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Abstract

In this paper we study a generalized coupon collector problem, which consists of
determining the distribution and the moments of the time needed to collect a given number
of distinct coupons that are drawn from a set of coupons with an arbitrary probability
distribution. We suppose that a special coupon called the null coupon can be drawn but
never belongs to any collection. In this context, we obtain expressions for the distribution
and the moments of this time. We also prove that the almost-uniform distribution, for
which all the nonnull coupons have the same drawing probability, is the distribution
which minimizes the expected time to obtain a fixed subset of distinct coupons. This
optimization result is extended to the complementary distribution of the time needed to
obtain the full collection, proving by the way this well-known conjecture. Finally, we
propose a new conjecture which expresses the fact that the almost-uniform distribution
should minimize the complementary distribution of the time needed to obtain any fixed
number of distinct coupons.
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1. Introduction

The coupon collector problem is an old problem which consists of evaluating the time needed
to obtain a collection of different objects drawn randomly using a given probability distribution.
This problem has given rise to a lot of attention from researchers in various fields since it has
applications in many scientific domains including computer science and optimization; see [1]
for several engineering examples.

More formally, consider a set of n coupons which are drawn randomly one by one, with
replacement, coupon i being drawn with probability pi . The classical coupon collector problem
is to determine the expectation or the distribution of the number of coupons that need to be drawn
from the set of n coupons to obtain the full collection of n coupons. A large number of papers
have been devoted to the analysis of asymptotics and limit distributions of this distribution
when n tends to infinity; see [3] or [7] and the references therein. In [2], the authors obtain new
formulas concerning this distribution and they also provide simulation techniques in order to
compute it as well as providing analytic bounds. The asymptotics of the rising moments were
studied in [4].
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In this paper we consider several generalizations of this problem. A first generalization is
the analysis, for c ≤ n, of the number Tc,n of coupons that need to be drawn, with replacement,
to collect c different coupons from the set {1, 2, . . . , n}. With this notation, the number of
coupons that need to be drawn from this set to obtain the full collection is Tn,n. If a coupon is
drawn at each discrete time 1, 2, . . . then Tc,n is the time needed to obtain c different coupons,
this is also called the waiting time to obtain c different coupons. This problem was considered
in [8] for the case where the drawing probability distribution is uniform.

In a second generalization, we assume that p = (p1, . . . , pn) is not necessarily a probability
distribution, i.e. we suppose that

∑n
i=1 pi ≤ 1 and we define p0 = 1 − ∑n

i=1 pi . This means
that there is a null coupon, denoted by 0, which is drawn with probability p0, but which does
not belong to the collection. In this context, the problem is to determine the distribution of the
number Tc,n of coupons that need to be drawn from set {0, 1, . . . , n}, with replacement, until we
first obtain a collection composed of c different coupons, 1 ≤ c ≤ n, among {1, . . . , n}. This
work is motivated by the analysis of streaming algorithms in network monitoring applications,
presented in Section 7.

In Section 2 the distribution of Tc,n is obtained using Markov chains. Moreover, we show that
this distribution leads to new combinatorial identities. This result is used to derive an expression
of Tc,n(v) when the drawing distribution is the almost-uniform distribution denoted by v and
defined by v = (v1, . . . , vn) with vi = (1 − v0)/n, where v0 = 1 − ∑n

i=1 vi . Expressions for
the moments of Tc,n(p) are presented in Section 3, where we show that the limit of E{Tc,n(p)}
is equal to c when n tends to ∞. In Section 4 we show that the almost-uniform distribution v

and the uniform distribution u minimize the expected value E{Tc,n(p)}. In Section 5 we prove
that the tail distribution of Tn,n is minimized over all the p1, . . . , pn by the almost-uniform
distribution and by the uniform distribution. This result was expressed as a conjecture in the
case where p0 = 0, i.e. when

∑n
i=1 pi = 1, in several papers; see, for example, [1] from which

the idea of the proof originates. In Section 6 we propose a new conjecture which consists of
showing that the distributions v and u minimize the tail distribution of Tc,n(p). This conjecture
is motivated by the fact that it is true for c = 1 and c = n as shown in Section 5, and we show
that it is also true for c = 2. It is, moreover, true for the expected value E{Tc,n(p)} as shown
in Section 4.

