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Abstract

Directly indecomposable absolute subretracts that are commutative Noetherian rings are de-
scribed. This is an application of our main result characterizing unital directly indecomposable
absolute subretracts which contain a maximal ideal with nonzero annihilator.
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Throughout this paper, all rings are associative and commutative. The
variety generated by a ring R is denoted Var(i?) (cf. [7]).

Recently, several authors [2, 4, 5] have studied the notion of absolute
subretract. Recall that a ring R is said to be an absolute subretract if for
every ring S in Var(i?) and every ring monomorphism / : / ? - » 5 , there
exists a ring morphism g : S —> R such that gf is the identity mapping
on R. In [4], Gardner and Stewart characterized directly indecomposable
absolute subretracts R with R — {0}, and gave an example of a special
principal ideal ring which is an absolute subretract. Then Jespers [5] obtained
necessary and sufficient conditions for a finite special principal ideal ring (of
characteristic diiferent from 2") to be an absolute subretract, also obtaining
results for the infinite and characteristic 2" cases.

We first show that in a unital directly indecomposable absolute subretract
R, the set of zero divisors is a maximal ideal M and R/M is finite. If, more-
over, M has nonzero annihilator (denoted Ann(M)), we obtain necessary
and sufficient conditions for R to be an absolute subretract. As an immedi-
ate consequence, a characterization of Noetherian directly indecomposable
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absolute subretracts is obtained. The latter is then applied to Noetherian
contracted monoid algebras.

LEMMA 1 [2, 4]. Let R be a directly indecomposable absolute subretract.
If I and J are nonzero ideals of R, then If)J£ {0} .

PROPOSITION 2. Let R be a unital ring. If R is a directly indecomposable
absolute subretract, then the set of zero-divisors of R is a maximal ideal M
and R/M is finite.

PROOF. Let M be the set of zero divisors. Because of Lemma 1, one easily
verifies that M is an ideal of R. Clearly R/M is a domain. If R/M is
finite, then R/M is a field and thus M is a maximal ideal. In the remainder,
we show that R/M has to be finite.

Suppose the contrary. Then R/M, being an infinite domain, satisfies only
identities f(X) = 0 where f(X) e pZ[X], p = char (R/M). If p = 0,
we have shown that R/M, and hence R, satisfies no nontrivial polynomial
identities. If p ^ 0, any nontrivial polynomial identity satisfied by R must
be of the form 0 = p"f(X) e Z[X], n > 1, where f(X) <£ pZ[X]. We
claim that in this case char(i?) \ p" . If not, then p" ^ 0 in R so f(X) is
in M for all choices of X and f(X) = 0 in R/M. But we saw before that
this implies f(X) e pZ[X], a contradiction.

In either case (cf. [6]), Var(/?) contains all central extensions of R. As in
[8] and [4], we focus our attention on the localization of the polynomial ring
in one variable R[x] obtained by inverting all monic polynomials, and denote
this by T. Since R is an absolute subretract, there is a homomorphism
g : T -* R extending the identity map on R. Say g(x) = r. Then, g(x -
r) = 0, a contradiction since JC - r is invertible. This finishes the proof. •

COROLLARY 3. Let R be a unital directly indecomposable absolute subre-
tract and let M be the ideal of zero divisors. If Ann(Af) £ 0, then Ann(Af)
is the minimum nonzero ideal of R.

PROOF. Say Ann(M) <£ I for some nonzero ideal / of R. Choose 0 /
m G Ann(M) with m & I. By Lemma 1, there exists r e R such that 0 ^
rm e I. Proposition 2 then says that r"~ = 1 + a for some a e M where
n = \R/M\. But this implies that m — r"~ m e / , a contradiction. D

LEMMA 4. Let R be a unital directly indecomposable absolute subretract
with M the ideal of zero divisors. Assume M £ {0} and Ann(Af) ^ {0} . If
\R/M\ > 2, then M = Ann(M), that is M2 = {0} .
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PROOF. Since R/M has more than two elements, there exist u, u £ M
with u-u £ M. Also, by Corollary 3, Ann(A/) = Rx for some 0 / x e R.

Let S = {(a, a + j) e R x R | j e M) and let / be the principal
ideal generated by (ux, u'x) in S. Note that, since Mx = 0, / =
{(aux, au'x) \ a £ M} U {0}, and that T = S/I is in Var(R). Define
/ : R —> T by f(r) = (r, r) + I. Clearly / is a homomorphism. Suppose
f(r) = 0 for some r ^ 0, that is (r, r) e / . Then 0 / r = aux — au'x for
some a £ M, so a(u - u')x = 0. Since a(u - u) & M, that is, a(u - u)
is not a zero divisor, it follows that x = 0, a contradiction. Thus / is a
monomorphism.

We now show that every principal ideal Tt of T intersects f(R) non-
trivially, where 0 # t = (a, b) +1.

First consider the case where a, b £ Rx, that is, a = vx, b = wx and
either v or w is not in M. Let s = (u - u)"~2(v - w) where n — \R/M\.
Note that s(u — u)x = (u — u)n~ (v — w)x — (1 + a)(v - w)x for some
a e M. Hence

s(u - u)x = (v - w)x.

