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1. Introduction. Euler was the first mathematician who laid the foundations of
the theory of partitions and proved many beautiful partition theorems [12]. One
significant example is that

the number of partitions of a positive integer n into distinct parts is
equal to the number of partitions of n into odd parts.

Moreover, Euler’s approach in [12] of the utilization of generating functions
provided a powerful analytic method for future developments in the theory of partitions
since then. For example, the result quoted above is equivalent to the identity

∞∏
n=1

(1 + qn) =
∞∏

n=1

1
1 − q2n−1

. (1.1)

Here and in the sequel, we always assume that |q| < 1.
Fine [13] [14, pp. 46–47] established two refinements of Euler’s theorem above. One

of the two refinements states that

the number of partitions of n into distinct parts with largest part k
equals the number of partitions of n into odd parts such that 2k + 1
equals the largest part plus twice the number of parts,

which, in the language of generating functions, says that

∞∑
j=0

(−q; q)j qj+1tj+1 =
∞∑

m=0

tm+1q2m+1

(tq; q2)m+1
, (1.2)

where we adopt the standard notation (a; q)0 = 1, (a; q)n = (1 − a) · · · (1 − aqn−1), for
n ∈ �, and (a; q)∞ = limn→∞(a; q)n.
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As for (1.2), refer to Andrews’ book [5, p. 27] where he gave a neat (but technical)
proof by repeated use of q-analog of the binomial theorem and Heine’s fundamental
transformation. In [1], Andrews offered two proofs for Fine’s theorem. One follows
directly from a basic hypergeometric series identity of Andrews. The other is a
combinatorial approach in which Andrews modified Sylvester’s graph theoretic proof
of Euler’s theorem to prove Fine’s result.

In the sequel, we will refer to the identity (1.2) as Fine’s identity. Note that, when
t = 1, the identity (1.2) reduces to

∞∑
j=0

(−q; q)j qj+1 =
∞∑

m=0

q2m+1

(q; q2)m+1
.

which implies Euler’s identity (1.1) by appealing to the equality that

∞∏
n=1

(1 + fn(q)) = 1 +
∞∑

n=1


n−1∏

j=1

(1 + fj(q))


 fn(q),

with fj(q) chosen to be qj and q2j−1/(1 − q2j−1), respectively, for our purpose.
In Section 2, we will establish a partition theorem (Theorem 2.1) which not only

is an interesting result on its own but also leads to a new proof of (1.2). Indeed, the
key idea in the proof of Theorem 2.1 comes from an elementary result of the theory
of partitions. On the other hand, Theorem 2.1 can be transformed into a q-series
identity through the utilization of generation functions. This resulting identity is stated
in Theorem 2.3 in which we would like to draw your attention to the symmetry between
2k + 1 and 2l.

In Section 3, we employ a special case of Theorem 2.3, namely Corollary 2.4, to
derive a functional equation for the function on the right side of (1.2). This functional
equation enables us to establish Fine’s identity. Finally, in Section 4, we give an analytic
proof of Theorem 2.3 by appealing to a series-product identity of Cauchy.

2. The main results.

THEOREM 2.1. Let M, N, k, l be positive integers. Let P1(M, N; k, l) denote the
number of partitions of M into N parts in which all the parts are either 2k + 1 or positive
even integers belonging to the set {2l, 2l + 2, . . . , 2l + (2m − 2)}. (Here m is the number
of repetitions of 2k + 1 as a part.) Let P2(M, N; k, l) denote the number of partitions
of M − 1 − 2(k − l) into N parts in which all the parts are either 2l or positive odd
integers belonging to the set {2k + 1, 2k + 3, . . . , 2k + (2n − 1)}. (Here n is the number
of repetitions of 2l as a part.) Then

P1 (M, N; k, l) = P2(M, N; k, l).

We should emphasize that the values of m and n in Theorem 2.1 depend on the
partitions under consideration. The special case k = l = 1 in Theorem 2.1 yields the
following interesting result.

