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WIENER–HOPF FACTORIZATION FOR A
FAMILY OF LÉVY PROCESSES RELATED
TO THETA FUNCTIONS

A. KUZNETSOV,∗ York University

Abstract

In this paper we study the Wiener–Hopf factorization for a class of Lévy processes with
double-sided jumps, characterized by the fact that the density of the Lévy measure is given
by an infinite series of exponential functions with positive coefficients. We express the
Wiener–Hopf factors as infinite products over roots of a certain transcendental equation,
and provide a series representation for the distribution of the supremum/infimum process
evaluated at an independent exponential time. We also introduce five eight-parameter
families of Lévy processes, defined by the fact that the density of the Lévy measure is a
(fractional) derivative of the theta function, and we show that these processes can have
a wide range of behavior of small jumps. These families of processes are of particular
interest for applications, since the characteristic exponent has a simple expression, which
allows efficient numerical computation of the Wiener–Hopf factors and distributions of
various functionals of the process.
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product; theta function
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1. Introduction

Wiener–Hopf factorizaton and related fluctuation identities (see [4], [9], [12], and [18]),
allow us to study various functionals of a Lévy process, such as extrema, first passage time,
overshoots and undershoots, etc. There is a growing number of applications of these functionals
and of the Wiener–Hopf factorization techniques in many areas of applied probability, most
prominently in mathematical finance and insurance mathematics. However, the number of
processes with two-sided jumps for which we can obtain explicit results on fluctuation identities
is by no means large. In fact, until very recent times the only known examples consisted of
a dense subclass of stable processes (see [8]), processes with phase-type distributed jumps
(see [1] or [2]), and, more generally, processes having positive jumps with rational transform
and arbitrary negative jumps (see [16]). In the last several years there have appeared a number
of new results on the Wiener–Hopf factorization with varying degree of explicitness. First of
all we would like to mention the class of Lamperti stable processes, which can be obtained
by the Lamperti transformation (see [14]) from positive self-similar Markov processes, which
are related to stable processes. The family of Lamperti stable processes is very interesting
(and quite unique), since many fluctuation identities can be obtained in closed form in terms of
elementary or special functions; see [5], [6], [13], and the references therein. Second, in [11]
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we introduced a ten-parameter family of Lévy processes, for which the Wiener–Hopf factors
can be identified in a semi-explicit form, more precisely as infinite products involving solutions
to a certain transcendental equation. It is the goal of this paper to build on our earlier ideas and
to extend the results in [11], as well as to provide new analytically tractable examples of Lévy
processes with semi-explicit Wiener–Hopf factorization.

The main idea in [11] consisted of the following observation: if the characteristic exponent
�(z) can be extended to a meromorphic function (which means that its only singularities in
the complex plane are poles) and if we have some additional information about the asymptotic
behavior of the solutions of the equation �(z)+ q = 0, then we can obtain the Wiener–Hopf
factors in essentially the same way as if �(z) was a rational function. Our first contribution
in this paper is to show that the same technique works in a much more general setting: if the
Lévy measure is an infinite series of exponential functions with positive coefficients then the
Wiener–Hopf factorization and the distribution of extrema can be computed rather explicitly in
terms of the solutions of the equation �(z) + q = 0. As we will see, the following property
plays the most important role in the proof of our main result: the Lévy measure is an infinite
series of exponential functions with positive coefficients if and only if, for every q ≥ 0, the zeros
and poles of �(z)+ q lie on the imaginary axis and interlace. As our second contribution, we
present several new families of Lévy processes which satisfy the above condition and which
will be interesting for applications owing to their analytic tractability.

The paper is organized as follows: in Section 2 we prove Theorem 1 on the Wiener–Hopf
factorization and distribution of extrema, while in Section 3 we construct five eight-parameter
families of Lévy processes, for which the density of the Lévy measure is essentially the fractional
derivative of the theta function. For each of these five families, we provide explicit formulae
for the characteristic exponent and asymptotic expressions for the large roots of q+�(z) = 0,
which are important for the efficient implementation of numerical algorithms.

