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1. Introduction and main results

Let M and N be two Riemannian manifolds of dimension (m+1) and (n+1), whose met-
rics are given locally by g = gkj dxk dxj and h = hαβ dyα dyβ , respectively. Throughout
this paper we use the summation convention for repeated indices, i.e. when an index is
repeated it means that we have summation in terms of this index. Domains are denoted
by Latin letters as indexes, while targets are denoted by Greek letter indexes.

The tension field τ(u) of a map u ∈ C2(M, N) is defined by τ(u) = Tr(∇ du). In local
coordinates τ(u) is given by

τα(u)(x) = ∆Muα(x) + gkj(x)Γ β
βγ(u(x))∂kuα(x)∂ju

γ(x), α = 0, 1, . . . , n, (1.1)

where ∆M is the Laplace–Beltrami operator for M . Harmonic maps are defined to be
the maps for which the tension field τ(u) vanishes.

In [9,10] Li and Tam proved the existence and uniqueness of harmonic maps between
real hyperbolic spaces. In the present paper we deal with the same problem in the con-
text of rotationally symmetric manifolds that are asymptotically hyperbolic. This class
contains hyperbolic spaces and consequently our results extend those of [9,10] in this
more general context.

More precisely, let us equip R
m+1, m � 1, with a Riemannian metric that can be

written in polar coordinates in the form

g = dρ2 + f(ρ)2 dη2,
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where f(0) = 0, f ′(0) = 1 and f(ρ) > 0 for every ρ > 0. Then, R
m+1 equipped with

the above metric becomes a rotationally symmetric manifold M (see [3, pp. 22–29], in
which M is called a weak model, and [1], in which M is called a Ricci model). The ideal
boundary ∂M of M is the ‘sphere at infinity’ and it is isomorphic to S

m.
We say that M is asymptotically hyperbolic if all sectional curvatures of M at x ∈ M

converge to −1 as x → ∂M and there exists a constant d > 0 such that

lim
ρ→∞

f(ρ)
eρ

= d. (1.2)

Let us recall that the radial curvature KM (x) of M at x ∈ M is the restriction of the
sectional curvature function to all the planes that contain ∂ρ(x). It is a function of ρ(x)
and it is given by

KM (ρ) = −f ′′(ρ)
f(ρ)

. (1.3)

In Remark 2.3, we show that if limρ→∞ KM (ρ) = −1 and (1.2) hold, then all sec-
tional curvatures of M at x ∈ M converge to −1 as x → ∂M . Note that the condition
limρ→∞ KM (ρ) = −1 does not in general imply (1.2), as the example f(ρ) = eρ log ρ,
ρ > 2, shows.

The Dirichlet problem for harmonic maps between such manifolds consists of finding a
harmonic map u : M → N such that u(∞, η) = (∞, φ(η)), where φ : S

m → S
n is a given

map. Then, u is called a harmonic extension of φ, and φ is referred to as the boundary
map at infinity.

Given a map u ∈ C1(M, N), its energy density e(u) is defined by

e(u)(x) = gkj(x)∂kuα∂ju
βhαβ(u(x)). (1.4)

In this paper we prove the following theorems.

Theorem 1.1. Let M and N be two rotationally symmetric manifolds whose sectional
curvatures are less than −a2 for some a > 0. If M and N are asymptotically hyperbolic
and φ ∈ C3(Sm, Sn) has nowhere-vanishing energy density, then a harmonic map u : M →
N exists with φ as the boundary map at infinity.

Let us recall that a harmonic map u : M → N is called proper if, for every sequence
(xj) of elements of M that converges to the ideal boundary of M , the sequence u(xj)
converges to the ideal boundary of N .

Theorem 1.2. Let M , N and φ be as in Theorem 1.1. If u, v : M → N are proper
harmonic maps with boundary value φ, then u = v.

Let us say a few words about the history of harmonic maps. Harmonic maps were first
introduced by Eells and Sampson [2]. Hamilton [4] investigated the Dirichlet problem
for harmonic maps between compact manifolds with a boundary. In [9,10] Li and Tam
proved the existence and uniqueness of harmonic maps between real hyperbolic spaces.
Our results generalize the aforementioned results of Li and Tam.
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2. Proof of Theorem 1.1

To prove Theorem 1.1 we shall first construct an appropriate extension Φ : M → N of φ

and next we shall show that there exists a harmonic map u : M → N that is a bounded
distance from Φ. Finally, we show that the map u is the required harmonic extension of φ.