2. Distribution of Tc,n

Recall that Tc,n is the number of coupons that need to be drawn from the set {0, 1, 2, . . . , n},
with replacement, until we first obtain a collection with c different coupons, 1 ≤ c ≤ n,
among {1, . . . , n}, where coupon i is drawn with probability pi , i = 0, 1, . . . , n. To obtain
the distribution of Tc,n, we consider a discrete-time Markov chain X = {Xm, m ≥ 0} that
represents the collection obtained after having drawn m coupons. The state space of X is
Sn = {J ⊆ {1, . . . , n}} and its transition probability matrix, denoted by Q is given, for every
J, H ∈ Sn, by

QJ,H =

⎧⎪⎨
⎪⎩

p� if H \ J = {�},
p0 + PJ if J = H,

0 otherwise,

where for every J ∈ Sn, PJ is given by PJ = ∑
j∈J pj , with P∅ = 0. It is easily checked

that Markov chain X is acyclic, i.e. it has no cycle of length greater than 1, and that all the
states are transient, except state {1, . . . , n} which is absorbing. We introduce the partition
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(S0,n, S1,n, . . . , Sn,n) of Sn, where Si,n is defined for i = 0, . . . , n, by

Si,n = {J ⊆ {1, . . . , n} | |J | = i}. (1)

Note that we have S0,n = {∅}, |Sn| = 2n, and |Si,n| = (
n
i

)
. Assuming that X0 = ∅ with

probability 1, the random variable Tc,n can then be defined for every c = 1, . . . , n, by

Tc,n = inf{m ≥ 0 | Xm ∈ Sc,n}.

The distribution of Tc,n is obtained in Theorem 1 using the Markov property and the following
lemma. For every n ≥ 1, � = 1, . . . , n and i = 0, . . . , n, we define the set Si,n(�) by
Si,n(�) = {J ⊆ {1, . . . , n} \ {�} | |J | = i}.
Lemma 1. For every n ≥ 1, k ≥ 0, and for all positive real numbers y1, . . . , yn, for every
i = 1, . . . , n, and all real numbers a ≥ 0, we have

n∑
�=1

y�

∑
J∈Si−1,n(�)

(a + y� + YJ )k =
∑

J∈Si,n

YJ (a + YJ )k,

where YJ = ∑
j∈J yj and Y∅ = 0.

Proof. For n = 1, since S0,1(1) = ∅, the left-hand side is equal to y1(a + y1)
k and since

S1,1 = {1}, the right-hand side is also equal to y1(a + y1)
k . Suppose that the result is true for

integer n − 1 i.e. suppose that

n−1∑
�=1

y�

∑
J∈Si−1,n−1(�)

(a + y� + YJ )k =
∑

J∈Si,n−1

YJ (a + YJ )k.

Then

n∑
�=1

y�

∑
J∈Si−1,n(�)

(a+y�+YJ )k =
n−1∑
�=1

y�

∑
J∈Si−1,n(�)

(a+y�+YJ )k +yn

∑
J∈Si−1,n(n)

(a+yn+YJ )k.

Since Si−1,n(n) = Si−1,n−1, we obtain

n∑
�=1

y�

∑
J∈Si−1,n(�)

(a+y�+YJ )k =
n−1∑
�=1

y�

∑
J∈Si−1,n(�)

(a+y�+YJ )k +yn

∑
J∈Si−1,n−1

(a+yn+YJ )k.

For � = 1, . . . , n − 1, the set Si−1,n(�) can be partitioned into two subsets S′
i−1,n(�) and

S′′
i−1,n(�) defined by

S′
i−1,n(�) = {J ⊆ {1, . . . , n} \ {�} | |J | = i − 1 and n ∈ J }

and

S′′
i−1,n(�) = {J ⊆ {1, . . . , n} \ {�} | |J | = i − 1 and n /∈ J }.
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Since S′′
i−1,n(�) = Si−1,n−1(�), the previous relation becomes

n∑
�=1

y�

∑
J∈Si−1,n(�)

(a + y� + YJ )k

=
n−1∑
�=1

y�

[ ∑
J∈Si−1,n−1(�)

(a + y� + YJ )k +
∑

J∈S′
i−1,n(�)

(a + y� + YJ )k
]

+ yn

∑
J∈Si−1,n−1

(a + yn + YJ )k

=
n−1∑
�=1

y�

∑
J∈Si−1,n−1(�)

(a + y� + YJ )k +
n−1∑
�=1

y�

∑
J∈Si−2,n−1(�)

(a + yn + y� + YJ )k

+ yn

∑
J∈Si−1,n−1

(a + yn + YJ )k.

The recurrence hypothesis can be applied for both the first and the second terms. For the second
term, the constant a is replaced by the constant a + yn. Thus,

n∑
�=1

y�

∑
J∈Si−1,n(�)

(a + y� + YJ )k

=
∑

J∈Si,n−1

YJ (a + YJ )k +
∑

J∈Si−1,n−1

YJ (a + yn + YJ )k + yn

∑
J∈Si−1,n−1

(a + yn + YJ )k

=
∑

J∈Si,n−1

YJ (a + YJ )k +
∑

J∈Si−1,n−1

(yn + YJ )(a + yn + YJ )k

=
∑

J∈Si,n−1

YJ (a + YJ )k +
∑

J∈S′
i,n

YJ (a + YJ )k,

where S′
i,n = {J ⊆ {1, . . . , n} | |J | = i and n ∈ J }.