2. Main results

First let us present several definitions and notation which will be used in this paper. We
define the open/closed upper half-plane as

C
+ = {z ∈ C : Im(z) > 0}, C̄

+ = {z ∈ C : Im(z) ≥ 0},
and similarly for the negative half-plane and the positive/negative real half-line. We will study
a one-dimensional Lévy process X started from 0, which is defined by the characteristic triple
(µ, σ,�). The characteristic exponent �(z) = −ln(E[exp(izX1)]) can be computed via the
Lévy–Khintchine formula (see [4, Theorem 1.6, p. 4]) as follows:

�(z) = 1

2
σ 2z2 − iµz−

∫
R

(eizx − 1 − izxh(x))�(dx), z ∈ R, (1)

where h(x) is the cutoff function (throughout in this paper, we will use h(x) ≡ 0 or h(x) ≡ 1,
as the measure �(dx) will have exponential tails). We define the supremum and infimum
processes as

St = sup
0≤s≤t

Xs, It = inf
0≤s≤t Xs.

Wiener–Hopf factors (see [4], [9], [12], or [18]) are defined as

φ+
q (z) = E[eizSe(q) ] for z ∈ C̄

+, φ−
q (z) = E[eizIe(q) ] for z ∈ C̄

−,
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where the random variable e(q) is exponentially distributed with parameter q > 0 and is
independent of the process X.

In order to specify the Lévy measure �(dx), we start with the four sequences of positive
numbers {an, ρn, ân, ρ̂n}n≥1, and assume that the sequences {ρn}n≥1 and {ρ̂n}n≥1 are strictly
increasing, and that ρn → +∞ and ρ̂n → +∞ as n → +∞.

Assumption 1. The series
∑
n≥1 anρ

−2
n and

∑
n≥1 ânρ̂

−2
n converge.

Next we define the function π(x) as

π(x) = 1(x > 0)
∑
n≥1

anρne−ρnx + 1(x < 0)
∑
n≥1

ânρ̂n eρ̂nx . (2)

It is easy to see that the above series converges for all x �= 0, uniformly in x on R \ (−ε, ε) for
all ε > 0. To check this, use Assumption 1 and the inequality exp(−ρnε) < ρ−2

n , which holds
for all n large enough. It is clear that π(x) is a positive function which decays exponentially as
|x| → ∞, and, as we show in the next proposition, Assumption 1 guarantees that π(x) can be
used to define a Lévy measure.

Proposition 1. Assumption 1 implies that
∫

R
x2π(x) dx < ∞.

Proof. As mentioned above, for all ε > 0, the first series in (2) converges uniformly for
x ∈ (ε,∞); thus, we can integrate term by term and obtain

∫ ∞

ε

x2π(x) dx =
∑
n≥1

anρn

∫ ∞

ε

x2 e−ρnx dx

=
∑
n≥1

anρ
−2
n

∫ ∞

ρnε

u2 e−u du

<
∑
n≥1

anρ
−2
n

∫ ∞

ρ1ε

u2 e−u du

< 2
∑
n≥1

anρ
−2
n ,

where in the second step we have changed the variable of integration x 	→ u = ρnx. We see that
the integral on the left-hand side of the above inequality increases and is bounded as ε → 0+;
therefore, it converges. The convergence of the integral over (−∞, 0) is proved similarly.

Proposition 1 allows us to use π(x) as the density of a Lévy measure �(dx) = π(x) dx.
Note that, since π(x) decays exponentially as x → ∞, we can use the cutoff function h(x) ≡ 1
in (1); this will be the default choice throughout this section. The above property also allows
us to work with the Laplace exponent, defined as

φ(z) = ln(E[ezX1 ]) = −�(−iz). (3)

Proposition 2. The Laplace exponent φ(z) is a real meromorphic function which has the
following partial fraction decomposition:

φ(z) = 1

2
σ 2z2 + µz+ z2

∑
n≥1

an

ρn(ρn − z)
+ z2

∑
n≥1

ân

ρ̂n(ρ̂n + z)
, z ∈ C. (4)
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Proof. Use (1), (2), and (3), integrate term by term, and rearrange the resulting infinite
series.