Let e(φ) (respectively, e(Φ)) be the energy density of φ (respectively, Φ) and let ‖τ(Φ)‖
be the norm of the tension field of Φ.

Lemma 2.1. If φ ∈ C3(Sm, Sn) is such that e(φ) > 0, then there exists a map
Φ ∈ C2(M, N) with Φ(∞, η) = (∞, φ(η)), such that

(i) e(Φ)(∞, η) = m + 1,

(ii) sup(ρ,η) e(Φ)(ρ, η) < ∞,

(iii) ‖τ(Φ)‖(∞, η) = 0,

(iv) sup(ρ,η) ‖τ(Φ)‖(ρ, η) < ∞.

For the proof of Lemma 2.1 we shall make use of Lemma 2.2 below, the proof of which
is postponed till after the proof of Lemma 2.1.

Lemma 2.2. If f : R → R is a C2 function satisfying (1.2) and limρ→∞ f ′′(ρ)/f(ρ) =
1, then

lim
ρ→∞

f ′(ρ)
f(ρ)

= 1.

Proof of Lemma 2.1. Since M and N are rotationally symmetric manifolds, their
metrics are written as

g = dρ2 + f(ρ)2 dη2 and h = dr2 + F (r)2 dφ2, (2.1)

respectively.
Furthermore, by our assumption, M and N are asymptotically hyperbolic. Conse-

quently, by Lemma 2.2 we have that

lim
ρ→∞

f ′(ρ)
f(ρ)

= 1 and lim
r→∞

F ′(r)
F (r)

= 1. (2.2)

Also, there are constants d1, d2 > 0 such that

lim
ρ→∞

f(ρ)
eρ

= d1 and lim
r→∞

F (r)
er

= d2. (2.3)

Now consider the map Ψ(ρ, η) = (ρ − l(η), φ(η)), where

l(η) = log
(√

e(φ)(η)d2

md1

)
(2.4)

and e(φ) is the energy density of φ with respect to the metrics on S
m and S

n.
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From (1.4) and (2.1) it follows that the energy density of Ψ is given by

e(Ψ)(ρ, η) = 1 +
1

f(ρ)2
〈dl(η), dl(η)〉 + e(φ)(η)

F (ρ − l(η))2

f(ρ)2
, (2.5)

where 〈dl, dl〉 is the inner product with respect to the metric on S
m.

From (2.3) we deduce that

lim
ρ→∞

1
f(ρ)2

〈dl(η), dl(η)〉 = 0. (2.6)

Also, from (2.3) and (2.4), it follows that

lim
ρ→∞

F (ρ − l(η))2

f(ρ)2
=

m

e(φ)(η)
. (2.7)

As a result of (2.5)–(2.7), we have that

lim
ρ→∞

e(Ψ)(ρ, η) = m + 1. (2.8)

Thus, e(Ψ)(ρ, η) is bounded for ρ big enough, say ρ > 2.
Define Φ : M → N as follows. Φ(ρ, η) = Ψ(ρ, η) for ρ � 2 and Φ is defined in a smooth

way in the rest of M (e.g. take ψ = Ψ |ρ=2, find a harmonic extension from ρ � 2 to N

and then deform the two maps so that they match smoothly when ρ = 2). We shall then
show that Φ is the required map.

From (2.8) it follows that Φ satisfies claims (i) and (ii).
From (1.1) and (2.1) it follows that the components of the tension field of Ψ are given by

τ0(Ψ)(ρ, η) = − 1
f(ρ)2

∆l(η) +
(

m
f ′(ρ)
f(ρ)

− e(φ)(η)
F ′(ρ − l(η))F (ρ − l(η))

f(ρ)2

)

and

τα(Ψ)(ρ, η) =
1

f(ρ)2

(
τα(φ)(η) +

F ′(ρ − l(η))
F (ρ − l(η))

〈dφα(η), dL(η)〉
)

, α = 1, 2, . . . , n,

where the τα(φ) are the components of the tension field of φ with respect to the metrics
on S

m and S
n, and ∆l and 〈dφα, dl〉 are computed with respect to the metric on S

m.
Observe that by (2.2) and (2.7) it follows that

lim
ρ→∞

|τ0(Ψ)| = 0 and |τα(Ψ)(ρ, η)| � C

f(ρ)2
(2.9)

for some constant C > 0.
Let Hαβ be the components of the metric on S

n. Taking into account (2.9) and (2.7),
we find that

‖τ(Ψ)‖2 = |τ0(Ψ)|2 + F (ρ − l(η))2τα(Ψ)(ρ, η)τβ(Ψ)(ρ, η)Hαβ(φ(η))

� |τ0(Ψ)|2 + C
F (ρ − l(η))2

f(ρ)4
Hαβ(φ(η)) → 0.

