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OPTIMAL SCALING OF THE RANDOM WALK
METROPOLIS: GENERAL CRITERIA FOR THE
0.234 ACCEPTANCE RULE

CHRIS SHERLOCK,∗ Lancaster University

Abstract

Scaling of proposals for Metropolis algorithms is an important practical problem in
Markov chain Monte Carlo implementation. Analyses of the random walk Metropolis for
high-dimensional targets with specific functional forms have shown that in many cases
the optimal scaling is achieved when the acceptance rate is approximately 0.234, but that
there are exceptions. We present a general set of sufficient conditions which are invariant
to orthonormal transformation of the coordinate axes and which ensure that the limiting
optimal acceptance rate is 0.234. The criteria are shown to hold for the joint distribution
of successive elements of a stationary pth-order multivariate Markov process.
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1. Introduction

The Metropolis–Hastings updating scheme provides a very general class of algorithms for
obtaining an approximate dependent sample from a target distribution, π(·), by constructing a
Markov chain with π as its limiting distribution. Given the current value X, a new value X∗ is
proposed from a prespecified Lebesgue density q(x∗ | x) and is then accepted with probability
α(x, x∗) = 1 ∧ (π(x∗)q(x | x∗))/(π(x)q(x∗ | x)). If the proposed value is accepted, it
becomes the next current value (X′ ← X∗); otherwise, the current value is left unchanged
(X′ ← X).

The d-dimensional random walk Metropolis (RWM) [8] has

q(x∗ | x) = λ−dr

(
x∗ − x

λ

)
= λ−dr

(
y∗

λ

)
,

wherey∗ := x∗−x is the proposed jump, and r(y) = r(−y) for ally. In this case the acceptance
probability simplifies to α(x, x∗) = 1 ∧ π(x∗)/π(x). Consider the behaviour of the RWM
as a function of the scale of proposed jumps, λ, and some measure of the scale of variability
of the target distribution, s. If λ � s then, although proposed jumps are often accepted,
the chain moves slowly and exploration of the target distribution is relatively inefficient. If
λ� s then many proposed jumps are not accepted, the chain rarely moves, and exploration is
again inefficient. This suggests that, given a particular target and form for the jump proposal
distribution, there may exist a finite scale parameter for the proposal with which the algorithm
will explore the target as efficiently as is possible.
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2 C. SHERLOCK

Previous theoretical work on this ‘optimal scaling’ problem has involved specific simple
forms for the target distribution (see Section 1.1); more complex examples have been examined
via simulation studies (see, e.g. [9]). For many of the targets considered, it has been found
that, in the limit as d →∞, the optimal scaling is achieved when the acceptance probability is
αopt ≈ 0.234; although, for some specific classes of target, it has been shown that the limiting
optimal acceptance rate is different to 0.234.

In this article we present general criteria which ensure that in the limit the optimal scaling
will be achieved when an algorithm is tuned so that the acceptance rate is 0.234; the form of
this scaling is also supplied. Checking these criteria for a given target is relatively simple,
compared to proving the 0.234 rule from scratch. Their use is demonstrated for a multivariate
pth-order Markov process with finite p.

1.1. Existing results for optimal scaling of the RWM

Much of the existing literature on the optimal scaling problem examines a sequence of
stationary Metropolis algorithms on targets with increasing dimension, d. This program was
first followed in [12] for product targets, π(x) =∏d

i=1 f (xi), explored by Gaussian jump
proposals, Y (d) ∼ N(0, λ2

dId), where Id denotes the d-dimensional identity matrix. Subject
to certain moment conditions, as d →∞, a time-scaled, continuous-time limit, Ut , of the first
component of the target satisfies a Langevin stochastic differential equation with stationary
density f :

dUt = 1
2σ 2(log f (Ut ))

′dt + σ dWt. (1)

Here dWt represents a Brownian motion increment. The speed of this diffusion, σ 2, depends
on the sequence of scale parameters, λd . Maximising σ leads to the following optimal value
of the scale parameter:

λ̂d := µopt

(M̃(d))1/2
, where M̃(d) := dE[(log f (X))

′2] and µopt ≈ 2.38.

This result generalises to targets with components which are independent and which are
identically distributed up to an arbitrary set of scalings; the 0.234 rule continues to hold provided
that no one scale parameter is (see [2]), or is likely to be (see [11]), much smaller than any of
the others. It is shown in [3] that if this condition fails then the optimal acceptance rate need not
be 0.234, and indeed that the path of the limiting process need not even be continuous. Further
specific classes of targets are considered in [5], [9], and [10], and in these cases the 0.234 rule
is also shown to hold.