Proposition 3. Assume that q > 0. The equation φ(z) = q has solutions {ζn,−ζ̂n}n≥1, where
{ζn}n≥1 and {ζ̂n}n≥1 are sequences of positive numbers which satisfy the following interlacing
property:

0 < ζ1 < ρ1 < ζ2 < ρ2 < · · · , 0 < ζ̂1 < ρ̂1 < ζ̂2 < ρ̂2 < · · · . (5)

Proof. Using (4), we rewrite the equation φ(z) = q as

z2
∑
n≥1

an

ρn(ρn − z)
+ z2

∑
n≥1

ân

ρ̂n(ρ̂n + z)
= q − 1

2
σ 2z2 − µz. (6)

Denote the left-hand side of (6) as φ1(z) and the right-hand side as φ2(z). First let us check
that there exists a solution to (6) on intervals (0, ρ1) and (−ρ̂1, 0). We observe that φ1(0) = 0
and φ1(z) ↗ +∞ as z ↗ ρ1 or as z ↘ −ρ̂1; the function φ2(z) is continuous and φ2(0) > 0,
and so all that is left to do is to apply the intermediate value theorem. Other intervals can be
verified in a similar way.

It is important to emphasize that Proposition 3 does not claim that the sequences {ζn,−ζ̂n}n≥1
include all solutions to φ(z) = q. The statement is that some solutions are real and that they
interlace with the poles {ρn,−ρ̂n}n≥1. As we will see later, it is in fact true that there are no
other solutions, but the proof of this statement is not trivial and requires some deep results from
the theory of meromorphic functions.

Our first main result in this paper is the following theorem, which identifies the Wiener–Hopf
factors and the distribution of extrema of the process X.

Theorem 1. Assume that q > 0. Then, for Re(z) > 0,

φ+
q (iz) = E[e−zSe(q) ] =

∏
n≥1

1 + z/ρn

1 + z/ζn
, φ−

q (−iz) = E[ezIe(q) ] =
∏
n≥1

1 + z/ρ̂n

1 + z/ζ̂n
. (7)

The distribution of Se(q) can be identified as an infinite mixture of exponential distributions:

P(Se(q) = 0) = c0,
d

dx
P(Se(q) ≤ x) =

∑
n≥1

cnζn e−ζnx, x > 0,

where the coefficients {cn}n≥0 are positive, satisfy
∑
n≥0 cn = 1, and can be computed as

c0 = lim
n→+∞

n∏
k=1

ζk

ρk
, cn =

(
1 − ζn

ρn

) ∏
k≥1
k �=n

1 − ζn/ρk

1 − ζn/ζk
. (8)

The distribution of −Ie(q) has the same form as above, with {ρn, ζn} replaced by {ρ̂n, ζ̂n}.
Our proof of the Theorem 1 is based on two important results from the theory of meromorphic

functions, which we present as theorems below. These two theorems combined together state
that the Lévy measure has the form (2) if and only if, for every q ≥ 0, the zeros and poles of the
real meromorphic function φ(z)−q are real and interlace, and this function can be represented
as an infinite product.
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Theorem 2. ([15, Theorem 1, p. 220].) A real meromorphic function f (z) satisfies f (z) ∈ C
+

for all z ∈ C
+ if and only if it can be represented in the form

f (z) = c
z− a0

z− b0

∏
n∈Z\{0}

1 − z/an

1 − z/bn
,

where c > 0, the zeros an and the poles bn are real and satisfy the interlacing property

bn < an < bn+1, n ∈ Z,

and a−1 < 0 < b1.

Theorem 3. ([7, Theorem 1, p. 197].) A real meromorphic function f (z) satisfies f (z) ∈ C
+

for all z ∈ C
+ if and only if it can be represented in the form

f (z) = αz+ β + B0

b0 − z
+

∑
n∈Z\{0}

Bn

(
1

bn − z
− 1

bn

)
, (9)

where the poles bn are real, bn < bn+1 and b−1 < 0 < b1, α ≥ 0, β ∈ R, Bn ≥ 0 for n ≥ 0,
and the series

∑
Bnb

−2
n converges.