Thus, ‖τ(Ψ)‖2 is bounded for ρ big enough, say ρ > 2. This proves claims (iii)
and (iv). �
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Proof of Lemma 2.2. Since

lim
ρ→∞

f ′′(ρ)
f(ρ)

= 1,

it follows that for every ε > 0 there exists R1 > 0 such that f ′′(ρ)/f(ρ) < 1+ ε, for every
ρ > R1.

If g(ρ) = sinh(ρ
√

1 + ε), then

f ′′(ρ)
f(ρ)

< 1 + ε =
g′′(ρ)
g(ρ)

holds for every ρ > R1.
Observe next that (

g2
(

f

g

)′ )′
= fg

(
f ′′

f
− g′′

g

)
� 0

for every ρ > R1.
Thus,

f ′g − fg′ =
(

g2
(

f

g

)′ )

is a decreasing function. Consequently, we get that

f ′(ρ)
f(ρ)

− g′(ρ)
g(ρ)

� f ′(R1)g(R1) − f(R1)g′(R1)
f(ρ)g(ρ)

(2.10)

holds for every ρ > R1.
But

lim
ρ→∞

g′(ρ)
g(ρ)

=
√

1 + ε

and by (1.2) it follows that limρ→∞ f(ρ) = ∞. Thus, we get from (2.10) that for all ε > 0
there exists R′

1 such that

f ′(ρ)
f(ρ)

�
√

1 + ε + 2ε � 1 + 3ε for all ρ > R′
1.

Similarly, there exists R2 > 0 such that f ′′(ρ)/f(ρ) > 1− ε for every ρ > R2. Choosing
g(ρ) = sinh(ρ

√
1 − ε), one can prove that for all ε > 0 there exists R′

2 such that

f ′(ρ)
f(ρ)

�
√

1 − ε − 2ε � 1 − 3ε for all ρ > R′
2.

Thus, we conclude that

lim
ρ→∞

f ′(ρ)
f(ρ)

= 1,

and the proof is complete. �
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Remark 2.3. Let kM (x) be the restriction of the sectional curvatures of M at x ∈ M

to all the planes that do not contain ∂ρ(x). It is a function of ρ(x) and it is given by

kM (ρ) =
1 − (f ′(ρ))2

(f(ρ))2
.

If limρ→∞ KM (ρ) = −1, then by (1.3) and Lemma 2.2 it follows that limρ→∞ kM (ρ) = −1
as well. Thus, if limρ→∞ KM (ρ) = −1 and (1.2) hold, then all sectional curvatures of M

at x ∈ M converge to −1 as x → ∂M .

2.1. Proof of Theorem 1.1

We shall proceed as in [10, pp. 631–634] and prove that there is a harmonic map u at a
bounded distance from Φ. Next, we shall complete the proof of Theorem 1.1 by showing
that u is in fact an extension of φ. The proof will be given in three steps.

Recall first that ρ = ρ(x) is the distance of the point x ∈ M from the point that
corresponds to the radial coordinate ρ = 0.

Step 1. For any R > 0, there is a harmonic map uR from the ball {ρ � R} into N

such that
dR(x) := d(uR(x), Φ(x)) < c

for some constant c > 0 independent of R.

Let R > R0, where R0 is a large positive number to be determined later. Consider uR

to be the harmonic map from the ball {ρ � R} into N , such that uR = Φ when ρ = R.
Such a map u exists, since N has negative sectional curvatures [4].

Arguing as in [10, p. 632], one can show that there is a C1 > 0 such that, for ρ � R,

∆MdR(x) � −2C1 (2.11)

holds in the sense of distributions.
Set

h(x) = C2 exp(−ε
√

ρ2(x) + 1), ε > 0.

Note that h satisfies (see [7, pp. 200–201] and [10, p. 632])

∆Mh � 0 ∀x ∈ M. (2.12)

Now choose C2 such that

∆Mh < −2C1 ∀x ∈ {ρ < R0}. (2.13)

Let
HR = dR − h.