In [15] unimodal elliptically symmetric targets are explored using any proposal distribution,
but using the expected squared jumping distance (ESJD) as a measure of efficiency. For
consecutive draws from the chain, X and X′, ESJD is defined to be E[‖X′ −X‖2], where
expectation is with respect to the joint distribution of X and X′ in a stationary chain (here and
throughout this article, ‖ · ‖ refers to the Euclidean norm). The ESJD, which is also used as
the efficiency criterion in [1] and [4], is proportional to the speed of any limiting diffusion
(e.g. consider E[dU2

t ] in (1)). Furthermore, since, for any stationary chain, E[‖X′ −X‖2] =
2

∑n
i=1 var[Xi](1− cor[Xi, X

′
i]), maximising the ESJD is equivalent to minimising a weighted

sum of the lag-1 autocorrelations for the different components. The 0.234 rule is again shown
to hold provided that the elliptical target is not too eccentric (defined according to a criterion
which is almost identical to that in [2]). A further property is also required of the target: that
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General criteria for the 0.234 rule 3

there exists a sequence of positive values {k(d)
x } such that

‖X(d)‖
k
(d)
x

P−→ 1. (2)

Here the subscript x simply denotes that the sequence of positive values corresponds to the
target sequence {X(d)}. In high dimensions (2) effectively confines the target to a hyperspherical
shell, the width of which is much smaller than the radius. A similar condition (with a different
sequence of positive values) is required on the proposal, although with mean-square convergence
rather than convergence in probability. The key idea is that if both the size of a proposal and
the curvature of the target ‘shell’ become deterministic, then so too will certain aspects of the
behaviour of the RWM algorithm. Sherlock and Roberts [15] also considered targets for which
the convergence in (2) is to some fixed and nondegenerate radial distribution. In this case it
was shown that the limiting optimal acceptance rate is strictly less than 0.234.

It is clear from the above review that the 0.234 rule is common but not ubiquitous. In this
article we use a generalisation of the ESJD (see Section 2.3) as the efficiency criterion and draw
on the ‘shell’ intuition of [15] to provide general criteria such that the 0.234 rule is satisfied on
exploration with any spherically symmetric proposal.

1.2. Outline of this article

The next section is devoted to a complete introduction to the notation which will be used in
this article. All of the theoretical results are contained in Section 3 with all proofs deferred to
Appendix A. In Section 4 we apply the criteria to a class of pth-order Markov processes (with
p finite), of which the target with independent and identically distributed (i.i.d.) components
considered in [12] is a special case; the results are discussed and placed in context in Section 5.
Throughout this article, proposed jumps are assumed to arise from a spherically symmetric
distribution which satisfies a shell condition.

2. Notation

2.1. Sequences of random variables

In this article {X(d)} denotes the sequence of d-dimensional target distributions, and {U (d)}
the sequence of d-dimensional spherically symmetric proposals with unit scale parameter.
The sequence of scale parameters will be denoted by {λ(d)}, and the sequence of scaled
proposals is therefore {Y (d)} := {λ(d)U (d)}. Convergence in expectation is denoted by ‘

E−→’,
and convergence in mean square by ‘

m.s.→ ’. The distribution function of a standard Gaussian will
be denoted by �(·).
2.2. Derivatives of the target

For a given posterior π(x), denote the first two derivatives of the log posterior as

Mi(x) := ∂ log π

∂xi

∣∣∣∣
x

and Hij (x) := −∂2 log π

∂xi∂xj

∣∣∣∣
x

,

and the matrix of perturbations of the negative Hessian as

�(x, u) := H (x + u)−H (x).

We require the following coordinate-free norms of the derivatives:

M̃(x) := ‖∇ log π‖ = ‖M(x)‖, H̃ (x) := −∇2 log π = trace(H (x)).
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4 C. SHERLOCK

The eigenvalues of H (x) will be denoted by β1(x), . . . , βd(x), and the maximum modulus as
βmax(x) := maxi=1,...,d |βi(x)|; note that

∑d
i=1 βi(x) = H̃ (x).

The superscript ‘(d)’ should be applied to all of the above quantities since each can be
applied to every random variable in the sequence {X(d)}; however, to simplify the notation, the
superscript will be omitted from equations whenever its use is clear from the context.

Remark 1. The current position of the chain, x, is a vector in the particular Cartesian coordinate
system in which the problem is defined. However, the position and the movement of the chain
is absolute in space and does not depend on the particular choice of coordinate system through
which it is viewed; neither does the acceptance rate. Provided there has been no deformation
of the coordinate grid, properties of angle, distance, and, thus, our criterion of optimality, the
ESJD, will also be unaffected. Sufficient conditions for the 0.234 rule should therefore be
invariant to orthonormal transformations of the coordinate system. This is not the case in, for
example, [2], [11], or [12], where the form of the target is defined with respect to a particular
Cartesian coordinate system. All of the conditions in this article are invariant to orthonormal
transformations of the coordinate axes.

