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ABSTRACT

We give some actual possibilities for computing numerical values in the classical
risk models both in transient and asymptotical cases by introducing the concept
of normed model. Some recent approximations are tested on numerical examples.

We also emphasize the interest of these methods to compute waiting time
distributions (transient and stationary cases) in queueing theory.

1. MODELS CONSIDERED

1.1. Risk Model

We will limit our attention to the classical Cramer-Lundberg model for which
we have the following characteristics:

(i) The claim number process is a Poisson one with parameter A. Let {An)n9i
be the sequence of interarrival times between claims so that

(1.1) E(An) = A-1.

Following the current notation, N(t) (f 3=0) represents the total number of claim
occurrences on (0, t].

(ii) The process of successive claim amounts is a sequence of non negative
i.i.d. random variables (Bn)n»i with d.f. B(-) such that

(1.2) E(£n) = /3

and this process is independent of (An)n»i.
(iii) The premium income process has a constant rate per unit of time: c. To

avoid certain ruin on [0, oo), we must have:

(1.3) f<l.

So, we can define TJ, the security loading by

(1.4) C=A/3(1 + T,).
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Every risk model is thus characterized by a triple (A, B(x), 17). Now define,
JV(()

(1.5) 5(0= I Bn

with the usual convention that a summation over a void indice set is 0, and

(1.6) R(t) = u+c-t-S(t)

where u, supposed to be positive, is the initial reserve. Of course, if F(x, t) is
the d.f. of S(t), we have

(1.7) F(*,0= I e~Kt^-Bn*(x)
n=o n\

where Bn* represents the n-fold convolution of B.
If T is the random variable, possibly defective, defined by

(1.8) T = inf{f:i?(f)<0}

we have for the probabilities of non-ruin the following definitions:
(a) on a finite horizon time [0, t]

(1.9)

(b) on a finite horizon time [0, 00)

(1.10) 4>(u) =
t~*ao

For the ruin probabilities, we have, of course

(1.11) IA(H, 0 = 1-<£(«,

(1.12)

1.2. Normed Risk Models

1.2.1. First Semi-Normed Relation

Let Ro and i?i be two risk models characterized respectively by (1, B( • )> 17) and
(A,B(-) ,TJ).

If <f>0(u, 0 and <£I(M, 0 are corresponding non-ruin probabilities, we want to
find a relation between <f>0 and <£i. To do so; let us remark that from (1.7)

(1.13) FoOc,0= I e-' —
n=o n!

(1.14) ^ , 0 = I e - {
n=o n\

so that

(1.15) F1(x,0=Fo(x,A0

or Si(0 has the same distribution as So(AO>
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Now, from (1.9)

(1.16) <MK,O = P[Si(f')a£«+ci-r',r'e[O,r]]

with ci = A • /3 • (1 + TJ) by (1.4). For Ro, we have c0 = (1 + 17)• 1 -0. Using (1.15),
we get

= P[So(Af')« « + A • Co • t',? 6 [0, t]]

and finally

(1.17)

1.2.2. Second Semi-NormedRelation

Following Pfenninger (1974), we can also normalize the claim size distribution.
Let us consider the risk model Ri and R2, where R2 is characterized by (A, B'( •),
17) with

(1.18) B\x) = B{px)

i.e., B'ix) is the d.f. of the random variables BJ(3.
We have

[AT(«') "I

I B B « M + A - / 3 - ( l + Tj ) r ' , r ' 6 [0 , r ]
n=0 J

I ^ s S ^ + A ( i + ^)r ' ,r '€[0,0
n=0 p (3 J

and finally

1.2.3. Normed Relation

Combining the two preceding steps, we get the so-called normed relation for
the risk models R\ and R3 respectively characterized by {\,B(-),-q) and

(1.20) <

R3 is called the normed model.

https://doi.org/10.1017/S0515036100004682 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100004682


102 JANSSEN AND DELFOSSE

This relation gives some simplification for numerical computation, especially
for tabulation purposes. For example, in the M/M/l model for which

characterized shortly by the triple (A, /LI, n), the normed model R3 is given by
the triple (1,1,17) so that we have only one parameter, the security loading.