We claim that HR is bounded above by a bound d independent of R. This implies that
dR(x) < d + C2 for all x ∈ {ρ � R}, i.e. the required bound of dR.
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Since HR is continuous on the compact set {ρ � R}, it suffices to show that HR(x0) �
d, where x0 is the point where the maximum of HR in {ρ � R} is attained.

First we show that x0 is not contained in the open ball {ρ < R0}. Indeed, by (2.11)
and (2.13), it follows that

∆MH(x) � 0 ∀x ∈ {ρ < R0}.

Thus, HR is superharmonic in the ball {ρ < R0}, which implies that the maximum of
HR is attained at some point outside the open ball {ρ < R0}. Therefore, x0 is contained
in the annulus R0 � ρ � R.

Next we assume that x0 ∈ {ρ = R}. Then dR(x0) = dR(uR(x0), Φ(x0)) = 0, since
uR = Φ on {ρ = R}. It follows that HR(x0) = −h(x0) � 0 and hence

HR(x) � 0 in {ρ � R}. (2.14)

It remains to treat the case R0 � ρ(x0) < R. Using that ‖τ(Φ)‖ = 0 at infinity, we
shall prove that HR(x0) is bounded when R0 � ρ(x0) < R.

By the construction of Φ in Lemma 2.1 and proceeding as in [10, p. 632] (see also [6]
and [11, pp. 361–368]) one can prove that there exists a C3 > 0 independent of R such
that

∆MdR � −2‖τ(Φ)‖ + 4C3 tanh(1
2adR), (2.15)

where −a2 is the upper bound of the sectional curvatures of N .
Since ‖τ(Φ)‖ = 0 at infinity, we can choose R0 > 0 such that ‖τ(Φ)‖ < C3 holds

outside the open ball {ρ < R0}.
But, the maximum of HR is attained at some point x0 with R > ρ(x0) � R0, thus by

(2.12), (2.15) and the maximum principle, it follows that

0 � ∆MHR(x0) = ∆MdR(x0) − ∆Mh(x0) � 4C3(− 1
2 + tanh(1

2adR(x0))).

This implies that
tanh(1

2adR(x0)) � 1
2 ,

hence
dR(x0) � C for some constant C > 0 independent of R. (2.16)

Consequently, HR(x0) is bounded by a bound independent of R and the proof of Step 1
is complete.

Step 2. Existence of a harmonic map at a bounded distance from Φ.

Let us recall that from Lemma 2.1 we have that there is a C1 > 0 such that

e(Φ)(x) < C1 ∀x ∈ M. (2.17)

Combining (2.16) with (2.17) we find as in [10, p. 633] that there exists a constant
λ > 0 such that, if ρ(x) < R − 1, then

uR({d(x, y) < 1}) ⊂ {d(uR(x), uR(y)) < λ}. (2.18)
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Now, by (2.18) and [5, Lemma 2.1], it follows that there is a b = b(λ) > 0 independent
of R such that

e(uR)(x) < b ∀x ∈ {ρ < R − 1}. (2.19)

From (2.16) and (2.19), by using the Arzelà–Ascoli Theorem, we find a subsequence
Rj such that, on each compact subset of M , the sequence uRj

converges to a harmonic
map u such that

d(u(x), Φ(x)) < c ∀x ∈ M. (2.20)

Step 3. u has boundary values φ at infinity.

From (2.20) and the fact that N has negative sectional curvatures, it follows, by con-
tradiction, that u has boundary values φ at infinity.

Indeed, let us assume that for some η ∈ S
m we have Φ(∞, η) = (∞, φ(η)) = p and

u(∞, η) = (∞, φ1(η)) = q, with p �= q. Let γ(t) be geodesic in N with γ(0) = p and
γ(0) = q.

Recall that h is the metric of N and let h−a2 be the metric of R
n+1 with constant

sectional curvature equal to the upper bound −a2 of the sectional curvatures of N . Then,
by the Metric Comparison Theorem [8, Corollary 11.4], we have that

h(γ′(t), γ′(t)) � h−a2(γ′(t), γ′(t)). (2.21)

If d̃(x, y) is the distance on (Rn+1, h−a2), then (2.21) implies that

d(p, q) �
∫ ∞

0

√
h−a2(γ′(t), γ′(t)) dt � d̃(p, q).

The last inequality is due to the fact that γ is not necessarily a geodesic in (Rn+1, h−a2).
But (Rn+1, h−a2) is in fact a hyperbolic space, so d̃(p, q) = ∞ for p, q ∈ S

n. Hence,

d(u(∞, η), Φ(∞, η)) = d(p, q) � d̃(p, q) = ∞,

and this contradicts (2.20).
This completes the proof of Step 3 and the proof of Theorem 1.1.