2.3. Acceptance rate and expected square jump distance

We denote the acceptance probability for a proposed jump of size y from position x by
α(x, y). We also denote a generalised potential square jump distance arising from proposal y

by S(y) := y
Ty, where T is some d × d positive definite and symmetric matrix, which we
refer to as the jump distance matrix. The trace of this matrix will be denoted by T̃ . The expected
generalised squared jump distance then arises naturally as E[S(Y )α(X, Y )], where expectation
is with respect to π(x)q(y). We are interested in the limit as d → ∞ of the acceptance rate
and of some sensible rescaling (c(d)) of the expected generalised squared jump distance

lim
d→∞E[α(d)(X(d), Y (d))]

and

lim
d→∞ c(d)

E[S(d)(Y (d))α(d)(X(d), Y (d))].

The generalisation from the Euclidean distance y
y to y
Ty effectively allows the speed of
each component of the chain to be down-weighted by a measure of the scale of variability of the
target along that component, so that the contribution to the total is proportional to the relative
speed with which that component is explored.

3. Theoretical results

Two main theorems are presented in this section: the first provides sufficient conditions such
that the limiting optimal acceptance rate is 0.234; the second simplifies the limiting formula
for the ESJD subject to a slightly stronger set of conditions. Proofs of the results appear in
Appendix A.

Throughout this article, it is assumed that the Markov chain is ergodic and that it has reached
equilibrium. We consider additional criteria which ensure that the limiting expected acceptance
rate of an optimally scaled stationary chain is 0.234.

Our approach uses a second-order Taylor expansion of the log-likelihood, and for this to be
valid we assume, without further reference, that H̃ (d)(X(d)) is nonzero X(d)-almost everywhere,
and that H

(d)
ij (x(d)) is a continuous function of x(d) (see, e.g. [6]).
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General criteria for the 0.234 rule 5

3.1. Fundamental results

From position X, split a specific proposed jump, y, into a component, y1, which is parallel
to ∇ log π and a component, y2, which is perpendicular to ∇ log π . Now

log

[
π(X + y)

π(X)

]
= log

[
π(X + y1)

π(X)

]
+ log

[
π(X + y1 + y2)

π(X + y1)

]
.

To first order, the first term depends on M̃(x) = ‖∇ log π‖, whereas the second depends on
‘how many contours’ a tangential move is likely to cross, which in turn depends on both the
curvature (represented by H̃ (X + y1)) and the gradient (represented by M̃(X + y1)). If both
M̃(X) and H̃ (X) become, in some sense, deterministic, then so might the change in log π ;
these requirements are embodied in the weak shell conditions on the target.

Use of the curvature and gradient at the current position to model movement to a new
position is unlikely to be valid if these quantities change significantly on the scale of a proposed
jump (e.g. if H̃ (x) and H̃ (x + y) are very different). The requirement that the quantities at x

be representative of values over the likely jump region is embodied in the relative variability
condition (5) below.

The term H̃ (X) represents an ‘average’ curvature. Intuitively, this should be applicable
provided there is no particular direction where the effect on the target of a unit move in that
direction is much larger than the effect of movement in any other direction. Thus, the scales of
variability of π along each component of X should not be too dissimilar. The first eccentricity
condition on the target ensures that the chance of such extreme behaviour diminishes to 0.

Condition 1. (Weak shell conditions for the target.) We require that there are sequences {M̃(d)}
and {H̃ (d)} such that

M̃(d)(X(d))

M̃(d)

P−→ 1, (3)

H̃ (d)(X(d))

H̃ (d)

P−→ 1. (4)

Condition 2. (Relative variability condition on H .) Let Z(d) ∼ N(0, Id) be independent of
all targets, X. For any fixed µ > 0 and δ > 0, we require that

PX,Z

(
1

H̃

∣∣∣∣Z
�

(
X, tµ

(
M̃

H̃

)
Z

)
Z

∣∣∣∣ < δ for all t ∈ [0, 1]
)
→ 1. (5)

Condition 3. (First target eccentricity condition.) We require that

βmax(X
(d))∑d

i=1 βi(X(d))

P−→ 0. (6)

For a deterministic change in log π , we also require that the distance of any tangential jump
become deterministic, and that the distribution of the component of the proposal parallel to
∇ log π approach some known distribution function. Both of these requirements are met if a
shell condition for the proposal is imposed. We also require an eccentricity condition on the
jump distance matrix which ensures that there is no one component whose contribution to the
ESJD outweighs that of all of the others. The ESJD is an expectation of a quadratic form on
the proposal, and, hence, the shell condition on the proposal must be slightly stronger than for
the target.
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Condition 4. (Shell condition for the proposal.) We assume that there exists a sequence {k(d)
u }

such that the sequence of spherically symmetric proposals satisfies the following shell condition:

‖U (d)‖
k
(d)
u

m.s.→ 1. (7)

Condition 5. (Eccentricty of the jump distance matrix.) Let {τi(d), i = 1, . . . , d} be the
triangular sequence of eigenvalues associated with the sequence of matrices T (d), and let
τmax(d) := maxi=1,...,d τi(d). We require that

τmax(d)∑d
i=1 τi(d)

→ 0. (8)

We may now state our first result.