From the numerical point of view, it suffices to treat this model to obtain
results for any model with triple (A, /A, 17).

2. THE QUEUEING MODEL

We will only consider the classical M/G/l model for which A is the rate of
arrivals and B (•) the d.f. of the service time, with mean /3. If N(t) (t 3= 0) represents
the total number of arrivals on [0, t] and Wn the waiting time of customer number
n (we suppose that Wo = 0, i.e., a time 0, a service is just beginning) it can be
shown (Janssen (1977)) that

(2.1)

(2.2) 1
r-»°o

where <£(«, f) and j>(u) are the non-ruin probabilities of a risk model character-
ized by X" as claim number process parameter, by B(x) as claim size distribution
and by c = 1 as premium rate. The security loading of this corresponding risk
process is, of course, given by

1

(2.3) c=(l+i7)A-/3 or

Consequently, to every M/G/l queueing model, characterized by A and (3(x),
corresponds a risk process with parameters (A, /3(x), (l/A/3) -1) . Inversely every
result for the Cramer-Lundberg model (A,S(X),TJ) can be transposed for a
M/G/l queueing model with parameters

A
(l+T,)/3

o \x) — ts\x).

For a fixed 17 and a given B {x), we can see the relation between the normed-model
non-ruin probability <p3(u, t) and the waiting time distribution. We have:

(2.4)
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3. NON-RUIN PROBABILITY IN THE TRANSIENT CASE FOR THE M / G / l MODEL

Theoretically, two principal methods are used to solve this problem: the first
method is based upon the double Laplace transform of <f> (u, t) and the second
one upon the previous determination of <f>(0, t).

3.1. Cramer-Arfwedson-Thorin

The equation of Thorin (1968), valid in the general case GI/G/1 is:

J
«r -u+c-v

dK(v)\ <f>(u+cv-x,t-v)dB(x) + l-K(t)

where K (t) = 1 - e ~yt. It gives the double Laplace-Stieltjes transform of <f> (u, t) =

(3.2) ${s, z) = -z(l-s/sdz))/(l-cs-z -B(s))

where «i(z) is the only root with a negative real part in the Lundberg equation:

(3.3) l-z+c-s-B(s) = 0,
B(s) being the Laplace-Stieltjes transform of B(x).

For the M/G/l model, Cramer (1955) and Arfwedson (1950) obtained this
result by using the integro-differential equation

(3.4) c^-4>(u,t) = ̂ -<l>(u,t)+<Hu,t)-\ 4>(u-y,t)dB(y).
du dt Jo

This was also found by Beekman (1966) using results of Donsker and Baxter
(1957) about processes with stationary independent increments.

Theoretically, thus, the problem is worked out, but we have to use twice the
Laplace inversion. However, we dispose of fiable algorithms for this inversion
(Piessens (1969), Stroud and Secrest (1966)), but this needs some care: the
Laplace inversion of a good approximation of a given function is not surely a
good approximation of the Laplace inversion of this function. Some precautions
are thus required if we want to compute <f> (u, t) by means of a double inversion
of <£(s, z); probably for this reason, there are few results needing such double
transformation in the risk theory literature.

However, if B(x) is an exponential polynomial, i.e., if

(3.5) B{x) = l - £ bve~$«x, bv>0,(3v>0 v = l,2,...m, 1 ^ = 1
v = l

then the problem can be solved with only one inversion. In this case, <i>(u, z),
the Laplace transform of <t> (u, t), is given by

(3.6) <£(«,*) = 1 - f gv(z)e-"^U)

v = l

where s2v(z) are the m roots of the Lundberg equation with a positive real part.
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Furthermore, in this case, this equation is a polynomial one and the roots are
easily obtained by well-known algorithms (Bairstow, Newton-Raphson) (see
e.g., Wikstad (1977), Stroeymeyt (1977)).

It is also possible to approximate a general claim size distribution by an
exponential polynomial; this was tested by Thorin and Wikstad (1977) for a
lognormal distribution.