Corollary 2.2. The number of partitions of M into N parts in which all the parts
are either 3 or positive even integers belonging to the set {2, 4, . . . , 2m} (where m is the
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number of repetitions of 3 as a part) is equal to the number of partitions of M − 1 into
N parts in which all the parts are either 2 or positive odd integers belonging to the set
{3, 5, . . . , 2n + 1}. (Here n is the number of repetitions of 2 as a part.)

Proof of Theorem 2.1. Define �1 and �2 to be the set of all the partitions counted
in P1(M, N; k, l) and P2(M, N; k, l), respectively. For convenience, we use the notation

〈(2k + 1)m, (2l)j1 , (2l + 2)j2 , . . . , (2l + 2m − 2)jm〉 (2.1)

to denote a typical partition in �1, where the nonnegative exponents m, j1, . . . , and
jm indicate the numbers of repetitions of the parts 2k + 1, 2l, . . . , and 2l + 2m − 2,
respectively. Similar notation will be used for partitions in �2. Next, we define a
mapping � from �1 to �2 by

〈(2k + 1)m, (2l)j1 , . . . , (2l + 2m − 2)jm〉 �→ 〈(2l)n, (2k + 1)h1 , . . . , (2k + 2n − 1)hn〉,

where n = N − (m − 1),
∑m

i=1 ji = n − 1,
∑n

i=1 hi = m − 1, and 〈1h2 , . . . , (n − 1)hn〉 is
the conjugate partition of 〈1j2 , . . . , (m − 1)jm〉. Next, by appealing to the fact that

the number of partitions of c in which there are at most n − 1 parts
and all the parts are not greater than m − 1 is equal to the number
of partitions of c in which there are at most m − 1 parts and all the
parts are not greater than n − 1,

it is evident that � is indeed a well-defined function from �1 to �2 and is
invertible from �1 to �2. Hence, � is a bijection and so |�1| = |�2|. This proves the
theorem. �

REMARK 1. Indeed, our proof of Theorem 2.1 is equivalent to a very nice graphic
theoretic proof by employing so called 2-modular partitions [5]. We sketch the proof
by the following diagrams.

For the partition (2.1) in �1, we first extract 2l from each even part, apply 2-
modular partition process to place the resulting even parts column by column in the
table

2l 2l 2l . . . 2l

2 2 2 . . .

2 2 2 . . .
...

...
...

. . .

and then add the odd parts 2k + 1 (m of them) on the left side of the table. So we have

2l 2l 2l . . . 2l

2k + 1 2 2 2 . . .

2k + 1 2 2 2 . . .
...

...
...

...
. . .

2k + 1
2k + 1
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Next, we delete the 2k + 1 at the bottom and add a 2l at the end of the first row so
that the table becomes

2l 2l 2l . . . 2l 2l

2k + 1 2 2 2 . . .

2k + 1 2 2 2 . . .
...

...
...

...
. . .

2k + 1

Finally, reading each 2l in the first row as a part and the other rows in rows gives
a partition in �2. On the other hand, the process above is evidently reversible and so
the proof is completed.

By using the terminology of generating functions, we can transform Theorem 2.1
into an identity.

THEOREM 2.3. For |q| < 1 and positive integers k and l, we have

q2l
∞∑

m=1

tmq(2k+1)m

(tq2l; q2)m
= q2k+1

∞∑
m=1

tmq2lm(
tq(2k+1); q2

)
m

.

Notice that the beauty of Theorem 2.3 lies on the symmetry between 2l and 2k + 1.
By taking k = l = 1 in Theorem 2.3 or by Corollary 2.2, we have

COROLLARY 2.4.

∞∑
m=1

tmq3m(
tq2; q2

)
m

= q
∞∑

m=1

tmq2m

(tq3; q2)m
.

In next section, we will employ Corollary 2.4 to derive a functional equation which
enables us to establish Fine’s identity.

3. A new proof of Fine’s identity. For convenience, define

G(t) =
∞∑

m=0

tm+1q2m+1

(tq; q2)m+1
.
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And then,

tq(1 + G(tq)) = tq

(
1 +

∞∑
m=0

tm+1q3m+2

(tq2; q2)m+1

)
= tq

(
1 +

∞∑
m=1

tmq3m−1

(tq2; q2)m

)

= tq

(
1 +

∞∑
m=1

tmq2m

(tq3; q2)m

)
(by Corollary 2.4)

= tq
∞∑

m=0

tmq2m

(tq3; q2)m
= (1 − tq)

∞∑
m=0

tm+1q2m+1

(tq; q2)m+1

= (1 − tq)G(t).