Therefore (v + su)x = (w + su')x, and so 0 ^ (a, b) + I = (vx, wx) +
s(ux, u'x) +1 = ((v + su)x, (w + su')x) +1 € f(R).

Next assume that either a & Rx or b £ Rx, for example, say, a & Rx.
Because Ma / 0 and Rx is minimum, there exists r e M with ra — x.
Hence (r, 0) e S and (r, 0)(a, b) + I = (x, 0) + / belongs to Tt. Note
that (x, 0) £ / since (JC , 0) = (aux, au'x) implies au'x = 0. As u is not
a zero divisor, this yields ax — 0 and thus x = aux = 0, a contradiction.
By the previous case, we know that (x, 0) + / belongs to f(R).

Since R is an absolute subretract, it follows that f(R) = T. Hence, for
every me M, (um + x, u'm + x) +1 e f(R). Thus (um + x, u'm + x) =
(r, r) + (aux, au'x) for some r e R. It follows that um — u'm e Ann(M).
Since u-u is not a zero divisor, we conclude that m e Ann(Af), so M C
Ann(Af). Since M / 0, Ann(Af) C M, and the result follows. D

We next show that the characteristic 2 case can be settled in the same way.

LEMMA 5. Let R be a unital directly indecomposable absolute subretract
with M the ideal of zero divisors. Assume M £ {0} and Ann(M) £ {0}. If
\R/M\ = 2, then M = Axm(M).

PROOF. Let S = {(a, b, c)\a ,b,c e R, a- b and b - c e M}. Note
that S e Var(i?). Let Ann(M) = Rx, x ^ 0, and define

/ = {(0, 0, 0), (0, x, x),(x,0,x), (x, x, 0)}.

Observe that / is an ideal of S and let T = S/I.
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Define / : R —> T by f(r) = (r,r,r) + I. Clearly / is a monomor-
phism. We claim that every nonzero principal ideal of T intersects f(R)
nontrivially. For this, let 0 ^ t — (a, b, c) + I. If a, b, c are all in
Rx = {0, x}, then since t ^ 0 , we have t = {x, x, x) + I = f(x). So
assume, for example, that a & Rx. Then Ma ^ 0 and thus Ma D Rx
since Rx is minimum. So ra = x for some r e M. Hence (r, 0, 0) e M
a n d ( r , 0 , 0 ) ( a , b , c ) + I = ( x , 0 , 0 ) + I = ( x , x , x ) + I = f ( x ) i s i n T t ,
and the claim is proved. Since R is an absolute subretract, we conclude that
f(R) - T. Hence for every meM,(m,m,0) + l€ f{R). Consequently,
m € Rx so M C Ann(Af). Since M ^ 0, Ann(M) c M and the result
follows. •

We are now ready to prove our main result.

THEOREM 6. Let R be a unital ring with maximal ideal M such that
Ann(Af) ^ {0}. Then R is a directly indecomposable absolute subretract if
and only if R is finite and M - Rx, x2 — 0, for some x in R.

PROOF. First we show that the conditions are sufficient. If M ^ {0} , this
follows from Proposition 2 in [5]. The case M = {0}, that is R is a finite
field, is proved in the same way, but we will sketch it here for completeness.
So let R be a finite field and say / : R —• T is a monomorphism where
T € Var(i?). Although T itself may not have a multiplicative identity, it
has a direct summand T, such that f(R) C T{ and T, shares the same
multiplicative identity as f(R). Choose N an ideal of T{ maximal such
that f{R) n N = {0} . Then Tx/N is a field satisfying the same polynomial
identities as R and R is embedded in TJN. Hence R ~ Tx/N and the
result follows.

To prove the necessity of the conditions, note that because of Proposition
2 and the assumptions, M is the set of zero divisors of R and R/M is a
finite field. The result then follows from Lemmas 4 and 5. •

COROLLARY 7. Let R be a unital directly indecomposable ring. Then R is
a Noetherian absolute subretract ifand only if R is a finite field or R is a finite
local ring with maximum ideal M — Rx and x2 = 0 for some 0 / x e R.

PROOF. Assume R is a Noetherian absolute subretract. Then by the as-
sumptions and Proposition 2, the set of zero divisors M is a finitely gener-
ated maximal ideal. Hence by Lemma 1, Ann(Af) / {0}. The result now
follows from Theorem 6. •

We conclude with an application to contracted monoid algebras. For ter-
minology and notation we refer to [1].
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COROLLARY 8. Let k be a field and S a commutative monoid with identity
element e and zero element 6 £ e. Then the contracted monoid algebra is
a Noetherian directly indecomposable absolute subretract if and only if k is a
finite field and one of the following conditions is satisfied.

(i) S = {e,s, 6},s2 = 0 , s £ d,s £ e. In particular, ko[S] =

k[x]/(x2).

(ii) char{k) = 2, S = {e, s, 6}, s2 = e. In particular, ko[S] = k[Z2], a
group algebra of the cyclic group of order 2.

(iii) S = {e,6}. In particular, ko[S] = k.

PROOF. First note that ko[S] is a field if and only if S = {e, 8], which
is precisely case (iii). Because of Corollary 7 and the results in [3], the proof
now goes exactly as the proof of Corollary 4 in [5]. •
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