
JFP 13 (1): 7–16, January 2003. © 2003 Cambridge University Press

DOI: 10.1017/S0956796803000418 Printed in the United Kingdom

Chapter 2

Lexical Structure

In this chapter, we describe the low-level lexical structure of Haskell. Most of the details may be
skipped in a first reading.

2.1 Notational Conventions

These notational conventions are used for presenting syntax:

��������� optional
��������� zero or more repetitions
��������� grouping
���� � ���� choice
������� �� difference – elements generated by ���

except those generated by ��� �

fibonacci terminal syntax in typewriter font

Because the syntax in this section describes lexical syntax, all whitespace is expressed explicitly;
there is no implicit space between juxtaposed symbols. BNF-like syntax is used throughout, with
productions having the form:

������	 � �
�� � �
�� � � � � � �
��

7

https://doi.org/10.1017/S0956796803000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000418

8 CHAPTER 2. LEXICAL STRUCTURE

Care must be taken in distinguishing metalogical syntax such as � and �� � �� from concrete terminal
syntax (given in typewriter font) such as | and [...], although usually the context makes the
distinction clear.

Haskell uses the Unicode [15] character set. However, source programs are currently biased toward
the ASCII character set used in earlier versions of Haskell.

This syntax depends upon properties of the Unicode characters as defined by the Unicode consor-
tium. Haskell compilers are expected to make use of new versions of Unicode as they are made
available.

2.2 Lexical Program Structure

������	 � �
���	� �
��������� �

���	� � ������ � ������ � ������	 � ������	

�
�����
 � ������
 � ���������� � ����������

�����
 � ������� � ���� � ���� � ������

������
 � (�) � , � ; � [�] � ` � { � }

��������� �
�������� �
�������� �

�������� �
�������� � ��		��� � ���		���

�������� � ��

��� � ������ � ����� � ��� � ��������
��

��� � ������
������� � ������ �
������� � ���	����
������ � a carriage return

������� � a line feed
������ � a vertical tab
���	���� � a form feed
����� � a space
��� � a horizontal tab
�������� � any Unicode character defined as whitespace

��		��� � ������ � �����	
��
� ����� � ��

���
������ � -- �-�
������	 � {-
�
�����	 � -}
���		��� � ������	 ������ ����		��� ������� �
�����	
������ � ���� ������ � � ������
 � �
�����
 � ���� ��

��� � ������� �
��������
��� � ������� � ����� � ���

������� � �	�

 �
���� � ��	��
 � ����� � ������
 � : � " � ’

�	�

 � ����	�

 � ����	�

 � _
����	�

 � a � b � � � � � z

https://doi.org/10.1017/S0956796803000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000418

2.3. COMMENTS 9

����	�

 � any Unicode lowercase letter

���� � �������� � ��������
�������� � A � B � � � � � Z
�������� � any uppercase or titlecase Unicode letter
��	��
 � �����	��
 � �����	��
� ������
 � _ � : � " � ’�

�����	��
 � ! � # � $ � % � & � * � + � . � / � < � = � > � ? � �
� \ � ˆ � | � - � ˜

�����	��
 � any Unicode symbol or punctuation
����� � ��� ���� � ��� ����
��� ���� � 0 � 1 � � � � � 9
��� ���� � any Unicode decimal digit
����� � 0 � 1 � � � � � 7
����� � ����� � A � � � � � F � a � � � � � f

Lexical analysis should use the “maximal munch” rule: at each point, the longest possible lexeme
satisfying the
���	� production is read. So, although case is a reserved word, cases is not.
Similarly, although = is reserved, == and ˜= are not.

Any kind of
��������� is also a proper delimiter for lexemes.

Characters not in the category ��� are not valid in Haskell programs and should result in a lexing
error.

2.3 Comments

Comments are valid whitespace.

An ordinary comment begins with a sequence of two or more consecutive dashes (e.g. --) and
extends to the following newline. The sequence of dashes must not form part of a legal lexeme.
For example, “-->” or “|--” do not begin a comment, because both of these are legal lexemes;
however “--foo” does start a comment.