Proof of Theorem 1. First let us prove that the infinite products in (7) converge. The product∏
bn converges if and only if the series

∑
(bn − 1) converges; thus, we need to consider the

series ∑
n≥1

(
1 + z/ρn

1 + z/ζn
− 1

)
= z

∑
n≥1

1

1 + z/ζn

(
1

ρn
− 1

ζn

)
. (10)

Using the interlacing property (5) we find that

0 < · · · < ρ−1
2 < ζ−1

2 < ρ−1
1 < ζ−1

1 ;
thus, we obtain

0 <
∑
n≥1

(
1

ζn
− 1

ρn

)
<

∑
n≥1

(
1

ζn
− 1

ζn+1

)
= ζ−1

1 ,

and conclude that the series on the right-hand side of (10) converges, which guarantees the
convergence of the infinite products in (7).

Next, let us establish the following infinite product factorization:

q

q − φ(z)
=

∏
n≥1

1 − z/ρn

1 − z/ζn

∏
n≥1

1 + z/ρ̂n

1 + z/ζ̂n
. (11)

To prove this factorization, we use (4) and rewrite the function (φ(z)− q)/z in the form

φ(z)− q

z
= 1

2
σ 2z+ µ− q

z
+

∑
n≥1

an

(
1

ρn − z
− 1

ρn

)
+

∑
n≥1

ân

(
1

−ρ̂n − z
− 1

−ρ̂n
)
.

Using the above equation and Theorem 3, we conclude that function (φ(z) − q)/z maps the
upper half-plane into itself; therefore, applying Theorem 2 and Proposition 3 we find that

φ(z)− q

z
= c

z− ζ1

z

∏
n≥1

1 − z/ζn+1

1 − z/ρn

∏
n≥1

1 + z/ζ̂n

1 + z/ρ̂n
,

which in turn implies (11).
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Let us introduce the functions

f (z) =
∏
n≥1

1 + z/ρn

1 + z/ζn
, f̂ (z) =

∏
n≥1

1 + z/ρ̂n

1 + z/ζ̂n
. (12)

Using Theorem 2, we find that the real meromorphic function zf (z) maps the upper half-
plane into itself; thus, again, we apply Theorem 3 to find that zf (z) has the partial fraction
decomposition (9), which implies that f (z) has the partial fraction decomposition

f (z) = c0 +
∑
n≥1

cnζn

ζn + z
,

where cn ≥ 0 for n ≥ 0 and the series
∑
cn converges. Setting z = 0 in the above equation we

find that
∑
cn = 1, and, therefore, f (z) is the Laplace transform of the mixture of exponential

distributions, which implies that f (z) is the Laplace transform of a positive infinitely divisible
random variable with zero drift. The same result holds for f̂ (z). Equation (11) tells us that
q/(q − φ(z)) = f (−z)f̂ (z), and using the uniqueness of the Wiener–Hopf factorization
(see [18, Theorem 45.2, p. 334]), we conclude that φ+

q (iz) = f (z) and φ−
q (−iz) = f̂ (z), thus

obtaining (7).
In order to complete the proof, we need to establish only the formulae in (8). The expression

for c0 follows from the computation

P(Se(q) = 0) = lim
z→+∞ E[e−zSe(q) ] = lim

z→+∞ lim
N→+∞

N∏
n=1

1 + z/ρn

1 + z/ζn
= lim
N→+∞

N∏
n=1

ζn

ρn
,

where in the last step we interchanged the two limits, which is possible owing to the fact that
the limit

lim
z→+∞

N∏
n=1

1 + z/ρn

1 + z/ζn

converges uniformly inN . The expression for cn in (8) follows from (12) and the fact that cnζn
is the residue of f (z) at the pole z = −ζn.

3. Examples

Theorem 1 gives us the Wiener–Hopf factors, and the distributions of Se(q) and Ie(q) for any
Lévy process whose Lévy measure is an infinite series of exponential functions with positive
coefficients. All the formulae in Theorem 1 are based only on the zeros and the poles of
the meromorphic function φ(z) − q. The poles {ρn,−ρ̂n}n≥1 are usually known explicitly,
but in order to find the zeros {ζn,−ζ̂n}n≥1, we have to solve the transcendental equation
φ(z) = q, and this has to be done numerically. It is clear that if we have to rely on the
partial fraction decomposition (4) in order to evaluate φ(z), such numerical computations will
be quite challenging, if not impossible. Thus, it is very important to find families of Lévy
processes, for which the Lévy measure is an infinite series of exponentials, and at the same time
the Laplace exponent can be computed in closed form. In [11] we introduced the β-family: a
ten-parameter family of Lévy processes, for which the characteristic exponent can be computed
in terms of the beta function. A very special subclass of the β-family is a five-parameter family
of Lévy processes (see Section 3 of [11]), whose jump component behaves similarly to the
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normal inverse Gaussian process (see [3]), and the characteristic exponent is expressed in terms
of elementary (trigonometric) functions. In this section we present five parametric families of
Lévy processes, which have a number of desirable properties. The characteristic exponent is
expressed in terms of rather simple functions, such as trigonometric functions or the digamma
function ψ(z) = �′(z)/�(z) (see [10, Section 8.36, p. 902] for the definition and properties of
the digamma function). The density of the Lévy measure decays exponentially at ∞ and has a
singularity at 0,