Theorem 1. Let the target satisfy the weak shell conditions (3) and (4), the relative variability
condition (5), and the eccentricity condition (6). Let the distance matrix satisfy the eccentricity
condition (8), and let the proposal satisfy the strong shell condition (7). For fixed µ, set

λ(d) = µ
d1/2M̃(d)

k
(d)
u H̃ (d)

.

The expected acceptance rate and generalised ESJD now satisfy

lim
d→∞E[α(X(d), Y (d))] = 2�

(− 1
2µ

)
, (9)

lim
d→∞

(H̃ (d))2

(M̃(d))2T̃ (d)
E[S(d)(Y (d))α(X(d), Y (d))] = 2µ2�

(
−1

2
µ

)
. (10)

Equation (9) is identical to the acceptance rate equation in [12] and many of the other
references in Section 1.1, as (up to a multiplicative constant) is the efficiency equation (10).
Optimising (10) for µ and substituting into (9) therefore leads to the same limiting optimal
scaling and acceptance rate.

Corollary 1. Subject to the conditions in Theorem 1, the limiting optimal acceptance rate for
the RWM algorithm is approximately 0.234, which is achieved when µ = µopt ≈ 2.38.

3.2. Stronger assumptions

Strengthening the two target shell conditions, and adding a regularity condition allows us to
relate M̃ and H̃ .

Condition 6. (Strong shell conditions for the target.) We require that

M̃(d)(X(d))

M̃(d)

m.s.→ 1, (11)

H̃ (d)(X(d))

H̃ (d)

E−→ 1. (12)

Condition 7. (Regularity condition on the target.) For each i, with all the components of x

fixed except the ith, we require that, as |xi | → ∞,

∂π

∂xi

→ 0. (13)
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General criteria for the 0.234 rule 7

This condition implies that E[(∂ log π/∂xi)
2] = −E[∂2 log π/∂x2

i ], provided that either
side exists and is finite. Trivially, we then have the following result.

Proposition 1. Subject to (11), (12), and (13), (M̃(d))2/H̃ (d)→ 1.

Given (11), and the Cauchy–Schwarz inequality if i �= j , the left-hand expectation must be
finite for all i, j , and, hence (given (13)), so is the right-hand expectation. Thus, we may define
H := E[H (X)], with all of the components finite. Given (11) and (12), we also choose

M̃ := EX[M̃(X)] and H̃ := trace(H ) = EX[H̃ (X)].
Finally, let β1, . . . , βd be the eigenvalues of H , with βmax := maxi=1,...,d βi ; clearly,∑d

i=1 βi = H̃ . Given that the Hessian of the log target now has a finite first moment, we might
consider using the expected Hessian matrix H := E[H (X)] as our jump distance matrix T . The
eccentricity condition on the Hessian (6) ensures that the probability that H (X) is too eccentric
dwindles to 0 as d → ∞; in addition, we now forbid the modulus of any one eigenvalue to
exceed some fixed multiple of the modulus of their total.

Condition 8. (Second target eccentricity condition.) We assume that there exists k > 0 such
that, for each d ,

P

(∣∣∣∣ βmax(X
(d))∑d

i=1 βi(X(d))

∣∣∣∣ ≤ k

)
= 1. (14)

This condition is satisfied, for instance, if all of the eigenvalues are nonnegative X(d)-almost
everywhere. It is not satisfied on well-behaved targets with local minima; however, H would
not be representative of any global structure on such targets and so would not make a sensible
jump distance matrix in any case.

We may now obtain a neater form for the limiting optimal scaling and ESJD.

Theorem 2. (a) Let the target satisfy the strong shell conditions (11) and (12), the relative
variability condition (5), the first eccentricity condition (6), and the regularity condition (13).
Let the distance matrix T (d) satisfy the distance matrix eccentricity condition (8), and let the
proposal satisfy the shell condition (7).

For fixed µ > 0, set

λ(d) = µ
d1/2

k
(d)
u

1

(H̃ (d))1/2
.

Subject to the above conditions, the expected acceptance rate satisfies (9), and the generalised
ESJD satisfies

lim
d→∞

H̃ (d)

T̃ (d)
E[S(d)(Y (d))α(X(d), Y (d))] = 2µ2�

(
−1

2
µ

)
. (15)

(b) If, in addition, the target satisfies the second eccentricity condition (14) then the distance
matrix can be chosen to be H (d). In this case the expected acceptance rate continues to satisfy
(9), and the generalised ESJD satisfies (15) with T̃ (d) = H̃ (d).