A nested comment begins with “{-” and ends with “-}”. No legal lexeme starts with “{-”; hence,
for example, “{---” starts a nested comment despite the trailing dashes.

The comment itself is not lexically analysed. Instead, the first unmatched occurrence of the string
“-}” terminates the nested comment. Nested comments may be nested to any depth: any occurrence
of the string “{-” within the nested comment starts a new nested comment, terminated by “-}”.
Within a nested comment, each “{-” is matched by a corresponding occurrence of “-}”.

In an ordinary comment, the character sequences “{-” and “-}” have no special significance, and,
in a nested comment, a sequence of dashes has no special significance.

https://doi.org/10.1017/S0956796803000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000418

10 CHAPTER 2. LEXICAL STRUCTURE

Nested comments are also used for compiler pragmas, as explained in Chapter 11.

If some code is commented out using a nested comment, then any occurrence of {- or -} within a
string or within an end-of-line comment in that code will interfere with the nested comments.

2.4 Identifiers and Operators

����� � ��	�

 ��	�

 �
���� � ����� � ’ ��������������
����� �
���� ��	�

 �
���� � ����� � ’ �
���������� � case � class � data � default � deriving � do � else

� if � import � in � infix � infixl � infixr � instance
� let � module � newtype � of � then � type � where � _

An identifier consists of a letter followed by zero or more letters, digits, underscores, and single
quotes. Identifiers are lexically distinguished into two namespaces (Section 1.4): those that begin
with a lower-case letter (variable identifiers) and those that begin with an upper-case letter (construc-
tor identifiers). Identifiers are case sensitive: name, naMe, and Name are three distinct identifiers
(the first two are variable identifiers, the last is a constructor identifier).

Underscore, “_”, is treated as a lower-case letter, and can occur wherever a lower-case letter can.
However, “_” all by itself is a reserved identifier, used as wild card in patterns. Compilers that offer
warnings for unused identifiers are encouraged to suppress such warnings for identifiers beginning
with underscore. This allows programmers to use “_foo” for a parameter that they expect to be
unused.

�����	 � � ��	��
 ���	��
 � :� ������������ � �������

�����	 � �: ���	��
 � :��������������
���������� � .. � : � :: � = � \ � | � <- � -> � @ � ˜ � =>

Operator symbols are formed from one or more symbol characters, as defined above, and are lexi-
cally distinguished into two namespaces (Section 1.4):

� An operator symbol starting with a colon is a constructor.

� An operator symbol starting with any other character is an ordinary identifier.

Notice that a colon by itself, “:”, is reserved solely for use as the Haskell list constructor; this makes
its treatment uniform with other parts of list syntax, such as “[]” and “[a,b]”.

Other than the special syntax for prefix negation, all operators are infix, although each infix operator
can be used in a section to yield partially applied operators (see Section 3.5). All of the standard
infix operators are just predefined symbols and may be rebound.

In the remainder of the report six different kinds of names will be used:

https://doi.org/10.1017/S0956796803000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000418

2.5. NUMERIC LITERALS 11

����� �variables�
����� �constructors�
����� � ����� �type variables�
����� � ����� �type constructors�
���
� � ����� �type classes�
	���� � ����� �modules�

Variables and type variables are represented by identifiers beginning with small letters, and the
other four by identifiers beginning with capitals; also, variables and constructors have infix forms,
the other four do not. Namespaces are also discussed in Section 1.4.

A name may optionally be qualified in certain circumstances by prepending them with a module
identifier. This applies to variable, constructor, type constructor and type class names, but not type
variables or module names. Qualified names are discussed in detail in Chapter 5.

������ � �	���� .� �����
������ � �	���� .� �����
������ � �	���� .� �����
����
� � �	���� .� ���
�
������	 � �	���� .� �����	
������	 � �	���� .� �����	

Since a qualified name is a lexeme, no spaces are allowed between the qualifier and the name.
Sample lexical analyses are shown below.