π(x) ∼ a±|x|−χ , x → 0±,

of the order χ ∈ { 1
2 , 1, 3

2 , 2, 5
2 }, thus ‘covering’ the complete range of admissible singularities

χ ∈ (0, 3). In particular, when χ = 1, we have a process of infinite activity of jumps but of
finite variation, whose jump part is similar to the variance gamma process (see [17]), and when
χ = 2, we obtain a process with an infinite variation of jumps, whose jump part is similar to
the normal inverse Gaussian process.

To define these processes, we introduce the function �k(x), defined as

�k(x) = δk,0 + 2
∑
n≥1

n2k e−n2x, x > 0, (13)

where δk,0 = 1 if k = 0 and δk,0 = 0 otherwise. Note that �0(x) = θ3(0, e−x) (see [10,
Sections 8.18–8.19, p. 877] for the definition and properties of the theta functions θi(z; τ)),
and, for k ∈ N, the function�k(x) is just the kth-order derivative of the theta function θ3(0, e−x).
In fact, results similar to those presented in this section can be established if we use θ2(0, e−x)
instead of θ3(0, e−x).

Definition 1. For 0 < χ < 3 and x �= 0, we define

πχ(x) = 1(x > 0)c1β1 e−α1x�k(xβ1)+ 1(x < 0)c2β2 eα2x�k(−xβ2),

where ci, αi, βi > 0 and k = χ − 1
2 .

Proposition 4. The function πχ(x) has the following asymptotics:

πχ(x) ∼
⎧⎨
⎩
�(χ)c1β

1−χ
1 |x|−χ , x → 0+,

�(χ)c2β
1−χ
2 |x|−χ , x → 0−.

Proof. Let h = √
x. Then, using the fact that a definite integral is the limit of the Riemann

sum, we obtain, as h → 0+,

∑
n≥1

n2k e−n2x = h−1−2k
[
h

∑
n≥1

(hn)2k e−(hn)2
]

= x−1/2−k
[∫ ∞

0
y2k e−y2

dy + o(1)

]
.

To complete the proof, use Definition 1 and the above asymptotic relation.

Proposition 4 and Definition 1 guarantee that
∫

R
x2πχ(x) dx exists; thus, π(x) can be used

to define the density of a Lévy measure �χ(dx) = πχ(x) dx. We define the Lévy process X
using the characteristic triplet (µ, σ,�χ) and the Lévy–Khinchine formula (4).

Remark 1. Note that in a similar way we can construct Lévy processes with asymmetric
behavior of small positive/negative jumps. We could extend Definition 1 to allow parameters
k1 and k2 to control the order of the singularity of π(x) as x → 0+ and x → 0−, respectively.
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In the next five subsections we will present the results for the Lévy processXwithχ ∈ { 1
2 , 1,

3
2 , 2, 5

2 }. The explicit formulae for the characteristic exponent �(z) are derived using the
following approach. First we obtain the characteristic exponent �(z) for χ = 1

2 (this is just
a simple application of formulae 6.162 of [10]) and χ = 1, in which case we have to use the
following series expansion for the digamma function (see Equation 8.362.1 of [10]):

ψ(x) = −γ − 1

x
+ x

∑
n≥1

1

n(n+ x)
.

All the other cases, when χ ∈ { 3
2 , 2, 5

2 }, can be easily derived from the above two by using
Definition 1, the fact that �k+1(x) = −d�k(x)/dx (which follows from (13)), and applying
the following proposition (which can be easily established by integration by parts).