Consider the set S′′
i,n = {J ⊆ {1, . . . , n} | |J | = i and n /∈ J }. The sets S′

i,n and S′′
i,n form

a partition of Si,n and since S′′
i,n = Si,n−1, we obtain

n∑
�=1

y�

∑
J∈Si−1,n(�)

(a + y� + YJ )k =
∑

J∈Si,n−1

YJ (a + YJ )k +
∑

J∈S′
i,n

YJ (a + YJ )k

=
∑

J∈S′′
i,n

YJ (a + YJ )k +
∑

J∈S′
i,n

YJ (a + YJ )k

=
∑

J∈Si,n

YJ (a + YJ )k,

which completes the proof.

In the following we will use the fact that the distribution of Tc,n depends on the vector
p = (p1, . . . , pn), so we will use the notation Tc,n(p) instead of Tc,n, meaning by the way
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that vector p is of dimension n. We will also use the notation p0 = 1 − ∑n
i=1 pi . Finally,

for � = 1, . . . , n, the notation p(�) will denote the vector p in which the entry p� has been
removed, that is, p(�) = (pi, 1 ≤ i ≤ n, i 	= �). The dimension of p(�), which is n − 1 here,
is not specified but will be clear by the context of its use.

Theorem 1. For every n ≥ 1 and c = 1, . . . , n, we have for every k ≥ 0,

P{Tc,n(p) > k} =
c−1∑
i=0

(−1)c−1−i

(
n − i − 1

n − c

) ∑
J∈Si,n

(p0 + PJ )k. (2)

Proof. It holds that (2) is true for c = 1 since in this case we have P{T1,n(p) > k} = pk
0. So

we now suppose that n ≥ 2 and c = 2, . . . , n. Since X0 = ∅, conditioning on X1 and using
the Markov property (see, for example, [9]) it follows that for k ≥ 1,

P{Tc,n(p) > k} = p0P{Tc,n(p) > k − 1} +
n∑

�=1

p�P{Tc−1,n−1(p
(�)) > k − 1}. (3)

We now proceed by recurrence over k. It holds that (2) is true for k = 0 since it is well known
that

c−1∑
i=0

(−1)c−1−i

(
n − i − 1

n − c

)(
n

i

)
= 1. (4)

It holds that (2) is also true for k = 1 since, on the one hand, P{Tc,n(p) > 1} = 1 and on the
other hand, using (3), we have

P{Tc,n(p) > 1} = p0P{Tc,n(p) > 0} +
n∑

�=1

p�P{Tc−1,n−1(p
(�)) > 0} = p0 +

n∑
�=1

p� = 1.

Suppose now that (2) is true for integer k − 1, that is, suppose that we have

P{Tc,n(p) > k − 1} =
c−1∑
i=0

(−1)c−1−i

(
n − i − 1

n − c

) ∑
J∈Si,n

(p0 + PJ )k−1.

Using (3) and the recurrence relation, we have

P{Tc,n(p) > k} = p0

c−1∑
i=0

(−1)c−1−i

(
n − i − 1

n − c

) ∑
J∈Si,n

(p0 + PJ )k−1

+
n∑

�=1

p�

c−2∑
i=0

(−1)c−2−i

(
n − i − 2

n − c

) ∑
J∈Si,n(�)

(p0 + p� + PJ )k−1.

Using the change of variable i := i − 1 in the second sum, we obtain

P{Tc,n(p) > k} =
c−1∑
i=0

(−1)c−1−i

(
n − i − 1

n − c

)
p0

∑
J∈Si,n

(p0 + PJ )k−1

+
c−1∑
i=1

(−1)c−1−i

(
n − i − 1

n − c

) n∑
�=1

p�

∑
J∈Si−1,n(�)

(p0 + p� + PJ )k−1
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=
c−1∑
i=1

(−1)c−1−i

(
n − i − 1

n − c

)

×
[
p0

∑
J∈Si,n

(p0 + PJ )k−1 +
n∑

�=1

p�

∑
J∈Si−1,n(�)

(p0 + p� + PJ )k−1
]

+ (−1)c−1
(

n − 1

n − c

)
pk

0 .

From Lemma 1, we have

n∑
�=1

p�

∑
J∈Si−1,n(�)

(p0 + p� + PJ )k−1 =
∑

J∈Si,n

PJ (p0 + PJ )k−1,

that is,

P{Tc,n(p) > k} = (−1)c−1
(

n − 1

n − c

)
pk

0 +
c−1∑
i=1

(−1)c−1−i

(
n − i − 1

n − c

) ∑
J∈Si,n

(p0 + PJ )k

=
c−1∑
i=0

(−1)c−1−i

(
n − i − 1

n − c

) ∑
J∈Si,n

(p0 + PJ )k,

which completes the proof.