This Lexes as this
f.g f . g (three tokens)
F.g F.g (qualified ‘g’)
f.. f .. (two tokens)
F.. F.. (qualified ‘.’)
F. F . (two tokens)

The qualifier does not change the syntactic treatment of a name; for example, Prelude.+ is an
infix operator with the same fixity as the definition of + in the Prelude (Section 4.4.2).

2.5 Numeric Literals

����	�
 � ������������
����
 � ������������

��������	�
 � ������������

https://doi.org/10.1017/S0956796803000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000418

12 CHAPTER 2. LEXICAL STRUCTURE

������� � ����	�

� 0o ����
 � 0O ����

� 0x ��������	�
 � 0X ��������	�

���� � ����	�
 . ����	�
 ��������� �
� ����	�
 ��������

�������� � �e � E� �+ � -� ����	�

There are two distinct kinds of numeric literals: integer and floating. Integer literals may be given
in decimal (the default), octal (prefixed by 0o or 0O) or hexadecimal notation (prefixed by 0x or
0X). Floating literals are always decimal. A floating literal must contain digits both before and after
the decimal point; this ensures that a decimal point cannot be mistaken for another use of the dot
character. Negative numeric literals are discussed in Section 3.4. The typing of numeric literals is
discussed in Section 6.4.1.

2.6 Character and String Literals

���� � ’ ���������’ � \� � ����� � �������\&�� ’

������ � " ���������" � \� � ����� � ������ � ���� "

������ � \ � ������� � ����� � ����	�
 � o ����
 � x ��������	�
 �
������� � a � b � f � n � r � t � v � \ � " � ’ � &
����� � ˆ����
 � NUL � SOH � STX � ETX � EOT � ENQ � ACK

� BEL � BS � HT � LF � VT � FF � CR � SO � SI � DLE
� DC1 � DC2 � DC3 � DC4 � NAK � SYN � ETB � CAN
� EM � SUB � ESC � FS � GS � RS � US � SP � DEL

����
 � �������� � � � [� \ �] � ˆ � _
��� � \
�������� �
��������� \

Character literals are written between single quotes, as in ’a’, and strings between double quotes,
as in "Hello".

Escape codes may be used in characters and strings to represent special characters. Note that a single
quote ’ may be used in a string, but must be escaped in a character; similarly, a double quote " may
be used in a character, but must be escaped in a string. \ must always be escaped. The category
������� also includes portable representations for the characters “alert” (\a), “backspace” (\b),
“form feed” (\f), “new line” (\n), “carriage return” (\r), “horizontal tab” (\t), and “vertical tab”
(\v).

Escape characters for the Unicode character set, including control characters such as \ˆX, are also
provided. Numeric escapes such as \137 are used to designate the character with decimal repre-
sentation 137; octal (e.g. \o137) and hexadecimal (e.g. \x37) representations are also allowed.

https://doi.org/10.1017/S0956796803000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000418

2.7. LAYOUT 13

Consistent with the “maximal munch” rule, numeric escape characters in strings consist of all con-
secutive digits and may be of arbitrary length. Similarly, the one ambiguous ASCII escape code,
"\SOH", is parsed as a string of length 1. The escape character \& is provided as a “null character”
to allow strings such as "\137\&9" and "\SO\&H" to be constructed (both of length two). Thus
"\&" is equivalent to "" and the character ’\&’ is disallowed. Further equivalences of characters
are defined in Section 6.1.2.

A string may include a “gap” – two backslants enclosing white characters – which is ignored. This
allows one to write long strings on more than one line by writing a backslant at the end of one line
and at the start of the next. For example,

"Here is a backslant \\ as well as \137, \
\a numeric escape character, and \ˆX, a control character."

String literals are actually abbreviations for lists of characters (see Section 3.7).

