [[¢{?(; < C. There-
fore by the Rellich lemma, we may assume that, for each 2, the sequence
o (1=1,2,.-.) converges to an element ¢, in the completion of I'(T*)
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with respect to the norm | |. For every + e I'(T*), we have (¢, [ JF))
= ([dMp®,y) = 0. Since [ differentiably depends on 7f, |0y — oy ||
— 0. It follows that (¢, [J) = 0. Therefore by the hypoellipticity of
[, ¢,eI'(T*) and Lfop, = 0. Since (¢, ¢,) = d,, We have o(f)) =k =

o(f) + 1, which is a contradiction. We have thus completed proof of
Theorem 2.3.
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