3.2. Prabhu-Benes-Seal

The well-known relations of Prabhu (1961) can be used here:

(3.7) <f>(u,t)=F{u+ct,t)-c\ <(>(0,t-6)f(u+cd,6)d8
Jo

(3.8) 4>(0,t) = -( F(y,t)dy,
ct Jo

where f(x,t) = d/dxF(x,t).
Although the function F(x, t) is very difficult to handle directly, the use of

the Laplace transform and an integration give the non-ruin probability.

3.3. Direct Results for M/M/l and M/D/l Models

M/M/l model, i.e., the model with the following claim size distribution:

- n
- e xs=0

is the really well-known model in risk theory, it has a direct solution in terms
of a modified Bessel function of first class; some subroutines give very accurate
values of this function (see e.g. Stroeymeyt (1977)).

The M/D/l model with a deterministic claim amount can also be directly
solved (see e.g., Seal (1974)).

4. THE ASYMPTOTIC NON-RUIN PROBABILITY

For a general M/G/l model, we have:

(4.1) <£(«) = Km
r o or-»oo

where

<£(u,z)=f e-"dt<t>(u,t).
Jo-

Thus, only one inversion of a Laplace transform is needed and we avoid some
problems raised by the double inversion. Furthermore, in some special cases,
the value is explicitly given. If B(x) is an exponential polynomial (3.5), Cramer
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(1955) gives an explicit formula:

(4.2) <£(«) = ! - I Cke-R«u

where Rk, k = 1, 2 T . . . m, denote the m roots of the Lundberg equation, a
polynomial one in this case; Ck,k = 1,2,.. .m, are simple functions of those
roots. Especially, if B{x) is an exponential, we have the following expression:

(4.3) <£(") = l - T ^ - e ^ 1 ^ " -
1 +

For the M/D/l model, a recursive formula exists to compute i
As pointed out by Bohmam (1971) the computation of asymptotic non-ruin

probabilities is now easy to do even with a common desk computer.

5. SOME NUMERICAL RESULTS IN THE TRANSIENT CASE

We will restrict ourselves to three models already treated in the literature:
Model A or M/M/l model (see e.g., Seal (1974), Stroeymeyt (1977))

A = 1

0 x<0

TJ=0.1.

Model B or M/D/l model (see e.g., Seal (1974))

A = l

fO x<0
B(x)

_f0 x<0
11 *3=1

V=0.

Model C (see e.g., Stroeymeyt (1977))

A=2

f0 x<0

U
TJ= 0.037234.

These models do not give rise to special computational difficulties, they are
useful to test some approximations and bounds, and to test different methods.

5.1. The Accuracy of the Laplace Inversion Methods

To test the precision of the Laplace inversion methods, we give in Table 1 the
real values of the non-ruin probability computed by means of a Bessel modified
function for the model A (Column l.i). The same values are computed by the
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TABLE 1

MODEL A: VALUES OF <£(0, T)

T

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

100
200

(1.1)

0.90965
0.83561
0.77429
0.72295
0.67952
0.64242
0.61043
0.58260
0.55819
0.53660
0.40714
0.34479
0.30669
0.28040
0.26088
0.24566
0.23337
0.22319
0.21457
0.11001
0.09902

(1.2)

0.90321
0.82978
0.76905
0.71817
0.67527
0.63589
0.60688
0.57942
0.55530
0.53400
0.40621
0.34442
0.30656
0.28035
0.26086
0.24566
0.23337
0.22319
0.21457
0.11001
0.09902

(1.3)

0.89887
0.82586
0.76547
0.71497
0.67230
0.63589
0.60453
0.57726
0.55335
0.53223
0.40554
0.34421
0.30649
0.28034
0.26086
0.24566
0.23337
0.22319
0.21457
0.11002
0.09897

(1.1) Direct computation.
(1.2) Stroud and Secrest method.
(1.3) Piessens method.

Stroud and Secrest method (Column 1.2) and by the Piessens method (Column
1.3) for the model A, far different values of t and for u = 0.

To obtain those values, the Prabhu-Beries-Seal relations (3.7) and (3.8),
were used. It can be pointed out that the non-ruin probabilities obtained by
Laplace inversion are quite similar to the non-ruin probabilities "directly"
computed, except for small values of t.