Remark 2. In some sense H (d) therefore provides a natural scale for the expected square jump
distance. Indeed, for an elliptical target, choosing T = H is equivalent to using the expected
squared Mahlanobis distance of a jump as the measure of efficiency.
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8 C. SHERLOCK

4. Example

We now consider an example class of target, the stationary pth-order univariate Markov
process, and show that the strong shell conditions (11) and (12), the eccentricity condition (6),
and the relative variability condition (5) all hold. With an assumption of the regularity condition
(13), the target then satisfies all of the conditions required for part (a) of Theorem 2.

The univariate Markov process is a special case of the Gibbs distribution considered in [5];
however, we require much weaker conditions than those given in [5]; in particular we do not
need a ‘strongly mixing’ condition, nor do we need to specify an absence of phase transitions.
We also allow the more general form of proposal discussed in Section 3, and then generalise
the whole result to a multivariate pth-order Markov process.

Consider a pth-order univariate Markov process with conditional density f (xp+1 | x1, . . . ,

xp), and denote the stationary distribution of any p adjacent components as f ∗(x1, . . . , xp).
We will consider the d-dimensional target

π(x) = f ∗(x1, . . . , xp)f (xp+1 | x1, . . . , xp) · · · f (xd | xd−p, . . . , xd−1).

Define xm := (xm, . . . , xm+p) and g(xm) := log f (xm+p | xm, . . . , xm+p−1), and, hence,

gk(x1) := ∂g

∂xk

and gkm(x1) := − ∂2g

∂xk∂xm

, 1 ≤ k, m ≤ p + 1.

The following definitions will be helpful:

Ekm := E[gk(X1)gm(X1+|m−k|)], Ẽkm := E[gkm(X1)],

E∗1 :=
p∑

k=0

p∑
m=0

Ek+1,m+1, and E∗2 :=
p∑

k=0

Ẽk+1,k+1.

Here the expectations are taken over the stationary distribution of the process. We require the
moment conditions

E[|gk(X)|2] <∞ and E[|gkm(X)|2] <∞.

We also require a Lipschitz condition on each of the second derivatives: |gkm(x1)− gkm(x′1)| ≤
b‖x1 − x′1‖, 1 ≤ k, m ≤ p + 1. We make similar moment and Lipschitz assumptions on the
derivatives of log f ∗. Since f ∗ depends only on the first p components, it does not contribute
to the limits which we consider, and is ignored henceforth. Now

Mi(x) = ∂ log π

∂xi

=
(p∧(i−1))∑

k=0

gk+1(xi−k)

and Hij (x) = ∂2 log π

∂xi∂xj

=
(p−|i−j |)∧((i∧j)−1)∑

k=0

gk+1(x(i∧j)−k).

However, slight differences in form when i ∧ (d − i) ≤ p or j ∧ (d − j) ≤ p play no part
in the limit results, and for clarity of exposition are henceforth ignored. With this notational
simplification,

M̃(X)2 =
d∑

i=1

p∑
k=0

p∑
m=0

gk+1(Xi−k)gm+1(Xi−m) and H̃ (X) =
d∑

i=1

p∑
k=0

gk+1,k+1(Xi−k).
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General criteria for the 0.234 rule 9

The finite order, p, of the Markov chain leads to two important properties.

1. For |i − j | > p, Hij = 0 and, hence, 
ij = 0. Both H and � therefore have at most
(2p + 1)d nonzero terms rather than d2.

2. For |i − j | ≤ p, Hij depends only on the components of x between (i ∨ j) − p and
(i ∧ j)+ p. Thus, the Lipschitz condition on the second derivatives implies that∣∣∣∣
ij

(
X, tµ

(
M̃

H̃

)
Z

)∣∣∣∣ ≤ btµ
M̃

H̃
‖Zi‖,

where Zi = (Zi−p, . . . , Zi+p). This estimate is conservative when p �= 0.

Shell conditions. By the assumption of stationarity, the distribution of Xi is independent
of i, and so the moment assumptions together with Scheffe’s lemma give

1

d1/2 M̃(X)
m.s.→ E

∗1/2
1 and

1

d
H̃ (X)

E−→ E∗2 .

Hence, the strong shell conditions hold with M̃(d) := d1/2E
∗1/2
1 and H̃ (d) := dE∗2 .