2.7 Layout

Haskell permits the omission of the braces and semicolons used in several grammar productions,
by using layout to convey the same information. This allows both layout-sensitive and layout-
insensitive styles of coding, which can be freely mixed within one program. Because layout is not
required, Haskell programs can be straightforwardly produced by other programs.

The effect of layout on the meaning of a Haskell program can be completely specified by adding
braces and semicolons in places determined by the layout. The meaning of this augmented program
is now layout insensitive.

Informally stated, the braces and semicolons are inserted as follows. The layout (or “off-side”) rule
takes effect whenever the open brace is omitted after the keyword where, let, do, or of. When
this happens, the indentation of the next lexeme (whether or not on a new line) is remembered and
the omitted open brace is inserted (the whitespace preceding the lexeme may include comments).
For each subsequent line, if it contains only whitespace or is indented more, then the previous item
is continued (nothing is inserted); if it is indented the same amount, then a new item begins (a
semicolon is inserted); and if it is indented less, then the layout list ends (a close brace is inserted).
If the indentation of the non-brace lexeme immediately following a where, let, do or of is less
than or equal to the current indentation level, then instead of starting a layout, an empty list “{}” is
inserted, and layout processing occurs for the current level (i.e. insert a semicolon or close brace).
A close brace is also inserted whenever the syntactic category containing the layout list ends; that
is, if an illegal lexeme is encountered at a point where a close brace would be legal, a close brace is
inserted. The layout rule matches only those open braces that it has inserted; an explicit open brace
must be matched by an explicit close brace. Within these explicit open braces, no layout processing
is performed for constructs outside the braces, even if a line is indented to the left of an earlier
implicit open brace.

Section 9.3 gives a more precise definition of the layout rules.

https://doi.org/10.1017/S0956796803000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000418

14 CHAPTER 2. LEXICAL STRUCTURE

Given these rules, a single newline may actually terminate several layout lists. Also, these rules
permit:

f x = let a = 1; b = 2
g y = exp2

in exp1

making a, b and g all part of the same layout list.

As an example, Figure 2.1 shows a (somewhat contrived) module and Figure 2.2 shows the result
of applying the layout rule to it. Note in particular: (a) the line beginning }};pop, where the
termination of the previous line invokes three applications of the layout rule, corresponding to the
depth (3) of the nested where clauses, (b) the close braces in the where clause nested within the
tuple and case expression, inserted because the end of the tuple was detected, and (c) the close
brace at the very end, inserted because of the column 0 indentation of the end-of-file token.

https://doi.org/10.1017/S0956796803000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000418

2.7. LAYOUT 15

module AStack(Stack, push, pop, top, size) where
data Stack a = Empty

| MkStack a (Stack a)

push :: a -> Stack a -> Stack a
push x s = MkStack x s

size :: Stack a -> Int
size s = length (stkToLst s) where

stkToLst Empty = []
stkToLst (MkStack x s) = x:xs where xs = stkToLst s

pop :: Stack a -> (a, Stack a)
pop (MkStack x s)

= (x, case s of r -> i r where i x = x)
-- (pop Empty) is an error

top :: Stack a -> a
top (MkStack x s) = x -- (top Empty) is an error

Figure 2.1: A sample program

module AStack(Stack, push, pop, top, size) where
{data Stack a = Empty

| MkStack a (Stack a)

;push :: a -> Stack a -> Stack a
;push x s = MkStack x s

;size :: Stack a -> Int
;size s = length (stkToLst s) where

{stkToLst Empty = []
;stkToLst (MkStack x s) = x:xs where {xs = stkToLst s

}};pop :: Stack a -> (a, Stack a)
;pop (MkStack x s)

= (x, case s of {r -> i r where {i x = x}})
-- (pop Empty) is an error

;top :: Stack a -> a
;top (MkStack x s) = x -- (top Empty) is an error
}

Figure 2.2: Sample program with layout expanded

https://doi.org/10.1017/S0956796803000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000418

https://doi.org/10.1017/S0956796803000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000418