In Table 2, we give the non-ruin probabilities for the model C obtained by
the Stroud and Secrest method (2.1) and by the Piessens method (2.2), for u = 0.

Here also, it can be remarked that those methods give nearly the same values
except for small values of t.

5.2. Approximations ofF(x, t) by Means of Normal Power Approximation
and T-function

The form of the Prabhu-Beries-Seal relations suggests that an approximation
of F(x, t) can provide a good approximation of the non-ruin probability. But
those approximations of F(x, t) are only valid for large t, and thus they bring a
lot of imprecision in the integral

f(c0 + u,6)<f>(0,t-6)de in (3.7).
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TABLE 2
MODEL C: VALUES OF 0(0, t)

t

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
2
3
4
5
6
7
8
9
10

(2.1)

0.82524
0.71305
0.63429
0.57240
0.52601
0.48913
0.45904
0.43396
0.41267
0.39432
0.29016
0.24180
0.21252
0.19239
0.17748
0.16586
0.15648
0.14871
0.14213

(2.2)

0.82914
0.71638
0.63511
0.57458
0.52779
0.49057
0.46020
0.43489
0.41347
0.39496
0.29023
0.24180
0.21251
0.19239
0.17748
0.16586
0.15648
0.14871
0.14213

(2.1) Stroud and Secrest method.
(2.2) Piessens method.

However, some of those methods will provide an acceptable approximation of
<f>{0, t), when t is not too small.

Bohman and Esscher (1963) and Cramer (1955) give approximations of F(x, t)
in terms of <$>(x). the reduced normal distribution function. Normal Power
approximations are proposed by Pesonen (1975) and by Taylor (1978). A
F-function was also proposed by Seal (1978).

In our examples, the best method to calculate <f> (0, t) seems to be the Normal
Power approximation from Taylor (1978).

Table 3 contains some values of <f) (0, t) and of this approximation for the
M/M/1 model. The method of Taylor consisting of an approach of <f>(u, t) by
means of (f>(0, ?) + (1 — < (̂0, t))-G(w, t) involves some numerical complications:
for one certain value of the security loading, TJ, negative numbers are obtained
for a variance. Furthermore, this method occasionally involves some surprising
results: an approximation for 0(1,10) is smaller than the approximation for
<f>{\, 100). Taylor thinks that the consideration of higher order moments could
give more accuracy but, of course, this will lead to complications from the
numerical point of view.

5.3. The De Vylder Approximation

De Vylder (1978) proposed to approach the asymptotic non-ruin probability of a
M/G/1 model by non-ruin probability of a M/M/1 model with such parameters
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TABLE 3

T

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
20.0

40.0

(1)

0.46003
0.44370
0.43134
0.42104
0.41208
0.40408
0.39681
0.39013
0.38394.
0.37814
0.33420
0.30422
0.28162
0.26372
0.24910
0.23690
0.22655
0.21764
0.20989
0.16577

0.13453

Model A
(2)

1.55294
1.19918
1.03439
0.93164
0.85861
0.80266
0.75765
0.72021
0.68828
0.66052
0.49466
0.41030
0.35665
0.31910
0.29131
0.26995
0.25306
0.23941
0.22815
0.17309

0.13913

(3)

0.90136
0.86913
0.81417
0.75267
0.70029
0.65686
0.62056
0.58981
0.56340
0.54043
0.40750
0.34484
0.30668
0.28038
0.26086
0.24564
0.23335
0.22317
0.21455
0.16815

0.13621

(4)

0.90965
0.83561
0.77429
0.72295
0.67952
0.64242
0.61043
0.58260
0.55819
0.53660
0.40714
0.34479
0.30669
0.28040
0.26088
0.24566
0.23337
0.22319
0.21457
0.16816

0.13621

T

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
20.0

40.0

(1)

0.44025
0.41618
0.39816
0.38333
0.37057
0.35930
0.34918
0.33998
0.33154
0.32373
0.26745
0.23245
0.20804
0.18993
0.17590
0.16470
0.15553
0.14785
0.14133
0.10583