This theorem also shows, as expected, that the function P{Tc,n(p) > k}, as a function of p,
is symmetric, which means that it has the same value for any permutation of the entries of p.
As a corollary, we obtain the following combinatorial identities.

Corollary 1. For all c ≥ 1, n ≥ c, and p1, . . . , pn ∈ (0, 1) such that
∑n

i=1 pi = 1,

c−1∑
i=0

(−1)c−1−i

(
n − i − 1

n − c

) ∑
J∈Si,n

(p0 + PJ )k−1 = 1 for k = 0, 1, . . . , c − 1.

Proof. Use Theorem 1 and the fact that Tc,n ≥ c with probability 1.

For all n ≥ 1 and v0 ∈ [0, 1], we define the vector v = (v1, . . . , vn) by vi = (1 − v0)/n.
We will refer it to as the almost-uniform distribution. We then have, from (2),

P{Tc,n(v) > k} =
c−1∑
i=0

(−1)c−1−i

(
n − i − 1

n − c

)(
n

i

)(
v0

(
1 − i

n

)
+ i

n

)k

.

We denote by u = (u1, . . . , un) the uniform distribution defined by ui = 1/n. It is equal to v

when v0 = 0. The dimensions of u and v are specified by the context.

3. Moments of Tc,n

For r ≥ 1, the rth moment of Tc,n(p) is defined by

E{T r
c,n(p)} =

∞∑
k=1

kr
P{Tc,n(p) = k} =

r−1∑
�=0

(
r

�

) ∞∑
k=0

k�
P{Tc,n(p) > k}.
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The first moment of Tc,n(p) is then obtained by taking r = 1, that is,

E{Tc,n(p)} =
c−1∑
i=0

(−1)c−1−i

(
n − i − 1

n − c

) ∑
J∈Si,n

1

1 − (p0 + PJ )
. (5)

The expected value (5) was obtained in [5] in the particular case where p0 = 0. When the
drawing probabilities are given by the almost-uniform distribution v, we obtain

E{Tc,n(v)} = 1

1 − v0

c−1∑
i=0

(−1)c−1−i

(
n − i − 1

n − c

)(
n

i

)
n

n − i
= 1

1 − v0
E{Tc,n(u)}.

Using the relation (
n

i

)
n

n − i
=

(
n

i

)
+

(
n − 1

i − 1

)
n

n − i
1{i≥1},

where 1A is the indicator function of set A, we obtain

E{Tc,n(u)} =
c−1∑
i=0

(−1)c−1−i

(
n − i − 1

n − c

)[(
n

i

)
+

(
n − 1

i − 1

)
n

n − i
1{i≥1}

]
.

Using (4) and the change of variable i := i + 1, we obtain

E{Tc,n(u)} = 1 + n

n − 1
E{Tc−1,n−1(u)}. (6)

Note that dimension of the uniform distribution in the left-hand side is equal to n and the one
on the right-hand side is equal to n − 1. Since E{T1,n(u)} = 1, we obtain

E{Tc,n(u)} = n(Hn − Hn−c), E{Tc,n(v)} = n(Hn − Hn−c)

1 − v0
, (7)

where H� is the �th harmonic number defined by H0 = 0 and H� = ∑�
i=1 1/i for � ≥ 1. We

deduce easily from (6) that for every c ≥ 1, we have

lim
n→∞ E{Tc,n(u)} = c, lim

n→∞ E{Tc,n(v)} = c

1 − v0
.

In the next section we show that when p0 is fixed the minimum value of E{Tc,n(p)} is reached
when p = v, with v0 = p0.

4. The distribution minimizing E{Tc,n(p)}
The following lemma will be used to prove the next theorem.

Lemma 2. For n ≥ 1 and r1, . . . , rn > 0 with
∑n

�=1 r� = 1, we have
∑n

�=1 1/r� ≥ n2.

Proof. The result is true for n = 1. Suppose it is true for integer n − 1. We have

n∑
�=1

1

r�
= 1

rn
+

n−1∑
�=1

1

r�
= 1

rn
+ 1

1 − rn

n−1∑
�=1

1

h�

,

where h� = r�/(1 − rn). Since
∑n−1

�=1 h� = 1, using the recurrence hypothesis it follows that

n∑
�=1

1

r�
≥ 1

rn
+ (n − 1)2

1 − rn
= (nrn − 1)2

rn(1 − rn)
+ n2 ≥ n2.
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Theorem 2. For every n ≥ 1, c = 1, . . . , n, and p = (p1, . . . , pn) ∈ (0, 1)n with
∑n

i=1 pi ≤
1, we have E{Tc,n(p)} ≥ E{Tc,n(v)} ≥ E{Tc,n(u)}, where v = (v1, . . . , vn) with vi = (1 −
p0)/n and p0 = 1 − ∑n

i=1 pi and where u = (1/n, . . . , 1/n).

Proof. The second inequality comes from (7). Defining v0 = 1−∑n
i=1 vi , we have v0 = p0.