Eccentricity condition. From property 1, define

Qi(X) :=
d∑

j=1

|Hij (X)| =
i+p∑

j=i−p

∣∣∣∣
p−|i−j |∑

k=0

gk+1,k+1+|i−j |(x(i∧j)−k)

∣∣∣∣,
and let Q∗ := E[Qi(X)]. Note that Q∗∗ := E[Qi(X)2] <∞ by the moment assumptions
above, since p is fixed and finite. By Chebyshev’s inequality, P(|Qi −Q∗| > dα) < Q∗∗d−2α ,
and, hence,

P

(
max

i=1,...,d−p
|Qi −Q∗| > dα

)
<

Q∗∗

d2α−1 .

Thus,

P

(
max

i=1,...,d

d∑
j=1

|Hij (X)| > Q∗ + dα

)
<

Q∗∗

d2α−1 .

The largest magnitude of any eigenvalue of H (X) cannot be greater than

max
i=1,...,d

d∑
j=1

|Hij (X)|.

Also, P(2H̃ (X) > dE∗2 )→ 1, from the second shell condition, (4). Choose any α ∈ (0.5, 1)

to complete the proof, since this implies that

P

(
βmax(X)

H̃ (X)
≤ Q∗ + dα

dE∗2/2

)
→ 1.

Relative variability condition. Define

T :=
d∑

i=1

i+p∑
j=i−p

|Zi ||Zj |‖Zi‖.
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The general inequality (
∑i+p

j=i−p |Zj |)2 ≤ (2p + 1)
∑i+p

j=i−p |Zj |2 implies that

T ≤ (2p + 1)1/2
d∑

i=1

|Zi |
i+p∑

j=i−p

|Zj |2 = (2p + 1)1/2
p∑

j=−p

d∑
i=1

|Zi ||Zi+j |2.

For fixed j ,

1

d

d∑
i=1

|Zi ||Zi+j |2 P−→
{

E[|Z1|3], i = j,

E[|Z1|Z2
2], i �= j,

and so T/dα P−→ 0 for any α > 1. Thus, using properties 1 and 2, and since t ∈ [0, 1],

1

H̃

∣∣∣∣Z
�

(
X, tµ

(
M̃

H̃

)
Z

)
Z

∣∣∣∣ ≤ bµ

(
M̃

H̃ 2

)
T = bµ

E
∗1/2
1

E∗22

1

d3/2 T
P−→ 0,

and the relative variability condition (5) is satisfied.

4.1. Extension

Consider a pth-order multivariate Markov chain where now the ith element is (x
(1)
i , . . . ,

x(r∗)) for some fixed r∗ ∈ Z
+, and the vector xi now has (p + 1)r∗ elements. The derivatives

are now defined as

g
(r)
k (x1) := ∂g

∂x
(r)
k

and g
(rs)
km (x1) := − ∂2g

∂x
(r)
k ∂x

(s)
m

, 1 ≤ k, m ≤ p + 1; 1 ≤ r, s ≤ r∗.

For each combination of r , s, k, and m, each derivative is subject to an analogous moment
condition to that required for the univariate Markov chain for each combination of k and m,
and the second derivatives are required to satisfy an analogous Lipschitz condition. The former
ensures that the strong shell conditions are satisfied and the latter contributes towards the
satisfaction of the relative variability condition. The important aspects of properties 1 and 2 do
not change. For example, the row of the Hessian that corresponds to a given scalar component
of the multivariate element of the Markov chain is now nonzero for at most (2p+ 1)r∗ (rather
than 2p + 1) other scalar elements; this number is still fixed and finite. Thus, the proof that
the stationary multivariate pth-order Markov chain also satisfies conditions (5), (6), (11), and
(12) involves no new theoretical considerations, and merely an increased notational burden; it
is therefore omitted.

5. Discussion

We have presented criteria on a sequence of targets and spherically symmetric proposals
for random walk Metropolis algorithms which ensure that the limiting optimal acceptance
rate is 0.234. Unlike previous conditions (except those in [15]), these criteria are invariant to
orthonormal transformations of the coordinate system.

As d →∞, certain scalar summaries of the gradient and curvature of the log-target should
become, in some sense, deterministic; furthermore, the curvature in any one direction should
not be much more extreme than that in any of the other directions; finally, a scalar summary of
curvature should show little relative variability over the distance of a typical proposed jump. The
proposal should also be confined (in probability) to a shell which becomes infinitesimally thin
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relative to its radius, and the quadratic form used to define distance (for efficiency calculations)
should not be too biased in favour of any one direction.

Strengthening of the ‘shell’ conditions, and adding a regularity condition allow the expected
negative Hessian to be used as in the quadratic form which defines the jump distance; this was
shown to be a ‘natural’ scale on which to measure efficiency.

The above conditions generalise the ‘shell’ intuition provided in [15] for spherically
symmetric targets, and clarify traits which are sufficient to guarantee deterministic behaviour
in terms of scaling and acceptance rate.