0.08092

Model C
(2)

1.20985
0.93522
0.80241
0.71731
0.65557
0.60755
0.56851
0.53578
0.50774
0.48330
0.33895
0.27019
0.22980
0.20341
0.18488
0.17112
0.16045
0.15187
0.14477
0.10785

0.08233

(3)

0.85731
0.75184
0.65527
0.58645
0.53537
0.49576
0.46396
0.43772
0.41561
0.39665
0.29046
0.24185
0.21253
0.19239
0.17748
0.16586
0.15648
0.14871
0.14213
0.10648

0.08143

(4)

0.82914
0.71638
0.63511
0.57458
0.52779
0.49057
0.46020
0.43489
0.41347
0.39496
0.29023
0.24180
0.21251
0.19239
0.17748
0.16586
0.15648
0.14871
0.14213
0.10649

0.08143

(1) Normal-Power Approximations of 0(0, t) (two terms).
(2) Normal-Power Approximations of 0(0, f) (one term).
(3) G. C. Taylor Approximation of 0(0, 0-
(4)0(0,0.

that the two reserve processes R{t) have the same first moments. De Vylder
emphasized the fact that the initial reserve must be large and supposed that this
approximation can also be used for transient probabilities. In Table 4, we compare
some results of this approximation for the model B and the model C. If this
approximation is not good for small values of u, this very simple method gives
acceptable values for important values of u (u = 10).

5.4. Some Easily Computable Bounds in Transient Case

We found it interesting to examine some easily computable bounds, to test
approximations or calculations by means of Laplace inversion and to eliminate
some aberrant results.

(1) GerberMinoration: Gerber (1973) gives a minoration based upon marting-
ales. It can be improved for the M/M/l model. This minoration cannot be used
with a null initial reserve except for the M/M/l model. For the M/M/l normed
model, the Gerber minoration takes the following form:

- min (1-r) exp ( -ru -crt + t- j .
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TABLE 4

Model B

M = 0 u = \ « = 2

(1) (2) (1) , (2) t (1) (2)

109

1
2
3
4
5
6
7
8
9
10

0.73576
0.60901
0.53106
0.47697
0.43662
0.40503
0.37944
0.35815
0.34008
0.32450

0.26218
0.18674
0.15284
0.13252
0.11861
0.10833
0.10032
0.09387
0.08852
0.08399

1
2
3
4
5
6
7
8
9
10

0.91970
0.83457
0.76548
0.70988
0.66437
0.62638
0.59411
0.56630
0.54201
0.52057

0.75288
0.61680
0.53420
0.47763
0.43584
0.40337
0.37721
0.35554
0.33722
0.32147

1
2
3
4
5
6
7
8
9
10

0.98101
0.94171
0.89866
0.85758
0.82000
0.78607
0.75552
0.72796
0.70300
0.68031

0.93381
0.84879
0.77767
0.72010
0.67297
0.63369
0.60040
0.57176
0.54680
0.52481

u = 3 M=4 M = 5 M = 6

t

1
2
3
4
5
6
7
8
9
10

(1)

0.99634
0.98231
0.96124
0.93698
0.91181
0.88695
0.86298
0.84016
0.81859
0.79827

(2)

0.98491
0.94840
0.90623
0.86513
0.82717
0.79275
0.76168
0.73363
0.70822
0.68513

1
2
3
4
5
6
7
8
9
10

(1)

0.99941
0.99528
0.98669
0.97461
0.96024
0.94455
0.92822
0.91171
0.89533
0.87925

(2)

0.99695
0.98438
0.96449
0.94094
0.91613
0.89139
0.86741
0.84449
0.82278
0.80230

t

1
2
3
4
5
6
7
8
9
10

(1)

0.99992
0.99888
0.99586
0.99063
0.98342
0.97466
0.96475
0.95405
0.94283
0.93132

(2)

0.99944
0.99573
0.98776
0.97627
0.96237
0.94701
0.93091
0.91453
0.89822
0.88216

t

1
2
3
4
5
6
7
8
9
10

(1)