For c = 1 we have, from (5), E{T1,n(p)} = 1/(1−p0) = 1/(1−v0) = E{T1,n(v)}. For c ≥ 2,
which implies that n ≥ 2, summing (3) for k ≥ 1, we obtain

E{Tc,n(p)} = 1

1 − p0

(
1 +

n∑
�=1

p�E{Tc−1,n−1(p
(�))}

)
. (8)

Suppose that the inequality is true for integer c − 1, i.e. suppose that for n ≥ c, and for q =
(q1, . . . , qn−1) ∈ (0, 1)n−1 with

∑n−1
i=1 qi ≤ 1, we have E{Tc−1,n−1(q)} ≥ E{Tc−1,n−1(v)}

with v0 = q0 = 1 − ∑n−1
i=1 qi . Using (7), this implies

E{Tc−1,n−1(p
(�))} ≥ (n − 1)(Hn−1 − Hn−c)

1 − (p0 + p�)
.

From (8), we obtain

E{Tc,n(p)} ≥ 1

1 − p0

(
1 + (n − 1)(Hn−1 − Hn−c)

n∑
�=1

p�

1 − (p0 + p�)

)
. (9)

Observe that for � = 1, . . . , n, we have

p�

1 − (p0 + p�)
= −1 + 1

(n − 1)r�
,

where r� = (1−(p0 +p�))/(n−1)(1−p0). These r� satisfy r1, . . . , rn > 0 with
∑n

�=1 r� = 1.
From Lemma 2, we obtain

n∑
�=1

p�

1 − (p0 + p�)
= −n + 1

n − 1

n∑
�=1

1

r�
≥ −n + n2

n − 1
= n

n − 1
.

Substituting this into (9), we obtain, using (7),

E{Tc,n(p)} ≥ 1

1 − p0
(1 + n(Hn−1 − Hn−c)) = n(Hn − Hn−c)

1 − p0
= E{Tc,n(v)}.

5. The distribution minimizing the distribution of Tn,n(p)

For all n ≥ 1, i = 0, . . . , n, and k ≥ 0, we denote by N
(k)
i the number of coupons of

type i collected at instants 1, . . . , k. It is well known that the joint distribution of the N
(k)
i is a

multinomial distribution, i.e. for all k0, . . . , kn ≥ 0 such that
∑n

i=0 ki = k,

P{N(k)
0 = k0, N

(k)
1 = k1, . . . , N

(k)
n = kn} = k!

k0! k1! · · · kn!p
k0
0 p

k1
1 · · · pkn

n . (10)

Recall that the coupons of type 0 do not belong to the collection. For every � = 1, . . . , n, we
easily deduce that for every k ≥ 0 and k1, . . . , k� ≥ 0 such that

∑�
i=1 ki ≤ k,

P{N(k)
1 = k1, . . . , N

(k)
� = k�} = k! pk1

1 · · · pk�

�

k1! · · · k�! (k − ∑�
i=1 ki)!

(
1 −

�∑
i=1

pi

)k−∑�
i=1 ki

.
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To prove the next theorem, we recall some basic results on convex functions. Let f be a function
defined on an interval I . For all α ∈ I , we introduce the function gα , defined for all x ∈ I \ {α}
by gα(x) = (f (x)−f (α))/(x−α). It is an easy exercise to check that f is convex on interval I
if and only if for all α ∈ I , gα is increasing on I \ {α}. The next result is also known but less
popular, so we will provide the proof.

Lemma 3. Let f be a convex function on an interval I . For every x, y, z, t ∈ I with x < y,
z < t , we have (t − y)f (z) + (z − x)f (y) ≤ (t − y)f (x) + (z − x)f (t). If, moreover, we
have t + x = y + z, we obtain f (z) + f (y) ≤ f (x) + f (t).

Proof. We apply twice the fact that gα is increasing on I \ {α} for all α ∈ I . Since z < t and
x < y, we have gx(z) ≤ gx(t) and gt (x) ≤ gt (y). But as gx(t) = gt (x) and gt (y) = gy(t),
we obtain gx(z) ≤ gx(t) = gt (x) ≤ gt (y) = gy(t), which means that

f (z) − f (x)

z − x
≤ f (t) − f (y)

t − y
,

that is, (t − y)f (z)+ (z− x)f (y) ≤ (t − y)f (x)+ (z− x)f (t). The rest of the proof is trivial
since t + x = y + z implies that t − y = z − x > 0.