Proposition 5. (i) Assume that
∫

R+ e−αxπ(x) dx < ∞. Then, for z ∈ R,

∫
R+
(eizx − 1) e−αxπ ′(x) dx = (α − iz)f1(z)− αf1(0),

where f1(z) = ∫
R+ eizx−αxπ(x) dx.

(ii) Assume that
∫

R+ x e−αxπ(x) dx < ∞. Then, for z ∈ R,

∫
R+
(eizx − 1 − izx) e−αxπ ′(x) dx = (α − iz)f2(z)− αzf ′

2(0),

where f2(z) = ∫
R+(eizx − 1) e−αxπ(x) dx.

Asymptotic expansions for the large solutions of the equation φ(ζ ) = q are obtained using
exactly the same technique as in the proof of the Theorem 5 of [11]; however, since the derivation
of these expressions is rather lengthy and tedious, we have decided to omit it. The interested
reader who decides to verify these formulae might want to use a symbolic computation software
to make the algebraic manipulations more enjoyable.

All the formulae below involve the parameter σ ≥ 0, positive numbers αi, βi , and ci
which define the Lévy measure �χ via Definition 1, and two additional parameters γ and ρ.
The parameter γ is uniquely determined by the condition �(0) = 0 and the parameter ρ is
responsible for the linear drift. In all the cases when χ < 2, the jump part of the process has
bounded variation; thus, we can take the cutoff function in the Lévy–Khintchine formula (1)
as h(x) ≡ 0, and then we have ρ = µ. When χ ≥ 2, we take h(x) ≡ 1 and then ρ
can be uniquely expressed in terms of the characteristic triplet (µ, σ,�χ) via the condition
E[X1] = i� ′(0) = µ.

3.1. The family of processes with χ = 1/2

(i) The characteristic exponent can be computed as

�(z) = 1
2σ

2z2 − iρz− c1π((α1 − iz)β−1
1 )−1/2 coth(π

√
(α1 − iz)β−1

1 )

− c2π((α2 + iz)β−1
2 )−1/2 coth(π

√
(α2 + iz)β−1

2 )+ γ.

(ii) For n ≥ 1, we have ρn = α1 + β1(n− 1)2 and ρ̂n = α2 + β2(n− 1)2.
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(iii) If σ �= 0 then the large positive solutions to φ(ζ ) = q satisfy

ζ ∼ β2n
2 + α2 + 4

σ 2

c2

β2
n−4 + 8

σ 4

c2

β2
2

(µ− α2σ
2)n−6 +O(n−8), n → +∞.

(iv) If σ = 0 and µ �= 0, then the large positive solutions to φ(ζ ) = q satisfy

ζ ∼ β2n
2 + α2 − 2c2

µ
n−2 + 2

µ2

c2

β2
(µα2 + γ + q)n−4 +O(n−5), n → +∞.

3.2. The family of processes with χ = 1

(i) The characteristic exponent can be computed as

�(z) = 1
2σ

2z2 − iρz+ c1ψ(i
√
(α1 − iz)β−1

1 )+ c1ψ(−i
√
(α1 − iz)β−1

1 )

+ c2ψ(i
√
(α2 + iz)β−1

2 )+ c2ψ(−i
√
(α2 + iz)β−1

2 )− γ.

(ii) For n ≥ 1, we have ρn = α1 + β1n
2 and ρ̂n = α2 + β2n

2.

(iii) If σ �= 0 then the large positive solutions to φ(ζ ) = q satisfy

ζ ∼ β2n
2 + α2 + 4

σ 2

c2

β2
n−3 + 8

σ 4

c2

β2
2

(µ− α2σ
2)n−5 +O(n−7), n → +∞.

(iv) If σ = 0 and µ �= 0, then the large positive solutions to φ(ζ ) = q satisfy

ζ ∼ β2n
2 + α2 − 2c2

µ
n−1 + 2

µ2

c2

β2
(2(c1 + c2) ln(n)+ c0)n

−3 +O(n−4 ln(n))

as n → +∞, where c0 = µα2 − γ + q + c1 ln(β2/β1).