0.99999
0.99976
0.99883
0.99681
0.99358
0.98917
0.98372
0.97741
0.97039
0.96283

(2)

0.99991
0.99893
0.99612
0.99118
0.98428
0.97581
0.96615
0.95564
0.94458
0.93319

M=7 M=9 u = 10

1
2
3
4
5
6
7
8
9
10

(1)

1
0.99995
0.99969
0.99899
0.99768
0.99566
0.99291
0.98948
0.98543
0.98082

(2)

0.99999
0.99975
0.99886
0.99694
0.99386
0.98962
0.98434
0.97819
0.97132
0.96389

t

1
2
3
4
5
6
7
8
9
10

(1)

1
0.99999
0.99993
0.99970
0.99921
0.99836
0.99708
0.99535
0.99317
0.99055

(2)

1
0.99995
0.99968
0.99901
0.99774
0.99579
0.99314
0.98981
0.98586
0.98136

t

1
2
3
4
5
6
7
8
9
10

(1)

1
1
0.99998
0.99992
0.99975
0.99942
0.99886
0.99805
0.99695
0.99555

(2)

1
0.99999
0.99992
0.99969
0.99921
0.99838
0.99714
0.99546
0.99334
0.99078

t

1
2
3
4
5
6
7
8
9
10

(1)

1
1
1
0.99998
0.99993
0.99980
0.99958
0.99922
0.99870
0.99799

(2)

1
1
0.99998
0.99991
0.99974
0.99941
0.99887
0.99807
0.99700
0.99563
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TABLE 4 (continued)

t

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(1)

0.99164
0.97316
0.95019
0.92596
0.90206
0.87917
0.85758
0.83735
0.81847
0.80084
0.78440
0.76902
0.75463
0.74115
0.72848
0.71655
0.70531
0.69469
0.68464
0.67512

(2)

0.99166
0.97313
0.95009
0.92581
0.90187
0.87895
0.85734
0.83711
0.81821
0.80059
0.78413
0.76876
0.75437
0.74089
0.72821
0.71629
0.70505
0.69443
0.68439
0.67487

Model C

t

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

(1)

0.66608
0.65748
0.64930
0.64150
0.63405
0.62693
0.62012
0.61359
0.60733
0.60132
0.59554
0.58998
0.58463
0.57947
0.57450
0.56970
0.56506
0.56058
0.55624
0.55204

(2)

0.66583
0.65724
0.64905
0.64125
0.63380
0.62668
0.61987
0.61334
0.60708
0.60106
0.59528
0.58972
0.58437
0.57921
0.57423
0.56942
0.56478
0.56029
0.55595
0.55174

(1)
(2) De Vylder approximation of 0(10, t).

Taking the derivative, it can be easily proved that the minimum is attained for

2(u+ct)
(2) Gerber Majoration: when the initial reserve is null, Gerber (1979) gives

a majoration of 4>(0, t)

c ) ct c-A/3

(3) Beekman-Bowers Minoration: Beekman and Bowers (1972) proposed a
very simple minoration of 4> (u, t)

Of course, for large values of t, this minoration becomes negative.
(4) Bounds based upon the asymptotic non-ruin probability: The asymptotic

non-ruin probability is generally easy to compute: either explicit formula exist
or only one Laplace inversion provides it. With these probabilities, it is possible
to construct bounds for small values of t, bearing in mind that, especially in this
case, different values were observed for Laplace inversion (see Delfosse 1980).
(4a) Minoration:
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TABLE 5
BOUNDS AND APPROXIMATIONS DESCRIBED IN 5.4

f

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10
100
200

t

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
2
3
4
5
6
7
8
9
10
100
200

(1)

0.77724
0.62707
0.52256
0.44734
0.39140
0.34857
0.31491
0.28788
0.26576
0.24736
0.15722
0.12549
0.11015
0.10166
0.09666
0.09369
0.09199
0.09115
0.09091
0.09091
0.09091

(4a)

0.99423
0.98869
0.98321
0.97784
0.97259
0.96744
0.96420
0.95746
0.95261
0.94787
0.90517
0.86972
0.83996
0.81473
0.79317
0.77463
0.75858
0.74462
0.73242
0.63375
0.63374