Theorem 3. For all n ≥ 1 and p = (p1, . . . , pn) ∈ (0, 1)n with
∑n

i=1 pi ≤ 1, we have for
all k ≥ 0, P{Tn,n(p

′) ≤ k} ≥ P{Tn,n(p) ≤ k}, where p′ = (p1, . . . , pn−2, p
′
n−1, p

′
n) with

p′
n−1 = λpn−1 + (1 − λ)pn and p′

n = (1 − λ)pn−1 + λpn for all λ ∈ [0, 1].
Proof. If λ = 1 then we have p′ = p so the result is trivial. If λ = 0 then we have

p′
n−1 = pn and p′

n = pn−1 and the result is also trivial since the function P{Tn,n(p) ≤ k} is a
symmetric function of p. Thus, we now suppose that λ ∈ (0, 1). For every n ≥ 1 and k ≥ 0,
we have {Tn,n(p) ≤ k} = {N(k)

1 > 0, . . . , N
(k)
n > 0}. Thus, we obtain for k1, . . . , kn−2 > 0

such that
∑n−2

i=1 ki ≤ k and setting s = k − ∑n−2
i=1 ki ,

P{Tn,n(p) ≤ k, N
(k)
1 = k1, . . . , N

(k)
n−2 = kn−2}

= P{N(k)
1 = k1, . . . , N

(k)
n−2 = kn−2, N

(k)
n−1 > 0, N(k)

n > 0}
=

∑
(u,v,w)∈A

P{N(k)
0 = u, N

(k)
1 = k1, . . . , N

(k)
n−2 = kn−2, N

(k)
n−1 = v, N(k)

n = w},

where A = {(u, v, w) | u ≥ 0, v > 0, w > 0, u + v + w = s}. Using (10) and introducing
q0 = p0/(p0 +pn−1 +pn), qn−1 = pn−1/(p0 +pn−1 +pn), and qn = pn/(p0 +pn−1 +pn),
we obtain

P{Tn,n(p) ≤ k, N
(k)
1 = k1, . . . , N

(k)
n−2 = kn−2}

=
∑

(u,v,w)∈A

k! pu
0p

k1
1 · · · pkn−2

n−2 pv
n−1p

w
n

u! k1! · · · kn−2! v! w! = k! pk1
1 · · · pkn−2

n−2

k1! · · · kn−2!
∑

(u,v,w)∈A

pu
0pv

n−1p
w
n

u! v! w!

= k! pk1
1 · · · pkn−2

n−2 (1 − (p1 + · · · + pn−2))
s

k1! · · · kn−2! s!
∑

(u,v,w)∈A

s!
u! v! w!q

u
0 qv

n−1q
w
n

= k! pk1
1 · · · pkn−2

n−2 (1 − (p1 + · · · + pn−2))
s

k1! · · · kn−2! s! (1 − (q0 + qn−1)
s − (q0 + qn)

s + qs
0).
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Note that this relation is not true if at least one of the k� is 0. Indeed, if k� = 0 for some
� = 1, . . . , n−2, we have P{Tn,n(p) ≤ k, N

(k)
1 = k1, . . . , N

(k)
n−2 = kn−2} = 0. Summing over

all the k1, . . . , kn−2 such that
∑n−2

i=1 ki ≤ k, we obtain

P{Tn,n(p) ≤ k} =
∑

k∈En−2

k! pk1
1 · · · pkn−2

n−2 (1 − (p1 + · · · + pn−2))
s

k1! · · · kn−2! s!
× (1 − (q0 + qn−1)

s − (q0 + qn)
s + qs

0), (11)

where En−2 is defined by En−2 = {k = (k1, . . . , kn−2) ∈ (N∗)n−2 | k1 + · · · + kn−2 ≤ k} and
N

∗ is the set of positive integers. Note that for n = 2, we have

P{T2,2(p) ≤ k} = 1 − (p0 + p1)
k − (p0 + p2)

k + pk
0 .

Recall that p0 = 1 − ∑n
i=1 pi . By definition of p′

n−1 and p′
n, we have for every λ ∈ (0, 1),

p′
n−1 + p′

n = pn−1 + pn. It follows that, by the definition of p′,

p′
0 = 1 − (p1 + · · · + pn−2 + p′

n−1 + p′
n) = 1 − (p1 + · · · + pn−2 + pn−1 + pn) = p0.

Suppose that we have pn−1 < pn. This implies, by the definition of p′
n−1 and p′

n, that
pn−1 < p′

n−1, p′
n < pn, that is, qn−1 < q ′

n−1, q ′
n < qn, where

q ′
n−1 = p′

n−1

p′
0 + p′

n−1 + p′
n

= p′
n−1

p0 + pn−1 + pn

,

q ′
n = p′

n

p′
0 + p′

n−1 + p′
n

= p′
n

p0 + pn−1 + pn

.

In the same way, we have

q ′
0 = p′

0

p′
0 + p′

n−1 + p′
n

= p0

p0 + pn−1 + pn

= q0.