3. Proof of Theorem 1.2

Let u, v be two proper harmonic maps that are C1 up to the boundary, and let u|Sm =
v|Sm = φ. Arguing as in [9] we shall show that u ≡ v.

Since the function d2(u, v)(x) = d2(u(x), v(x)) is subharmonic [11], by the maximum
principle it follows that it is enough to show that

lim
x→∂M

d2(u, v)(x) = 0.

Setting

h(ρ) =
f

2

(
log

(
1 + ρ

1 − ρ

))
(1 − ρ2), ρ ∈ [0, 1),
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and

H(r) =
F

2

(
log

(
1 + r

1 − r

))
(1 − r2), r ∈ [0, 1),

we can represent M and N by a disc model, where the metrics on M and N are given by

g =
4

(1 − ρ2)2
(dρ2 + h2(ρ) dη2) and h =

4
(1 − r2)2

(dr2 + H2(r) dφ2), (3.1)

respectively.
Note that the Laplacian of M with respect to the metric g above is written as

∆M =
(1 − ρ2)2

4

(
∂2

ρρ + m
h′(ρ)
h(ρ)

∂ρ +
1

h2(ρ)
∆Sm

)
+

2(m − 1)ρ(1 − ρ)
4

∂ρ.

Note also that by Lemma 2.2 we can assume without loss of generality that

lim
ρ→∞

f(ρ)
eρ

=
1
2

and lim
r→∞

F (r)
er

=
1
2
,

which imply that
lim
ρ→1

h(ρ) = 1 and lim
r→1

H(r) = 1. (3.2)

Let us set ḡ = dρ2 + h2(ρ) dη2 and let us denote by ∇̄ the connection of the metric ḡ.
From (3.1) it follows that the components of the tension field of a harmonic map

u = u(ρ, η) = (r, θ) are given by

τ0(u) = ∆Mr +
(1 − ρ2)2

4(1 − r2)
{2r|∇̄r|2 − H(r)(H ′(r)(1 − r2) + 2rH(r))Hβγ(θ)〈∇̄θβ , ∇̄θγ〉}

(3.3)

and

τα(u) = ∆Mθα +
(1 − ρ2)2

4
Γα

βγ〈∇̄θβ , ∇̄θγ〉

+
(1 − ρ2)2

2H(r)(1 − r2)
(H ′(r)(1 − r2) + 2rH(r))〈∇̄r, ∇̄θα〉. (3.4)

Then, multiply (3.3) and (3.4) by (1 − r2)/(1 − ρ2)2 and use (3.2) to deduce, as in [9],
that

∂ρr|ρ=1 =

√
e(φ)(η)

m
and ∂ρθ

α|ρ=1 = 0. (3.5)

Set

r̄(ρ, η) = 1 − (1 − ρ)

√
e(φ)
m

,

and consider the map Φ : M → N defined by

Φ(ρ, η) = (r̄, φ).
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We shall show that

lim
ρ→1

d(u, Φ)(ρ, η) = 0 and lim
ρ→1

d(v, Φ)(ρ, η) = 0. (3.6)

Then, by the triangular inequality, we obtain that

lim
ρ→1

d(u, v)(ρ, η) = 0, (3.7)

i.e. the required result.
For the proof of (3.6) we use (3.5) and the triangular inequality as follows. We have

d(u, Φ) � d((r, θ), (r̄, θ)) + d((r̄, θ), (r̄, φ)).

But

d((r, θ), (r̄, θ)) =
∣∣∣∣log

1 + r

1 − r
− log

(
1 + r̄

1 − r̄

)∣∣∣∣ → 0 as ρ → 1

and

d((r̄, θ), (r̄, φ)) � 2H(r̄)
1 − r̄2 dSm(θ, φ) � C

1 − r̄2

∫ 1

ρ

√
Hαβ(θ)∂suα∂suβ ds → 0 as ρ → 1.

Thus, we have proved the first equation in (3.6). One can prove the second equation
in (3.6) in a similar way; hence, (3.7) is valid and the proof of Theorem 1.2 is complete.

Remark 3.1. Instead of requiring that M and N are asymptotically hyperbolic, one
can require that limρ→∞ KM (ρ) = −α2 and limρ→∞ KN (ρ) = −β2 hold for some α, β >

0.
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