Hence, we arrive at the functional equation

G(t) = tq(1 + G(t) + G(tq)). (3.1)

Write

G(t) =
∞∑

j=1

Ajtj

where Aj is a polynomial of q. Observe that A1 = q. This can be seen by rewriting G(t)
as

G(t) = tq
(1 − tq)

+
∞∑

m=1

tm+1q2m+1

(tq; q2)m+1
.

By (3.1), we have

∞∑
j=1

Ajtj = tq


1 +

∞∑
j=1

Ajtj +
∞∑

j=1

Ajqjtj


.

For N > 1, by equating the coefficients of tN on both sides of the last equality, we
obtain

AN = q(AN−1 + qN−1AN−1)

= q(1 + qN−1) · AN−1

= q(1 + qN−1) · · · · · q(1 + q)A1

= (−q; q)N−1qN .

Hence,

G(t) =
∞∑

j=1

(−q; q)j−1qjtj,

which is Fine’s identity (1.2).

REMARK 2. The functional equation (3.1) for G(t) can also be obtained by using
results of N. J. Fine. More precisely, one can employ the equations (2.4) with a =
−1, b = 0 and [14, (20.72)] to derive (3.1). We leave the details to the reader.
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In addition to Fine’s theorem, various generalizations of Euler’s theorem are
known. A famous refinement of Euler’s theorem is due to Sylvester [18] which
says that the number of partitions of n into odd parts with exactly k distinct parts
appearing equals the number of partitions of n into distinct parts such that exactly k
sequences of consecutive integers occur in each partitions. (See [5, Theorem 2.12], [3],
[17].) Bessenrodt [7] obtained a generalization for Fine’s theorem while constructing
a bijection for Lebesgue’s partition identity. (Also, see [16].) Bousquet-Mélou and
Eriksson [8] introduced a new concept named lecture hall partitions and proved the
so-called Lecture Hall Theorem whose limiting case yields Euler’s identity (1.1). For
references to lecture hall partitions, we refer the reader to [4], [6], [9], [10] and [19].
Recently, the authors and S.-D. Chen [15] established an octuple product identity from
which Euler’s identity (1.1) follows as a special case.

4. An analytic proof of Theorem 2.3. In the final section, we offer an analytic
proof of Theorem 2.3 with the help of the following result which was originally due to
Cauchy.

LEMMA 4.1. [11, p. 46] For any positive integer m,

1
(z; q)N

=
∞∑

j=0

[
N + j − 1

j

]
q
z j,

where
[n

m

]
q is the Gaussian polynomial.

Now, by Lemma 4.1 and the fundamental property of the Gaussian polynomial,
namely,

[n
m

]
q = [ n

n−m

]
q
, we have

q2l
∞∑

m=1

tmq(2k+1)m

(tq2l; q2)m

= q2l
∞∑

m=1

tmq(2k+1)m
∞∑

n=0

[
m + n − 1

n

]
q2

(tq2l)n

=
∞∑

n=0

∞∑
m=1

[
m + n − 1

n

]
q2

tm+nq2km+m+2nl+2l

=
∞∑

n=1

∞∑
m=0

[
m + n − 1

n − 1

]
q2

t(m+1)+(n−1)q2k(m+1)+(m+1)+2(n−1)l+2l

(Here, we replace n and m by n − 1 and m + 1, respectively.)

= q2k+1
∞∑

n=1

∞∑
m=0

[
m + n − 1

m

]
q2

tm+nq2km+m+2nl

= q2k+1
∞∑

n=1

tnq2nl
∞∑

m=0

[
m + n − 1

m

]
q2

tmq(2k+1)m

= q2k+1
∞∑

n=1

tnq2nl

(tq2k+1; q2)n
.

This completes the proof of Theorem 2.3.
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