Thus, q0 + qn−1 < q ′
0 + q ′

n−1, q ′
0 + q ′

n < q0 + qn. The function f (x) = xs is convex on the
interval [0, 1] so, from Lemma 3, since 2q0 + qn−1 + qn = 2q ′

0 + q ′
n−1 + q ′

n, we have

(q ′
0 + q ′

n−1)
s + (q ′

0 + q ′
n)

s ≤ (q0 + qn−1)
s + (q0 + qn)

s . (12)

Similarly, if pn < pn−1, we have pn < p′
n, p′

n−1 < pn−1, that is, qn < q ′
n, q ′

n−1 < qn−1 and,
thus, we also have (12) in this case. Substituting (12) into (11), we obtain, since q ′

0 = q0,

P{Tn,n(p) ≤ k}

≤
∑

k∈En−2

k! pk1
1 · · · pkn−2

n−2 (1 − (p1 + · · · + pn−2))
s

k1! · · · kn−2! s! (1 − (q ′
0 + q ′

n−1)
s − (q ′

0 + q ′
n)

s + q ′
0
s
)

= P{Tn,n(p
′) ≤ k},

which completes the proof.
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Theorem 3 can easily be extended to the case where the two entries pn−1 and pn of p, which
are different from the entries p′

n−1 and p′
n of p′, are any pi, pj ∈ {p1, . . . , pn}, with i 	= j .

This is due to the fact that the function P{Tn,n(p) ≤ k}, as a function of p, is symmetric.
In fact, we have shown in Theorem 3 that for fixed n and k, the function of p, P{Tn,n(p) ≤ k},

is a Schur-convex function, that is, a function that preserves the order of majorization; see [6].

Theorem 4. For every n ≥ 1 and p = (p1, . . . , pn) ∈ (0, 1)n with
∑n

i=1 pi ≤ 1, we have

P{Tn,n(p) > k} ≥ P{Tn,n(v) > k} ≥ P{Tn,n(u) > k} for every k ≥ 0,

where u = (1/n, . . . , 1/n), v = (v1, . . . , vn) with vi = (1 − p0)/n and p0 = 1 − ∑n
i=1 pi .

Proof. To prove the first inequality, we apply Theorem 3 successively and at most n − 1
times as follows. We first choose two different entries of p, say pi and pj such that pi <

(1 − p0)/n < pj and then define p′
i and p′

j by

p′
i = 1 − p0

n
, p′

j = pi + pj − 1 − p0

n
.

From this we can write p′
i = λpi + (1 − λ)pj and p′

j = (1 − λ)pi + λpj , with

λ = pj − (1 − p0)/n

pj − pi

.

From Theorem 3, vector p′, which is obtained by taking the other entries equal to those of p,
i.e. by taking p′

� = p� for � 	= i, j , is such that P{Tn,n(p) > k} ≥ P{Tn,n(p
′) > k}. Note that

at this point vector p′ has at least one entry equal to (1 − p0)/n, so repeating this procedure at
most n − 1 times, we obtain vector v.

To prove the second inequality we use (10). Introducing, for every n ≥ 1, the set Fn(�)

defined by Fn(�) = {(k1, . . . , kn) ∈ (N∗)n | k1 + · · · + kn = �}. For k < n, both terms are 0,
so we suppose that k ≥ n. We have

P{Tn,n(v) ≤ k} = P{N(k)
1 > 0, . . . , N(k)

n > 0}

=
k−n∑
k0=0

P{N(k)
0 = k0, N

(k)
1 > 0, . . . , N(k)

n > 0}

=
k−n∑
k0=0

∑
(k1,...,kn)∈Fn(k−k0)

k!
k0! k1! · · · kn!p

k0
0

(
1 − p0

n

)k−k0

=
k−n∑
k0=0

(
k

k0

)
p

k0
0 (1 − p0)

k−k0
1

nk−k0

∑
(k1,...,kn)∈Fn(k−k0)

(k − k0)!
k1! · · · kn! .

Setting p0 = 0, we obtain

P{Tn,n(u) ≤ k} = 1

nk

∑
(k1,...,kn)∈Fn(k)

k!
k1! · · · kn! .
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It follows that

P{Tn,n(v) ≤ k} =
k−n∑
k0=0

(
k

k0

)
p

k0
0 (1 − p0)

k−k0P{Tn,n(u) ≤ k − k0}

≤ P{Tn,n(u) ≤ k}
k−n∑
k0=0

(
k

k0

)
p

k0
0 (1 − p0)

k−k0

≤ P{Tn,n(u) ≤ k},
which completes the proof.

To illustrate the steps used in the proof of this theorem, we provide the following
example. Suppose that n = 5 and p = ( 1

16 , 1
6 , 1

4 , 1
8 , 7

24 ). This implies that p0 = 5
48 and

(1 − p0)/n = 43
240 . In the first step, taking i = 4 and j = 5, we obtain

p[1] = ( 1
16 , 1

6 , 1
4 , 43

240 , 19
80

)
.

In the second step, taking i = 2 and j = 5, we obtain

p[2] = ( 1
16 , 43

240 , 1
4 , 43

240 , 9
40

)
.