Model A:

(4a)

0.90950
0.83472
0.77188
0.71834
0.67218
0.63197
0.59664
0.56534
0.53744
0.51239
0.35553
0.27841
0.23273
0.20265
0.18143
0.16572
0.15369
0.14421
0.13659
0.09091
0.09091

Model A:

(3)

0.99800
0.99600
0.99400
0.99200
0.99000
0.98800
0.98600
0.98400
0.98200
0.98000
0.96000
0.94000
0.92000
0.90000
0.88000
0.86000
0.84000
0.82000
0.80000
0
0

M=0

4,(0, t)

0.90965
0.83561
0.77429
0.72295
0.67952
0.64242
0.61043
0.58260
0.55819
0.53660
0.40714
0.34479
0.30669
0.28040
0.26088
0.24566
0.23337
0.22319
0.21457
0.11001
0.09902

M = 10

(1)

0.99998
0.99994
0.99988
0.99980
0.99969
0.99956
0.99941
0.99923
0.99902
0.99879
0.99488
0.98833
0.97965
0.96942
0.95816
0.94629
0.93413
0.92190
0.90978
0.63374
0.67334

(4b)

0.90992
0.83727
0.77857
0.73076
0.69139
0.65855
0.63079
0.60699
0.58635
0.56822
0.45858
0.40224
0.36567
0.33926
0.31894
0.30263
0.28915
0.27775
0.26794
0.13061
0.11145

<M10,r)

0.99999
0.99998
0.99997
0.99995
0.99992
0.99989
0.99985
0.99980
0.99975
0.99969
0.99865
0.99677
0.99410
0.99077
0.98689
0.98258
0.97796
0.97311
0.96810
0.73947
0.68217

(2)

1

1
0.18181
0.13636

(4b)

0.99999
0.99998
0.99997
0.99995
0.99993
0.99990
0.99987
0.99983
0.99979
0.99974
0.99895
0.99757
0.99566
0.99332
0.99061
0.98761
0.98440
0.98103
0.97754
0.78760
0.72116
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(4b) Majoration:

4>(u,t)*z<f>(u)-F(u+ct,t)-
1

(cf> *F{x,t)\x=u+ct)
(when t^u/c).

In Table 5, we present these bounds for the model A for u = 0 and for u = 10;
in Table 6, the same bounds for the model C, for u = 10.

TABLE 6
BOUNDS AND APPROXIMATIONS DESCRIBED IN 5.4

t

1
2
3
4
5
6
7
8
9
10
20
30
40

(4a)

0.83201
0.71966
0.63941
0.57937
0.53287
0.49588
0.46582
0.44098
0.42016
0.40250
0.31268
0.28239
0.26982

Model C:

(3)

0.89871
0.79741
0.69612
0.59482
0.49353
0.39223
0.29094
0.18964
0.08835
0
0
0
0

u = 10

(2)

0.93398
0.85465
0.78205
0.71969
0.66688
0.62208
0.58387
0.55101
0.52254
0.49767
0.35744
0.29932
0.26935

0(10,0

0.99164
0.97316
0.95019
0.92596
0.90206
0.87917
0.85758
0.83735
0.81847
0.80084
0.67512
0.60132
0.55204

(4b)

0.99346
0.98010
0.96382
0.94665
0.92956
0.91300
0.89715
0.88210
0.86784
0.85436
0.75213
0.68634
0.63950

COMMENTS

These bounds are rather crude for certain values, but a package of these
maj orations and minorations does not take much computer time and allows to
eliminate some inexact values. Our minoration <f>{u)/<f>{u+ct) shows that
<f>(0, 0.1) and </>(0, 0.2) are too small in Model A and in Model C; for those
values, the obtained non-ruin probabilities were the most different.

These minorations and maj orations are also interesting to limit the use of
precise but time-consuming methods: those bounds can be used to restrain the
area of possible computations, if we allow some parameters of the model to
vary. For example, the calculation of the bounds (4a), (4b) takes 16 times less
calculation time than the computation of an exact value by the Laplace inversion.
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