The criteria are relatively easy to check for a given class of targets, when compared to
proving from scratch that the deterministic behaviour holds. This is demonstrated for a finite-
order multivariate Markov process, of which the i.i.d. target of [12] is a special case.

Appendix A. Proof of Theorem 1

A.1. Some preliminary results

The following limit results are proved in [14] for a sequence of d-dimensional spherically
symmetric random variables {U (d)}, subject to (7) or to the weaker condition

‖U (d)‖
k
(d)
u

P−→ 1. (16)

Lemma 1. Subject to (16), for any unit vector e(d), which may be random, but is independent
of U (d),

d1/2

k
(d)
u

U (d) · e(d) d−→ N(0, 1).

Lemma 2. Subject to (16), if the target eccentricity condition (6) holds then

d

(k
(d)
u )2

U (d)
H (X(d))U (d)

H̃ (X(d))

P−→ 1.

Lemma 3. Provided the strong shell condition on the proposal (7), and the eccentricity
condition on the distance matrix (8) hold then

‖U (d)‖
k
(d)
u

m.s.→ 1 ⇐⇒ d1/2(U (d)
T (d)U (d))1/2

k
(d)
u (T̃ (d))1/2

m.s.→ 1.

The following results are given in [13].

Lemma 4. Let {Ud} and {Wd} be sequences of random variables such that

Ud
m.s.→ 1 and Wd

P−→ 1,

and let {Gd(·)} be a sequence of functions with 0 ≤ Gd(w) ≤ 1. Then

E[Gd(Wd)] → c �⇒ E[U2
d Gd(Wd)] → c.

The acceptance region of a Metropolis–Hastings algorithm is defined in [15] as Ra(x) :=
{y ∈ R

d : α(x, y) = 1}. The reversibilty of the Metropolis–Hastings algorithm is then shown
to imply the following.
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Lemma 5. For a Metropolis–Hastings Markov chain which has proposal q(y | x), and which
has reached equilibrium,

E[α(X, Y )] = 2
∫

dx

∫
y∈Ra(x)

dy π(x)q(y | x). (17)

Also, for any symmetric function S(y),

E[α(X, Y )S(Y )] = 2
∫

dx

∫
y∈Ra(x)

dyS(y)π(x)q(y | x).

Expectations are with respect to π(x)q(y | x).

Define ku, M̃ , and H̃ as in Section 3.1, and, hence,

R(X, U) := d

k2
u

M̃

M̃(X)

1

H̃

∫ 1

0
dt (1− t)U
�

(
X,

d1/2M̃

kuH̃
U

)
U . (18)

Here R(X, U) is a multiple of the remainder term from a Taylor expansion of the log-posterior
and, in the proof of Theorem 1, must be shown to vanish in probability. We now show that the
relative variability condition (5) ensures this.

Lemma 6. If the weak shell condition for the target (3) and the relative variability condition
(5) are satisfied, and if the proposal satisfies (16), then R(d)(X(d), U (d))

P−→ 0.

Proof. Any spherically symmetric random variable, U , can be decomposed into a uniform
angular component and a radial distribution. We may therefore create an invertible map from any
U with a continuous radial distribution function to a standard Gaussian of the same dimension,
Z, for example by

‖Z(d)‖ = F−1
‖Z‖(F‖U‖(‖U‖)),

where F‖U‖(·) and F‖Z‖(·) are the distribution functions of ‖U‖ and ‖Z‖, respectively. We
then fix

Z = ‖Z‖‖U‖U . (19)

In requiring that the remainder term (18) converge in probability to 0, the fraction M̃/M̃(X)

may be ignored provided (3) holds. Furthermore, by (19),

d

(k
(d)
u )2

UiUj = ‖U‖
2

k
(d)
u

d

‖Z‖2 ZiZj .

Thus, if the proposal shell condition (7) holds, and since ‖Z‖/d1/2 P−→ 1, the requirement
R(d)(X(d), U (d))

P−→ 0 is equivalent to

R∗(d) := 1

H̃

∫ 1

0
dt (1− t)Z
�

(
X, tµ

(
M̃

H̃

)
Z

)
Z

P−→ 0,

for which (5) is sufficient.
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A.2. Proof of Theorem 1

It will be helpful to define

V (d)(X(d), U (d)) := d

(k
(d)
u )2

M̃(d)

M̃(d)(X(d))

1

H̃ (d)
U (d)
H (d)(X(d))U (d).