In the third step, taking i = 1 and j = 3, we obtain

p[3] = ( 43
240 , 43

240 , 2
15 , 43

240 , 9
40

)
.

For the fourth and final step, taking i = 5 and j = 3, we obtain

p[4] = ( 43
240 , 43

240 , 43
240 , 43

240 , 43
240

) = 43
48

( 1
5 , 1

5 , 1
5 , 1

5 , 1
5

)
.

6. A new conjecture

We propose a new conjecture stating that the complementary distribution function of Tc,n is
minimal when the distribution p is equal to the uniform distribution u.

Conjecture 1. For every n ≥ 1, c = 1, . . . , n and p = (p1, . . . , pn) ∈ (0, 1)n with
∑n

i=1 pi ≤
1, we have for all k ≥ 0,

P{Tc,n(p) > k} ≥ P{Tc,n(v) > k} ≥ P{Tc,n(u) > k},
where u = (1/n, . . . , 1/n), v = (v1, . . . , vn) with vi = (1 − p0)/n and p0 = 1 − ∑n

i=1 pi .

This new conjecture is motivated by the following facts:

• the result is true for the expectations; see Theorem 2,

• the result is true for c = n; see Theorem 4,

• the result is trivially true for c = 1 since

P{T1,n(p) > k} = P{T1,n(v) > k} = pk
0 ≥ 1{k=0} = P{T1,n(u) > k},

• the result is true for c = 2; see Theorem 5 below.
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Theorem 5. For every n ≥ 2 and p = (p1, . . . , pn) ∈ (0, 1)n with
∑n

i=1 pi ≤ 1, we
have for every k ≥ 0, P{T2,n(p) > k} ≥ P{T2,n(v) > k} ≥ P{T2,n(u) > k}, where
u = (1/n, . . . , 1/n), v = (v1, . . . , vn) with vi = (1 − p0)/n and p0 = 1 − ∑n

i=1 pi .

Proof. From (1), we have

P{T2,n(p) > k} = −(n − 1)pk
0 +

n∑
�=1

(p0 + p�)
k

and

P{T2,n(v) > k} = −(n − 1)pk
0 + n

(
p0 + 1 − p0

n

)k

.

For every constant a ≥ 0, the function f (x) = (a + x)k is convex on the interval [0, ∞), so
we have, taking a = p0, by the Jensen inequality,

(
p0 + 1 − p0

n

)k

=
(

1

n

n∑
�=1

(p0 + p�)

)k

≤ 1

n

n∑
�=1

(p0 + p�)
k.

This implies that P{T2,n(p) > k} ≥ P{T2,n(v) > k}.
To prove the second inequality, we define the function Fn,k on the interval [0, 1] by

Fn,k(x) = −(n − 1)xk + n

(
x + 1 − x

n

)k

.

We then have Fn,k(p0) = P{T2,n(v) > k} and Fn,k(0) = P{T2,n(u) > k}. The derivative of
function Fn,k is

F ′
n,k(x) = k(n − 1)

[(
x + 1 − x

n

)k−1

− xk−1
]

≥ 0.

Function Fn,k is, thus, an increasing function, which means that

P{T2,n(v) > k} ≥ P{T2,n(u) > k},
which completes the proof.

7. Application to the detection of distributed deny of service attacks

A deny of service (DoS) attack tries to progressively take down an internet resource by
flooding this resource with more requests than it is capable of handling. A distributed deny
of service (DDoS) attack is a DoS attack triggered by thousands of machines that have been
infected by malicious software, with as immediate consequence the total shut down of targeted
web resources (e.g. e-commerce websites). A solution to detect and to mitigate DDoS attacks
it to monitor network traffic at routers and to look for highly frequent signatures that might
suggest ongoing attacks. A recent strategy followed by attackers is to hide their massive flow
of requests over a multitude of routes, so that locally, these flows do not appear as frequent,
while globally they represent a significant portion of the network traffic. The term ‘iceberg’ has
been recently introduced to describe such an attack as only a very small part of the iceberg can
be observed from each single router. The approach adopted to defend against such new attacks
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is to rely on multiple routers that locally monitor their network traffic, and upon detection of
potential icebergs, inform a monitoring server that aggregates all the monitored information
to accurately detect icebergs. Now to prevent the server from being overloaded by all the
monitored information, routers continuously keep track of the c (among n) most recent high
flows (modelled as items) prior to sending them to the server, and throw away all the items
that appear with a small probability pi , and such that the sum of these small probabilities is
modelled by probability 1 − p0. Parameter c is dimensioned so that the frequency at which all
the routers send their c last frequent items is low enough to enable the server to aggregate all of
them and to trigger a DDoS alarm when needed. This amounts to computing the time needed
to collect c distinct items among n frequent ones. Moreover, in Theorem 5 we have shown that
the expectation of this time is minimal when the distribution of the frequent items is uniform.
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