3.3. The family of processes with χ = 3/2

(i) The characteristic exponent can be computed as

�(z) = 1
2σ

2z2 − iρz+ c1π

√
(α1 − iz)β−1

1 coth(π
√
(α1 − iz)β−1

1 )

+ c2π

√
(α2 + iz)β−1

2 coth(π
√
(α2 + iz)β−1

2 )− γ.

(ii) For n ≥ 1, we have ρn = α1 + β1n
2 and ρ̂n = α2 + β2n

2.

(iii) If σ �= 0 then the large positive solutions to φ(ζ ) = q satisfy

ζ ∼ β2n
2 + α2 + 4

σ 2

c2

β2
n−2 + 8

σ 4

c2

β2
2

(µ− α2σ
2)n−4 +O(n−6), n → +∞.

(iv) If σ = 0 and µ �= 0, then the large positive solutions to φ(ζ ) = q satisfy

ζ ∼ β2n
2 + α2 − 2c2

µ
+ 2π

µ2

c1c2√
β1β2

n−1 +O(n−2), n → +∞.
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3.4. The family of processes with χ = 2

(i) The characteristic exponent can be computed as

�(z) = 1
2σ

2z2 − iρz

− c1(α1 − iz)β−1
1 [ψ(i

√
(α1 − iz)β−1

1 )+ ψ(−i
√
(α1 − iz)β−1

1 )]
− c2(α2 + iz)β−1

2 [ψ(i
√
(α2 + iz)β−1

2 )+ ψ(−i
√
(α2 + iz)β−1

2 )] + γ.

(ii) For n ≥ 1, we have ρn = α1 + β1n
2 and ρ̂n = α2 + β2n

2.

(iii) If σ �= 0 then the large positive solutions to φ(ζ ) = q satisfy

ζ ∼ β2n
2 + α2 + 4

σ 2

c2

β2
n−1 +O(n−3 ln(n)), n → +∞.

3.5. The family of processes with χ = 5/2

(i) The characteristic exponent can be computed as

�(z) = 1
2σ

2z2 − iρz− c1π((α1 − iz)β−1
1 )3/2 coth(π

√
(α1 − iz)β−1

1 )

− c2π((α2 + iz)β−1
2 )3/2 coth(π

√
(α2 + iz)β−1

2 )+ γ.

(ii) For n ≥ 1, we have ρn = α1 + β1n
2 and ρ̂n = α2 + β2n

2.

(iii) If σ �= 0 then the large positive solutions to φ(ζ ) = q satisfy

ζ ∼ β2n
2 + α2 + 4

σ 2

c2

β2
− 8π

σ 4

c1c2

(β1β2)3/2
n−1 +O(n−2), n → +∞.

(iv) If σ = 0 then the large positive solutions to φ(ζ ) = q satisfy

ζ ∼ β2(n+ w0)
2 + α2 + 2ρ

π2

c2β
2
2β

3
1

c2
1β

3
2 + c2

2β
3
1

+O(n−1), n → +∞,

where

w0 = 1

π
arctan

(
c2β

3/2
1

c1β
3/2
2

)
.

4. Conclusion

In this paper we have extended the results of [11] in several directions. First of all, for
a very large class of Lévy processes (having infinitely many parameters), we have proved
that the Wiener–Hopf factors can be expressed as infinite products of linear factors and that the
distribution of Se(q) and Ie(q) can be identified as an infinite mixture of exponential distributions.
Second, we have introduced five eight-parameter families of Lévy processes, which have a
wide range of behavior of small jumps, including one family having jumps of finite activity (the
density of the Lévy measure has a singularity at 0 of order χ = 1

2 ), two families with jumps of
infinite activity but finite variation (χ = 1 or χ = 3

2 ), and two families with jumps of infinite
variation (χ = 2 or χ = 5

2 ). We have also derived precise asymptotic expressions for the large
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solutions to φ(z) = q, which are very useful for numerical computations. The characteristic
exponents for these five families of processes have rather simple forms, especially when χ
is a half-integer, in which case �(z) is given in terms of elementary trigonometric functions.
This fact and the availability of efficient numerical schemes for computing the Wiener–Hopf
factors and the distribution of extrema make these processes very interesting for mathematical
modeling, in particular in the areas of mathematical finance and insurance mathematics.
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