Combining (3), (4), (6), and (7), and applying Lemma 2, we find that V (d) P−→ 1. Now, from
(17),

E[α] = 2EX[P(Y ∈ Ra(X))],
and the acceptance region Ra(x) has log π(x + y)− log π(x) > 0. Taylor expansion with the
integral form for the remainder (see, for example, [6, p. 86]) gives

log π(x + y)− log π(x) = y ·M(x)−
∫ 1

0
dt (1− t)y
H (x + ty)y

= y ·M(x)− 1

2
y
H (x)y −

∫ 1

0
dt (1− t)y
�(x, ty)y,

log π(x + y)− log π(x)

λM̃
= u · M̂(x)− λ

2M̃(x)
u
H (x)u

− λ

M̃(x)

∫ 1

0
dt (1− t)u
�(x, tλu, )u

= ku

d1/2

(
d1/2

ku

u · M̂(x)− 1

2
µV (x, u)− R(x, u)

)
,

where M̂ =M/M̃ . So

P(Y ∈ Ra(x)) = P

(
d1/2

ku

U · M̂(x) >
1

2
µV (x, U)+ R(x, U)

)
.

Let G(d)(·) be the distribution function of (d1/2/k
(d)
u )U (d) · M̂(d)(X(d)). Now Lemma 1 gives

d1/2

k
(d)
u

U (d) · M̂(d)(X(d))
d−→ N(0, 1),

and so G(d)(·) → �(·). Since the G(d) are monotonic with identical finite upper and lower
bounds, this convergence is uniform in the argument, and so, for a given ε > 0, we may choose
d1 such that, for all d > d1 and any t ∈ R, |Gd(t)−�(t)| < ε.

For all bounded continuous functions g(·),
Xn

d−→ X ⇐⇒ E[g(Xn)] → E[g(X)]
(see, e.g. [7, p. 316]). Hence, since V (d)(X(d), U (d))

P−→ 1, and using Lemma 6, there must be
a d2 such that, for all d > d2,

EX(d),U (d)

[∣∣�(− 1
2µV (d) − R(d)

)−�
(− 1

2µ
)∣∣] < ε.

For d > max(d1, d2), consider

td := EX(d)Y (d) [α(X(d)Y (d))] − 2�
(− 1

2µ
)
.
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Application of the triangle inequality gives

|td | = 2
∣∣EX(d),U (d)

[
Gd

(− 1
2µV (d)(X(d), U (d))− R(d)(X(d), U (d))

)−�
(− 1

2µ
)]∣∣

≤ 2EX(d),U (d)

[∣∣Gd

(− 1
2µV (d) − R(d)

)−�
(− 1

2µV (d) − R(d)
)∣∣]

+ 2EX(d),U (d)

[∣∣�(− 1
2µV (d) − R(d)

)−�
(− 1

2µ
)∣∣]

< 2ε,

proving (9). Now, by assumptions (7) and Lemma 3,

1

µ

H̃ (d)

M̃(d)(T̃ (d))1/2
S1/2(Y (d)) = d1/2S1/2(U (d))

k
(d)
u (T̃ (d))1/2

m.s.→ 1.

Therefore, by (9) and Lemma 4,

1

µ2α∗
(H̃ (d))2

(M̃(d))2T̃ (d)
EX(d)Z(d)

[
S(Z(d))Gd

(
−1

2
µV (d)(X(d), Z(d))− R(d)(X(d), Z(d))

)]
→ 1,

where α∗ := limd→∞ E[α(X(d), Y (d))]. Equation (10) then follows directly.

A.3. Proof of Theorem 2

We require two simple preparatory results.

Proposition 2. Consider two sequences of random variables Ad and Bd with 0 < Ad < 1
almost everywhere. If

Ad
P−→ 0 and Bd

E−→ 1

then E[AdBd ] → 0.

Proof. By Holder’s inequality,

|E[Ad(Bd − 1)]| ≤ ess sup |Ad |E[|Bd − 1|] ≤ E[|Bd − 1|] → 0.

But, |E[Ad(Bd − 1)|] = |E[AdBd ] − E[Ad ]|, and E[Ad ] → 0.

Lemma 7. If the first and second target eccentricity conditions (6) and (14), and the strong
shell condition (12) hold, then

βmax∑d
i=1 βi

→ 0.

Proof. Let emax be the eigenvector associated with βmax. Then

βmax = |βmaxemax| = |Hemax| = |E[H (X)emax]| ≤ E[|βmax(X)emax|] = E[βmax(X)].
Therefore,

βmax

E[H̃ (X)] ≤
E[βmax(X)]
E[H̃ (X)] = E

[
βmax(X)

H̃ (X)

H̃ (X)

H̃

]
H̃

E[H̃ (X)] .
But, (12), (14), and Proposition 2 imply that

E

[
βmax(X)

H̃ (X)

H̃ (X)

H̃

]
→ 0.

The result then follows by (12).

Lemma 7 shows that the eigenvalues of H (d) satisfy the eccentricity condition on the distance
matrix (8), and Proposition 1 relates the resulting T̃ (d) (which is H̃ (d)) to M̃(d). The result then
follows from Theorem 1.
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